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A POSTERIORI ERROR ESTIMATES FOR NONLINEAR PROBLEMS.
FINITE ELEMENT DISCRETIZATIONS OF ELLIPTIC EQUATIONS

R. VERFÜRTH

Abstract. We give a general framework for deriving a posteriori error esti-
mates for approximate solutions of nonlinear problems. In a first step it is
proven that the error of the approximate solution can be bounded from above
and from below by an appropriate norm of its residual. In a second step this
norm of the residual is bounded from above and from below by a similar norm
of a suitable finite-dimensional approximation of the residual. This quantity can
easily be evaluated, and for many practical applications sharp explicit upper and
lower bounds are readily obtained. The general results are then applied to finite
element discretizations of scalar quasi-linear elliptic partial differential equa-
tions of 2nd order, the eigenvalue problem for scalar linear elliptic operators
of 2nd order, and the stationary incompressible Navier-Stokes equations. They
immediately yield a posteriori error estimates, which can easily be computed
from the given data of the problem and the computed numerical solution and
which give global upper and local lower bounds on the error of the numerical
solution.

1. Introduction

The efficiency of a numerical method for the solution of partial differential
equations strongly depends on the choice of an "optimal" discretization, the use
of a fast and efficient algorithm for the solution of the discrete problem, and
a simple, but reliable method for judging the quality of the numerical solution
obtained. These three objectives are often interdependent. The first and last
one are related to the problem of a posteriori error estimation, i.e., of extracting
from the given data of the problem and the computed numerical solution reliable
bounds on the error of the numerical solution. Of course, the computation of
the a posteriori error estimates should be much less costly than the solution of
the original discrete problem.

Within the framework of finite element methods various strategies of a pos-
teriori error estimation have been devised during the last 15-20 years (cf., e.g.,
[2, 3, 20, 27] and the literature cited there). They can roughly be classified as
follows:

(1) residual estimates: Estimate the error of the computed numerical solu-
tion by a suitable norm of its residual with respect to the strong form of the
differential equation (cf., e.g., [4, 5, 9, 19, 21, 25, 27]).

(2) solution of local problems:  Solve locally discrete problems similar to,
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44* R. VERFURTH

but simpler than, the original problem and use appropriate norms of the local
solutions for error estimation (cf., e.g., [7, 8, 18, 22, 25, 27]).

(3) sharp a priori error estimates: Derive sharp a priori error estimates and use
suitable higher-order difference quotients of the computed numerical solution
to estimate the higher-order derivatives appearing in the a priori error estimates
(cf., e.g., [15, 16]).

(4) averaging methods: Use some local averaging technique for error estima-
tion (cf., e.g., [6, 21, 29, 30]).

For a certain class of problems and discretizations it was proven in [28] that
the methods (1) and (2) are equivalent in the sense that, up to multiplicative
constants, they yield the same upper and lower bounds on the error of the
numerical solution (cf. also [6, 13, 21] for the comparison of different error
estimators). In this context it should be noted that, in order to be efficient,
an a posteriori error estimation should yield upper and lower bounds on the
error. Clearly, upper bounds are sufficient to ensure that the numerical solu-
tion achieves a prescribed tolerance. Lower bounds, however, are essential to
guarantee that the error is not overestimated and that its local distribution is
correctly resolved. Often, only upper bounds are established in the literature.

Various methods are used for constructing a posteriori error estimators and
for proving that they yield upper and/or lower bounds on the error. These
methods often depend on a particular class of problems and discretizations. A
close inspection, however, reveals that they have certain principles in common.
It is the aim of this paper to give a rather general framework that allows one to
construct a posteriori error estimators and to prove that they yield upper and
lower bounds on the error. In this general context we are satisfied with proving
that the upper and lower bounds differ by a multiplicative constant which is
independent of the mesh size. We neither intend to derive optimal estimates
for this constant nor to prove efficiency of the error estimators, i.e., that the
ratio of the true and the estimated error asymptotically tends to 1. This latter
question is addressed for linear problems in e.g. [2, 3, 4, 5, 6, 7, 13, 14].

We consider in §§2-4 nonlinear equations of the form

(1.1) F(u) = 0

and corresponding discretizations of the form

(1.2) Eh(uh) = 0.

Here, F e CX(X, Y*) and Fh e C(Xh, Y£), Xh c X and Yh c Y are finite-
dimensional subspaces of the Banach spaces X and Y, and * denotes the dual
of a Banach space.

If «o € X is a solution of equation (1.1) such that DF(uq) is an isomorphism
of X onto Y* and DF is Lipschitz continuous at «o, we prove in Proposition
2.1 that

(1.3) ç\\F(u)\\y*<\\u-Uo\\x<c\\F (up-

holds for all m in a suitable neighborhood of «o •   The constants c and c
depend on DF(uq) and DF(uo)~l ■ The proof of Proposition 2.1 is straight-
forward. The conditions on F can be weakened considerably (cf. Remark 2.3).
Inequality (1.3) is a local result. That means that it can be applied to solutions
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of equation (1.2) only if they are sufficiently close to uo , i.e., if the discretiza-
tion is "sufficiently fine". This is not surprising since we are dealing with general
nonlinear problems, which may have a large variety of solutions. If problem
(1.1) is linear, i.e., DF is constant, inequality (1.3) of course holds for all
ueX.

In §3 we briefly outline how the results of §2 can be extended to branches
of solutions of equation (1.1), including singular points such as simple limit
and bifurcation points. The generalization to the case of a regular branch of
solutions, i.e., situations covered by the implicit function theorem, is straight-
forward. The case of a simple limit or bifurcation point can be reduced as
in [12] to the case of a regular branch of solutions by suitably blowing up the
spaces X and Y and modifying the function F . For practical applications it
is important that the additional spaces are finite-dimensional. Thus, the cost
for evaluating the residual of the modified function is essentially determined by
the cost for evaluating the residual of F .

In §4, we estimate the residual ||F(«/,)||y., where Uf, is an approximate
solution of equation (1.2). To this end, we introduce a restriction operator
Rf, : Y -> Yh, a finite-dimensional subspace Yh c Y, and an approximation
Ff,: Xf, -* Y* of F at Uf, which are coupled via inequality (4.1). For practical
applications, the construction of R¡, and Fh is rather straightforward. Usually,
Fh(uh) is obtained by locally projecting F(ui,) onto suitable finite-dimensional
spaces. This corresponds to the well-known technique of locally freezing the
coefficients of a differential operator. The choice of Yh on the other hand is
less obvious. It is, however, considerably simplified by the auxiliary results
of §5 (see also below). We then prove in Proposition 4.1 that, up to multi-
plicative constants and additive correction terms, ||.F(wA)||y. is bounded from
below and from above by \\Ff,(U),)\\y. ■ The latter can be evaluated quite easily
since its computation is equivalent to a finite-dimensional maximization prob-
lem. Moreover, sharp explicit bounds on ||Í^¡(ma)II7. are readily obtained for
many practical applications. When applying the general results to finite element
methods, the aforementioned multiplicative constants essentially depend on the
element geometry and on the polynomial degree of the finite element functions.
In principle, they can be estimated explicitly. The aforementioned correction
terms consist of the following quantities:

(1) the residual Hi^M^Hy« of the discrete problem (1.2),
(2) the consistency error \\F(Uh) - Fh(Uh)\\v of the discretization, and
(3) a term which measures the quality of the approximation of F(Uh) by

Eh(Uh) ■
The first quantity can easily be estimated from uh and the given data. The
second one can be bounded a priori. For many practical applications one can
finally prove that the third quantity is a higher-order perturbation when com-
pared with ||FA(tiA)lly. ■

In this section we also give a framework which covers some of the a posteriori
error estimators based on the solution of auxiliary local problems, such as the
one described in [4, 5], and which shows that these estimators are equivalent to
the residual a posteriori error estimator considered before.
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As already mentioned, we establish in §5 some auxiliary results which simplify
the construction of Yh . The main result is of the form (cf. Lemma 5.1)

(1.4) 0<a<     inf       sup    „   ..^"¡f5"-< 1.
"e^\{o}i,eKs\{o} II"IIí>(s)II^IIl«(5)

Here, 1 <P < oo, £ + | = 1, S is either a simplex in W or a face of such a
simplex, V$ is a finite-dimensional space of functions defined on S, and ips is
a cutoff function. It is important to note that the constant a is independent of
S. Lemma 5.1 is a generalization of Lemma 4.1 in [28]. Thanks to inequality
(1.4), one can show that for finite element methods, Yh can be chosen as the
space of all linear combinations of functions y/çv , where v e V$ and 51 varies
through all elements and their faces.

In §§6-8 we apply the general results of the previous sections to finite ele-
ment approximations of scalar quasi-linear elliptic partial differential equations
of 2nd order, the eigenvalue problem for scalar linear elliptic differential oper-
ators of 2nd order, and the stationary incompressible Navier-Stokes equations
(cf. Propositions 6.1, 6.3, 6.4, 6.5, 7.1, 8.1, and 8.4). In all examples we obtain
upper and lower bounds for the finite element error in terms of a residual a
posteriori error estimator. This error estimator essentially consists of the ele-
mentwise error of the finite element functions with respect to the strong form
of the differential equation and of jumps across inter-element boundaries of
that boundary operator which naturally links the strong and weak forms of the
differential equation. Some of the results of §§6-8 are completely new, others
are generalizations of, and improvements upon, results previously obtained in
[4, 5, 7, 8, 9, 19, 25, 27, 28].

2. Error estimates for isolated solutions
Let X, Y be two Banach spaces with norms ||-||a- and ||»||y. For any element

ueX and any real number R > 0 set B(u, R) := {v e X : \\u-v\\x < R} . We
denote by £?(X, Y) and Isom(Ar, Y) c2'(X, Y) the Banach space of contin-
uous linear maps of X in Y equipped with the operator norm || • ||^(x, y) > and
the open subset of linear homeomorphisms of X onto Y. By Y* :— ¿'(J, R)
and (•, •) we denote the dual space of Y and the corresponding duality pair-
ing. Finally, A* e Sf(Y*, Y*) denotes the adjoint of a given linear operator
Ae&(Y,Y).

Let F e CX(X, Y*) be a given continuously differentiable function. The
following proposition yields a posteriori error estimates for elements in a neigh-
borhood of a solution of equation (1.1).

Proposition 2.1. Let u0 G X be a regular solution of equation (1.1); i.e., DF(u0)
e Isom(Ar, Y*). Assume that DF is Lipschitz continuous at uo\ i.e., there is
an Ro > 0 such that

\\DF(u)-DF(uo)\W(x,y.)
y :=     sup-¡r-——- < oo.

ueB(u0,R0) \\u-Uo\\x

Set
R := min{Ä0, y-l\\DF(u0)-l\\^\Y. X), 2y-x\\DF(uo)\\3>(x,Y*)\-
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Then the following error estimates hold for all u € B(uo, R) '■

(2.1) {WDF^W-J^^WF^Wy.
< ||m — uoIIjt <2\\DF(uo)~1\\^{y',x)\\F(u)\\y>.

Proof. Yet u e B(uo, R) ■ We then have

u - uo = ¿^(mo)"1 \ F(u) + j  [DF(u0) - DF(u0 + t(u - u0))](u - u0) dt \

and thus

||«-"olU
<\\DF(uo)-l\\j?{Y-,x)

• i \\F(u)\\Y. + j  \\DF(uo) - DF(uo + t(u - u0))\W(x,y-)\\u ~ "oll* dt \

< \\DF(uo)-xU(y>,x) \\\F(u)\\Y. + \y\\u - Mo|ß}

<\\DF(uo)-x\W{Y.,x)\\F(u)\\Y. + )j\\u-uo\\x.

This yields the second inequality in (2.1).
On the other hand, we have for all tp e 7 with ||ç?||y = 1

(F(u), tp) = (DF(uQ)(u - u0), tp)

(2.2) + / / [DF(uQ + t(u - uo)) - DF(u0)](u - u0) dt, tp

and thus

ll^(")l|y < \\DF(uo)\\^{X,Y-)\\u - u0\\x

+ / \\DF(uo + t(u-uo))-DF(uo)\W(x,Y-)\\u-uo\\xdt
Jo

< \\DF{uQ)\\sr{x,Y')\\u - uoWx + ¿yll" - "oll*
<2||I>F(iib)|L?(jr,r.)||M-Mo||x.

This proves the first inequality in (2.1).   G

Remark 2.2. In the examples of §§6-8, X and Y are closed subspaces of suit-
able Sobolev spaces of functions defined on an open set fiel". When con-
sidering in equation (2.2) only functions tp with support in a given open subset
(»cfi, one then often obtains lower bounds for u - «o restricted to w.   D

Remark 2.3. The conditions about F can be weakened. Assume, e.g., that
F € C(X, Y*), F(uo) - 0, and that there are an R > 0 and two monotonically
increasing homeomorphisms g , a of [0, oo) onto itself such that

(2.3)        Q(\u-uo\\x)<\\F(u)\\Y.<o(\u-uo\\x)   VueB(u0,R).
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We then trivially have

a-l(\\F(u)\\Y-) < ||" - "oik < Q-x(\\F(u)\\Y.)   Vu e B(u0,R).
The first inequality in (2.3) is satisfied if, e.g., F is strongly monotone in a
neighborhood of uq ■ The second inequality in (2.3) holds if, e.g., F is Holder
continuous at «o ■   n

3. Error estimates for branches of solutions
In this section we briefly outline how the results of the previous section may

be extended to branches of solutions of equation (1.1), including simple limit
and bifurcation points. To this end, we assume that X = W" xV , m> 1, and
that wo = (¿o, Vo) is a solution of equation (1.1).

We first consider the case that Uq is a regular point, i.e.,

ZVF("o)eIsom(F, Y*).
The implicit function theorem then implies that there are neighborhoods / of
Xq in W" and U of «o in V and a continuous map X -> v\ from / into U
such that Vx0 — v0 and every ux :- (X, v¿) is a solution of equation (1.1) with
DyF(ux) € Isom(F, Y*). Assume that there is an Rq > 0 such that

\\DvF(X,v)-DvF(X,vx)\\^{v<Y.)
y* := sup     sup-n-n-y——- < oo,

xei veBiv^R^) \\v-vûv

and set

R* :=min{R*o, y*~' sup\\DvF(ux)-x\\z}(Y. v), 2y*"' sup||£>K*'(";i)IL2'(F,y)}.
xei ' Ac/

With the same arguments as in the proof of Proposition 2.1 we then obtain for
all X e / and all v g B(v¿ , R*) the estimates

(3 1) \\\DvF(uk)\\-J(VtY.)\\F(X,v)\\Y.

< \\v - vx\\v < 2\\DvF(ux)-x\W(Y.,v)\\F(X, v)\\Y..
As described in [12], the case where uq is not a regular point, but a simple

limit or bifurcation point, may be reduced to the case of a regular point by
suitably blowing up the spaces X and Y and modifying the function F . For
completeness, we briefly describe this procedure.

Consider first the case that u0 is a simple limit point; i.e., DF(uo) is a
Fredholm operator of X onto Y* with index m and Range(DF(uq)) = Y*
but DvF(uo) <t Isom(F, Y*). Choose a linear operator B e Sf(X, lm) with
ker(5) nker(DF(u0)) = {0} and define O e Cx(Rm xX,RmxY*) by

a>(t,u):=(B(u-uo)-t,F(u)).
Then, (0, i/o) is a regular point of O (with respect to the parameter t), and
we are back to the situation described in the first part of this section. Since B
is linear, conditions about the Lipschitz continuity of Z)<P reduce to those on
DF . Equation (3.1) yields in this case estimates of the form

c{\\B(u - uo) - ¿IIr* + U^MIIy.} < P - AíIIr» + ||t> - vt\\v
{ ' } <c{\\B(u-Uo)-t\\Rm + \\F(u)\\Y.}
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for all t in a suitable neighborhood of 0 and all u = (X, v) in a suitable
neighborhood of ut = (Xt, vt). Here, i-m, is a regular branch of solutions of
0(i, u) — 0. Note, that Buo is often known explicitly and that the estimation
of \\B(u-Uo)-t\\Rm is straightforward, since it is a low-dimensional maximiza-
tion problem. The term ||F(w)||y., on the other hand, may be estimated by the
methods of the next section, as in the case of regular solutions.

Next, we consider the case of a simple bifurcation from the trivial branch.
That is, we assume that uq = (/In, 0) and that DyF(uo) is a Fredholm operator
with index 0 and dimker(ZV.F("o)) = 1. Choose a wo 6 ker(DvF(uo))\{0}
and a linear functional / e 5?(V, R) with l(w0) = 1. Define the function
OeC(RxX,RxY*) by

Oíí MV    f ('W-M*^»'*>))' '¿0. u = (X,v)eX,
"\(l(v)-l,DvF(X,0)v),       t = 0, u = (X,v)gX.

Conditions about the Lipschitz continuity of DO now reduce to those on D2F .
Obviously, we have 0(0, üo) = 0, where üo := (Xo, u>o) • If F is of class C2
in a neighborhood of u0 and DjvF(uo)w0 & Range ZV-F(ho), we conclude that
¿¿o is a regular point, and we are once more back to the situation described in
the first part of this section. Equation (3.1) now yields estimates of the form

f3 3)     £{\l(w) - 1|+ \\DVF(X, Q)w\\r.} < P - AoIIr» + II™ - ™o||r
[ ' ' <c{\l(w)-l\ + \\DvF(X,0)w\\Y.}
for all (X, w) in a suitable neighborhood of üo and

||/(u;)-l|+   jF(X,tw)     J < \\X-Xt\\Rm + \\w-wt || v
(3.4)

<c(|/(u;)-l|+   if(A,iu;)|    1I t llyj
for all t t¿ 0 in a neighborhood of 0 and all (X,w) in a suitable neighborhood
of ut = (Xt, wt). Here, t -> üt is a regular branch of solutions of <I>(r, u) =
0. Note that the constants in equations (3.3), (3.4) now depend on second
derivatives of F.

Finally, we consider the case of a simple bifurcation point; i.e., DyF(uo) is
a Fredholm operator of index 0 and q := dim(kerDir(«o)) - m > 1. Choose
a basis tp\, ... , tp* of Y*\ Range(DF(u0)), set î:=l«xl, «0 := (0, u0),
and define the function F e CX(X, Y) by

F(û):=F(u)-J2fitp*   VÛ = (f,u)eX.
i=\

Obviously, we have F(u0) = 0. Moreover, DF(ûo) is a Fredholm operator
with index m + q and Range(DF(u0)) = Y*. Replacing X, u0, and F by
X, «o, and F, respectively, we are thus back to the situation considered in
the second part of this section.

4. Estimation of the residual

Let XhcX and YhcY be finite-dimensional subspaces and Fh£C(Xh, TA*)
be an approximation of F. We want to estimate ||.F(MA)||y., where Uy, e Xh
is an approximate solution of equation (1.2).
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In what follows, c, Cq, c\,... denote various constants which are indepen-
dent of h.
Proposition 4.1. Let un G Xh be an approximate solution of equation (1.2);
i.e., \\Fh(Uh)\\Y' is "small". Assume that there are a restriction operator Rh ek

¿2?(Y, Yh), a finite-dimensional subspace Yh c Y, andan approximation Fh:
Xh -»P of F at Uh such that

(4.1) \\(\dY-RhYFh(uh)\\Y. < Co\\Fh(uh)\\~.

Then the following estimates hold:

\\F(uh)\\Y. < Co\\Fh(uh)\\~. + ||(Idy -RhY[F(uh) - Fh(uh)]\\Y.

(4-2) + \\Rh\W(Y,rk)\\F(uh)-Fh{uh)\\Y.
+ \\Rh\W(Y,Yh)\\Fh(uh)\\Y;

and
(4.3) \\Fh(uh)\\~. < \\F(uh)\\~, + \\F(uh) - Fh(uh)\\~..

Remark 4.2. In the examples of §§6-8, Xh and_ Yf, are suitable finite element
spaces. The choice of Rh is then quite natural. Fh(Uh) is obtained by projecting
F(un) elementwise onto suitable finite-dimensional spaces. This construction
is also rather standard. The main difficulty is to find a space Yh such that
inequality (4.1) is satisfied. This task is simplified by the auxiliary results of §5.
The second terms on the right-hand sides of equations (4.2) and (4.3) measure
the quality of the approximation Fh(Uh) to F(Uh). Usually, they are higher-
order terms when compared with ||-Fa(wa)Hv. . The term \\F(Uh) - Fh(uh)\\Y'
is the consistency error of the discretization. The term ||JFX(ií^)||k- measures
the residual of the algebraic equation (1.2) and can easily be evaluated.

Proof of Proposition 4.1. Consider an arbitrary element tp 6 Y with ||ç>||y = 1.
We then have

(F(uh), <p) = (h(Uh), ? - Rh<P) + (F(uh) - Fh(uh), tp - Rh(p)
+ (F(uh) - Fh(uh), Rhtp) + (Fh(uh), Rh?)

< ||(Idy -RhTFh(Uh)\\Y> + ||(Idy -Rh)*[F(Uh) - Fh(Uh)]\\Y'
+ \\Rh\W(Y,Yh)\\F(Uh)-Fh(uh)\\Y; + \\Rh\\x(Y,Yk)\\Fk(uh)\\Y;.

Together with inequality (4.1 ), this proves estimate (4.2). Estimate (4.3) follows
from the triangle inequality.   D

When combining Propositions 2.1 and 4.1 we obtain a residual a posteriori
error estimator. The following proposition together with Proposition 2.1 yields
a framework for some of those a posteriori error estimators which are based on
the solution of auxiliary local problems, such as the one described in [4, 5].
Proposition 4.3. Let Uh G Xh be an approximate solution of equation (1.2).
Assume that there are finite-dimensional subspaces Xh c X and Yh c Y and a
linear operator B g Isom(XÄ , Yh*) such that Yh c ?/, and

(4.4) \\Fh(uh)\\y.<cx\\Fh(uh)\\~..
11. ' t.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A POSTERIORI ERROR ESTIMATES FOR NONLINEAR PROBLEMS 453

Let ûh G Xh be the unique solution of

(4.5) (Bùh,tp) = (Fh(uh),tp)   VtpeYh.
Then the following estimates hold:

(4.6) ||*|£(~ ~ WhiuùWj. < \\uk\\Sk < Ci\\B-%fitZ)\\Fk{uk)\\fr
Proof. Since B g Isom(XA, Yh*), we immediately obtain from equation (4.5)
the estimate

(4.7) ll5llJÄ;y;)H^("Ä)lly;   <  \\Uh\\%  <  llÄ-'ll^.^ll^i«*)^..
Together with inequality (4.4), this proves the upper bound of inequality (4.6).
Since Yh cYh, we have

\\Fh(uh)\\y.<\\Fh(Uh)\\?..
h h

Together with inequality (4.7), this proves the lower bound of inequality
(4.6).    D

Remark 4.4. Usually, B is some approximation of DF(un). The construction
of Yh and the proof of inequality (4.4) are similar to the construction of Yh
and the proof of inequality (4.1) and are simplified by the auxiliary results of
§5. Once B and Y/, are chosen, the construction of Xh is quite obvious from
the condition that B G Isom(XA , Yh*).

5. Auxiliary results
Let Q be a bounded, connected, open domain in Rn, n > 2, with poly-

hedral boundary Y. For any open subset to c Q with Lipschitz boundary
y, we denote by Wk's(œ), k e N, 1 < s < oo, Ls(to) :- W°<s(to), and
Ls(y) the usual Sobolev and Lebesgue spaces equipped with the standard norms
INI*,»;«» :=s IHI»*.»(a) and II - IU ; y := IHIl'OO (cf. [1]). If <a = Q, we omit the in-
dex to. We use the same notation for the corresponding norms of vector-valued
functions.

Let ^,, h > 0, be a family of partitions of Í2 into «-simplices, which
satisfies the following conditions:

(1) Any two simplices in <9£ are either disjoint or share a complete smooth
submanifold of their boundaries.

(2) The ratio hj/Qr is bounded from above independently of T G &/, and
h>0.

Here, hj, Qt , and h£ denote the diameter of T G 9/, > the diameter of the
largest ball inscribed into T, and the diameter of a face E of T. Note, that
condition (2) allows the use of locally refined meshes and that it implies that
the ratio hr/hs , for all T G ̂ ¡, and all faces E of T, is bounded from above
and from below by constants which are independent of h , T, and E.

Denote by ^ the set of all faces of all ie^. The set i/, may be de-
composed as %h = %>h,ii^%h,T, ̂ ,Qn^,r = 0. where ^,r denotes the set
of all faces lying on t. Given an E G 15, » we denote by cue the union of all
simplices in ^ having E as a face. Similarly, toj, T G ̂ , is the union of all
simplices sharing a face with T. For any E g &¡, and any piecewise continuous
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function tp , we denote by [<p]e the jump of tp across E in a fixed direction.
Here, tp is continued by 0 outside fi and the direction is given by the exterior
normal of Y if E G 1% j ■

For k G N, we define

S^-1 := {? : Q -, R : tp \ T g n* vr g^},       S*-0 := Skh'~l n C(Û).

Here, 11^, A: > 0, is the space of polynomials of degree at most k. Moreover,
we denote by nk,s , S G i^ u ^A » the L2-projection of L^S) onto n^ 15 .

Using standard scaling arguments for finite elements, we finally conclude
from [11] that there is an "interpolation" operator Ih: Lx(£l) -► S^'° which
satisfies the following error estimates for all ie^, E G £?h, and 1 < q < 00 :

(5.1) ||ç»-/A9'|U,i;r<CiA^||ç»||/>?.Sr   V0<*</<1, <p eWl<«(aT),

(5.2) lk-/Aç»||9;£<c2^-1/9||ç>||l9;~£   Vpe^'io*),

where u>t and &)£ denote the union of all elements having a nonempty inter-
section with T and E, respectively. Here and in what follows, we adopt the
usual convention that l/oo := 0.

Denote by f := {x G R" : £"=1 k,■< 1, Jtj > 0, 1 < ; < «} the reference
«-simplex.   Set £ := f n {x G 1" : x„ = 0}, and let Jc~ and Jc- be the
barycenters of T and E, respectively. The following conditions uniquely define
two functions ip~, y/¿ G C°°(f, R) :

^Gn„+1,    y/f(Xf) = l,       Wf = 0   on öf,
^en„,        ^ij) = l,        V£ = °   ondf\Ê.

Note, that the above conditions, in particular, imply that

0 < f/ff < 1,     0 < ^ < 1       in f.

We define a continuation operator P: L°°(Ê) ^ L°°(f) by

Pû(xx,..., x„) :- u(xx,..., x„-X)   Vx g f, ûeL°°(Ê).
Finally, F- c L°°(T) and 1^ c L°°(E) are two arbitrary finite-dimensional
spaces, which are kept fixed throughout this section.

Let T e ST/, be an arbitrary «-simplex and E c dT be a face of T. There
is an invertible affine mapping Ft'. T —► T, x -> x := Ft(x) = bj + Bjx
such that T is mapped onto T and E is mapped onto E. Denote by B'T
the matrix which is obtained from Bj by discarding its last column, and set
ßr := del(B'±B'T)xl2 , the Gram determinant of the transformation Ê -► E. Set

¥t ■= ¥f ° Ffl, y/E :=V£oFfx,
VT := {ûoFjX:ùg Vf},       VE := {à o Ffx : à g J^}.

Finally, we define the continuation operator P: L°°(E) -> L°°(T) by

Pcr^tPcroFT-loFf1.
In what follows, p, q are two fixed real numbers with 1 < p < 00 and

p + q = 1, and HI • HI denotes the spectral norm on R"x" .
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Lemma 5.1. There are constants cx, ... ,c-¡, which only depend on the spaces V~
and V^, the number p, and the ratio hj/ Qt , such that the following inequalities
hold for all u<iVj and all a &VE:

[tUIPtV(5-3) ci||"||o,p;r < sup ff-r-< ||"||o,p;r,
veVT \\V\\0,q;T

(5-4) c2|M|/>;£ < sup^-<||cr||p;£,
zeVE   \\*\\q;E

(5.5) C3h^l\\ipTu\\o,g;T < ||V(^")||o,?; T < C4h^\\y/Tu\\o,q;T ,

(5.6) c5h^\\ipEPtT\\o,q;T < ||V(^£Pcr)||o,?;r < c6h^\\y/EPtT\\o,q;T,

(5.7) Wy/EPoWo^T^c^WaW^E.
Proof. The upper bounds of equations (5.3), (5.4) immediately follow from
Holder's inequality and 0 < ipj < 1, 0 < ipE < 1 •

In order to prove the lower bound of equation (5.3), one easily checks that
the mapping

Sfùy/fûU —► SUP T7T71-l—

*eK?IMI0i?;?
defines a norm on V^. Since dim V~ < oo, there is a constant c > 0 such that

Now, take an arbitrary u G VT. Set ü := u o FT G V~ and choose a w G F-
such that

.    9=1   and     / ùy/çw > c\\û\\n    e.),q;T Je:    rT      —    "    "0,p;T

With w := w o Ffx we then obtain

LuipTv      Luy/Tw „mi/«/*,
sup f.T.. Y      > iT „    — = \detBT\l~l/q / ûy/ifW
v£VT\\vh,q;T        IMIo,»;r Jf       T

>c\detBT\x/p\\û\\0p.? = c\\u\\0>P;T-

The proof of the lower bound of equation (5.4) is completely analogous. One
only has to replace | det2?r| by ßr ■

The mappings

u-+||V(rf«)||0if.?   and   â^||V(^Pâ)||0î;f
define norms on  V~ and V-g.   Since y/~ and \p-g vanish at the vertices of
T, and since dim V^ < oo and dim Vg < oo, these norms are equivalent to
||^çû||0   .9 and ||^Pâ||0   .ç, respectively. Estimates (5.5), (5.6) now follow
in the usual way by transforming to T, using the equivalence of norms there,
and transforming back to T.

With the same arguments as above we finally conclude that there is a constant
c > 0 such that

W9P»\La.9<c\\d\\ .?   VâG^.

I«V
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Since
\detBT\<\\\BT\\\n<chT,       ßjl < HlVlH""1 <ctífn,

this implies for all a G If
H^^||o,9;r = |det57-|1/'?||^Pâ||0j9;?<c|det5r|^||â||9;9

= c\detBT\l/<lß^MU-E < c^Mg^.   D

Remark 5.2. The estimates of Lemma 5.1 also hold for "slightly curved" sim-
plices. More precisely, assume that the transformation Fj is no longer affine,
but that it still is a diffeomorphism. Let At : T —> R" be the invertible affine
mapping which is uniquely determined by the condition that AjX o Ft leaves
the vertices of T invariant. Denote by ay the Gram determinant of the trans-
formation of E induced by AT . A simple perturbation argument then shows
that the estimates of Lemma 5.1 remain valid, provided

|||||/-JDFr-1ZX4r|||||0jOo;?, \\\\\I-DATXDFT\\\\\0^9,

||l-|detZ>/^r1|dctZ>^HIIo.oo;7s-        ^-¿rVllo.oo;?
are smaller than a positive threshold which only depends on the constants in
the corresponding estimates on f.   D

Thanks to Lemma 5.1, we may construct in the next section spaces Yh and
Yh satisfying the conditions of Propositions 4.1 and 4.3 by considering all linear
combinations of functions iptv and ^Pcr, where v and a vary in suitable
spaces Vr and VE, respectively, and T and E run through all simplices and
faces of the finite element partition.

Note that Lemma 5.1 does not depend on the fact that y/9 and y/~ are
polynomials. This special choice has only been made for convenience.

6. Scalar quasi-linear elliptic equations of 2nd order

Consider the boundary value problem
-V'Q_(x, u, Vu) = b(x, u, Vu)   iníí,

(6.1) „ „v     ' u = 0   onY,
where b G C(Q xixR",R) and a e C'(fixRxR", R") are such that
the matrix A(x, y, z) := (j(dZjai(x, y, z) + dZiaj(x, y, z))xsiJ<n is positive
definite for all x G Q, y G R, zeR".

Under suitable growth conditions on a, b, and their derivatives there are
real numbers 1 < r, q < oo such that the weak formulation of problem (6.1)
fits into the framework of §2 with

X := {u G Wx>r(Q): u = 0 on Y},        || • \\x := || • \\x,r,
Y := {tp G Wx'«(n) : u = 0 on Y},        ||. ||y := || • ||1>fl,

(F(u),tp):= ¡ a(x, u, Vu)Vtp - I b(x,u, Vu)tp.
Ja Ja

Denote by p :- -^ the dual exponent of q . Note that DF(u) G Isom(X, Y*)
if the linear boundary value problem

- V • (A(x, u, Vu)Vv) - V • (dya(x, u, Vu)v)
-Vzb(x, u, Vu) -Vv -dyb(x, u, Vu)v = f   in Q,

v — 0   on T
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admits for each / G Y* a unique weak solution v G X which depends contin-
uously on /.

Some examples of problems falling into the present category are given by:
( 1 ) The equations of prescribed mean curvature:

a(x, u, Vu)
b(x, u, Vu)

= [i + iiv«n2r1/2VH,
= /(x)GL2(Q),
= q:=2.

(2) The a-Laplacian:

a(x, u, Vu) := ||Vw||a_2Vw,        a > 1,
b(x,u, Vu):=f(x)eL"(Çl),

r := q := a.

(3) The subsonic flow of an irrotational, ideal, compressible gas:

1/(7-1)
y>\,a(x, u, Vu)

b(x, u, Vu)

r

i-VV"ii2 V«,

= f(x)eL'{G),
2y

<?:=y-1
(4) The stationary heat equation with convection and nonlinear diffusion

coefficient:
a(x, u, Vu) := k(u)Vu,
b(x, u, Vu) :- f-c-Vu,

/GL°°(fl),    C6C(Ö,R"),    ä:gC2(R),
A:(s)>q>0,    \k{l)(s)\<y,    Vî G R, / = 0, 1, 2,

r:=pe(2,4).
(5) Bratu's equation:

a(x, u, Vu) := V«,
b(x, u, Vu) := Xeu,       X>0,

r := p > n.

(6) A nonlinear eigenvalue problem:

a(x, u, Vu)
b(x, u, Vu)

r

= Vu,
- Xu-ufi,
= p > n.

ß>n,

Example (2) fits into the framework of Proposition 2.1 if a > 2. If 1 < a <
2, the corresponding function F is no longer differentiable. However, it still
fits into the framework of Remark 2.3 with

Q(t) = c{\\u0\\x + t}a-¿t,       o(t) = Ct7¡iOC-l

(cf. [10, §5.3]).
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In example (5) there is a critical parameter X* > 0 such that the problem
admits two weak solutions if 0 < X < X*, exactly one weak solution if X = X* ,
and no solution if X > X*. The solution corresponding to X = X* is a turning
point and fits into the framework of the second part of §3 (cf. [12]).

Example (6) always admits the trivial solution. If A is a simple eigenvalue
of the Laplacian, there is a simple bifurcation which fits into the framework of
the third part of §3 (cf. [12]).

We do not specify the discretization of problem (6.1) in detail. We only
assume that Xh C X n Wl>°°(Çl) and Yh C Y nWx<°°(Çl) are finite element
spaces corresponding to 5h consisting of affinely equivalent elements in the
sense of [10], and that S\ '° n Y c Yh .

In order to construct Rh, Fh and Yh, we define two integers k, I and
approximations ah of a and \ of b as follows:

{a(x, uh, Vuh),    ifa(x,vh, Vvh) G S¡-~1 VvA e Xk,

J2 *i, Td(x, uh , Vuh), k:=l,    otherwise,

b(x, uh , Vuh),    if b(x, vh , Vvh) G S['_1 VwA G Xh,

y no,Tb(x, uh, Vuh), I := 0   otherwise.

Here, wA G Xh is arbitrary. Now, Fh is defined in the same way as F with a
and b replaced by ah and bh , respectively, Rh :- Ih, and

Yh:=span{y/Tv, y/EPo-:v eYlm\T, tjeUk\E,  Tetf,, Ee£h,a},
where m :— max{k - 1, /}.

Put, for abbreviation,

sT := < «ÇH - V • (a(-, uh, Vuh) - a^-, uh , Vuh))

-(b(-, uh, Vuh)-bh(-, uh,VUh))\\Po>p.T

(6.2) +   J2   hE\\[n-(a(-,Uh,VUh)
ECdT\r

-ah(-,uh,VUh))]E\\pp.E\       VT€£Th,

bh(x,uh,Vuh):= i

(6.3)
nT •= \hT\\ - V-ah(-, uh,Vuh)-bh(-, uh , Vuh)\\Po<p.T

+   E   hE\\[n-ah(-,Uh,Vuh)]E\\pp,E\       VTe¿rh-
ECdT\r )

The quantity &t obviously measures the quality of the approximation of a
and b by Oj, and bh , respectively, and can be estimated explicitly. Below, we
will show that \\(ldY-Rh)*[F(Uh)-Fh(Uh)]\\Y' and \\F(uh) - Fh(uh)fo. are
bounded from above by c{J2t€$~ ̂ tY^ ■
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Note that

ST = hT\\f-7to-Tf\\o,p-T   VTetf,,

if XhcSlh'° in examples (l)-(3), that

«r<cÄ?1""/')||V«*||o.,:r   VTg^

if Xh C Slh'° in example (4), that

er<c4l|V"Allo,p;rexp(||MA||o,oo;r)   V7 G ̂

if Xh consists of piecewise polynomials in example (5), and that

eT = 0   VTetf,

if Xh consists of piecewise polynomials and ß G N in example (6).
Using integration by parts elementwise, we obtain for all tp G Y

(F(u„)

(6.4)

» <P) =   ]C   / {~V ' ^X ' Uh ' Vuh) - Hx > "A > VhA)}<3
TrzCF JT

and

+   S   I ["•£(*> uh,V"h)]E<?
F€%h,a

(Fh(uh),(p)=  V]     {-V-ah(x,Uh,VUh)-bh(x,Uh,Vuh)}<p
Jrt, Jt

(6.5) ™'
+    22     / ["•2*(*»"«»V«A)]Efl».

Lemma 5.1, inequalities (5.1), (5.2), the definition of Yh , and equalities (6.4),
(6.5) then imply that
(6.6)

\\(ldY-Rhy[F(uh)-Fh(uh)]\\Y.

=   sup   Y, ¡ {-V-(a(x,Uh,VUh)-ah(x,uh,Vuh))
IMIr=l_, Tefi,

1/P

HE'

- (b(x, uh, Vuh) - bh(x, uh, Vuh))}{<p - h<p}

+   X]      ln-(^(x'uh,^Uh)-ah(x,uh,Vuh))]EW-Ih9}
T?-GP JE
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and
(6.7)

\\F(uh)-Fh(Uh)\\y,
'h

=    su5    J2     {-S7-(ä.(x,Uh,Vuh)-ah(x,Uh,VUh))
9k£Yh    Td9rhJT

llf*llr=l
- (b(x, uh, Vuh) - bh(x, uh , Vuh))}tPh

+   X    I [n-(a(x,Uh,VUh)-ah(x,Uh,VUh))]E(Ph
*,n

I l/P

<c{Y,ePTX

Similarly, we obtain
(6.8)

\\(IdY-RhyFh(uh)\\Y.

=   sup   Y ¡ {-V ■ah(x,Uh,Vuh)-bh(x,uh,VUh)}{(p-Ih?}per   jTLh

+  XI      [n-ah(x>uh,Vuh)h{<p-h<P}
E^h,aJE

( ïl/p

and
(6.9)

ll^*("*)lly. =     SUP      Yl   / {_V ' £*(* ' "A ' Vma) - ¿¿(* > "A , Vuh)}tPh
llf*lb=i

+    S     / {n'£h(X' Uh> Vuh)]E(ph
Ee^h.a

<c{E«Pt'

In order to prove inequality (4.1), consider an arbitrary simplex Fe^ and
an arbitrary face E G %h,a of F and denote by Yh \ w , to e {T, coE, cut} ,
the set of all functions tp e Yh with supp(ç>) c to. Lemma 5.1, equation (6.5),
and the definition of Yh then yield
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C\C;lhT\\ - V-gj,(', Uh, Vuh)-bh(-, Uh,VUh)\\o,P;T

<     sup     \\V(y/TV%x  T
«6H.|r\{0}

(6.10)
/ {-V -Oh(x, uh , Vuh) - bh(x, uh , Vuh)}ipTv

=      sup      \\V(ipTv)\\oXq.T(Fh(Uh), Vtv)
venmiT\{0}

<   sup  (Fh(uh),(p)
<p£Yh | T
\\9\\r=l

and, using inequality (6.10),
(6.11)

C2CÍXCÍXhX¿P\\[n'ah(-,Uh,VUh)]E\\p;E

<     sup     c6 xc
o€nk]E\{0}

7 lhE/P\\°\\qlE A» •«*(•*» Uh,Vuh)}EWPo
JE

=      sup     qxc^hxlp\\a\\-xE
aenk]E\{0}

•\(Fh(Uh), VePo)

/  {-V-ah(x, uh,Vuh)-bh(x, Uh,Vuh)}y/EPo\
Ja>E J

<    sup   (Fh(uh),tp)
ven I mE
\\f\\r=\

+ c;xhE\\ -V-a_h(-,uh, Vuh) - bh(-, uh , Vuh)\\o,p-WE

<c   sup   (Fh(uh),fp).
9GYh¡a>E
\\<p\\r=i

Inequalities (6.10) and (6.11) imply that

(6.12) nT<c    sup   (Fh(uh),tp)

W\y=\
and

(6.13) {En}     <c\\Fh(uh)\\y..

Inequalities (6.8) and (6.13), in particular, prove inequality (4.1).
Propositions 2.1 and 4.1 and inequalities (6.6), (6.7), (6.8), (6.9), (6.12), and

(6.13) yield the following a posteriori error estimates for problem (6.1).

Proposition 6.1. Let u G X be a weak solution of problem (6.1) which is regular
in the sense of Proposition 2.1, and let uh G Xh be an approximate solution of
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the corresponding discrete problem which is sufficiently close to u in the sense of
Proposition 2.1. Then the following a posteriori error estimates hold:

i/p i \ Up

|"-"*||l,r<Ci \   Y, Vrr\       +C2<X'

Fh(uh)\\Y^ + c4Fh(uh)\\Y¡.
and

riT<c5\\u-uh\\itn(oT + c6l   Y eT'\       VTe^h-
[t'C0)t        J

Here, et and nT are given by equations (6.2) and (6.3), and \\F(Uh)-Fh(Uh)\\Y'
and \\Fh(Uh)\\Y' are the consistency error of the discretization and the residual
of the discrete problem, respectively.
Remark 6.2. Proposition 6.1 can easily be extended to the case of Neumann
boundary conditions. One only has to replace Y in equations (6.2) and (6.3) by
the part of the boundary on which Dirichlet boundary conditions are imposed.
The first estimate of Proposition 6.1 also holds if nT is defined using the original
functions a and b instead of the projected ones ah and bh . The er-termthen
of course disappears. If the functions a and b are sufficiently smooth, one
may also use higher-order approximations ah and bh instead of the present
low-order ones.   D

As mentioned before, Proposition 6.1 can be applied to example (2) only
in the case a > 2. Observing that for 1 < a < 2 the strong monotonicity
of F implies the unique solvability of the corresponding weak problem, we
obtain from Remark 2.3 and inequalities (6.6), (6.7), (6.8), (6.9), and (6.13)
the following result which complements the results of [9].
Proposition 6.3. Let 1 < a < 2 and denote by u e Wx'a(D), u = 0 on Y, the
unique solution of

[ ||Vm||q_2VwVv = [ fv   Vv G Wx'a(Q.), v = 0onY.
Ja Ja

Let Uh G Xh be an approximate solution of a discretization of the above problem.
Then the following a posteriori error estimates hold:

{-.I/O ( -^   l/<*

Y It \     +c2

+ c3\\F(uh) - Fh(Uh)\\Y; + c4||ir,!("*)||r;r
and

l/o(o-l)

Ytr]     <c5\\u-uh\\\^ + c6\Yl

Here, eT, «r. ||^("a) - Fh(uh)\\Y', and \\Fh(Uh)\\Y* are as in Proposition 6.1.h h
Moreover,

er = Ar|l/-no,7-/||o,a;r   V7g^,
// Uh is piecewise linear.
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As mentioned before, example (6) exhibits a simple bifurcation from the triv-
ial branch at the simple eigenvalues of the Laplacian. Combining the results of
§3 with those of this section, we obtain the following a posteriori error estimate.

Proposition 6.4. Denote by X* G R and u* e Wx 'p(£2), u* = 0onY,p>n,a
simple eigenvalue of the Laplace equation with homogeneous Dirichlet boundary
conditions and a corresponding eigenfunction with Ja u* — 1. Let Xh G R and
Uh G Xh be a solution of

\7uhWh -Xh     uhvh + / u{vk = 0   \/vh g Xh,
Ja Ja

where Xh c {v e Wx -P(Q) n Wx ,0°(fl) : v = 0 on Y} is a finite element space
corresponding to Sh consisting of piecewise polynomials, and where ß G N,
ß > «. If Xh and Uh are sufficiently close to X* and u*, the following a
posteriori error estimates hold:

L

\h-**\ + \\uh-u*\\x,p<cx{ I\Ja
uh- 1 +

and

where

\Luh- 1 <Cl{\Xh-X*\ + \\uh-u*\\x,p},

Up
nT:={hpT\\-&Uh-XhUh\\Po,p,T+   X   M[0n"Akll£;

ECdT\T

Proof. Observe that the consistency error of the above discretization vanishes;
Proposition 6.4 then follows from inequalities (6.6), (6.7), (6.8), and (6.9) and
the results of the third part of §3 with / g -2s7 (K, R) given by

l(v):=fv   Vug Wl'p{0), u=0onr.   □
Ja

When comparing Propositions 6.1 and 6.4, we remark that the latter only
yields global lower bounds on the error. This is due to the global nature of the
functional / defined above.

We conclude this section with a simple example of an a posteriori error
estimator which is based on the solution of auxiliary local problems and which
generalizes the estimator introduced in [4, 5]. For simplicity we assume that
p = q = r = 2. We choose an arbitrary vertex xq in the partition ^ and keep
it fixed in what follows. Denote by % and §o the set of all T e !3¡, and of all
E G <§/,, respectively, which have xo as a vertex. Put too '■= ores'F ■ Let

Aft := Yf, := Yh\co0,

and define the operator B e^f(Xh, Yh*) by

(Bu, tp) := /   Vtp'AoVu   Vue Xh,  9 G % ,
J(Of¡
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where
A0:=A(x0, uh(x0), no,a>0(Vuh)).

Note that the operator B is obtained by first linearizing around Uh the dif-
ferential operator associated with problem (6.1), then freezing the coefficients
of the resulting linear operator at x0, and finally retaining only the principal
part of the linear constant-coefficient operator. Since Vuh may be discontinu-
ous, its value at xo is approximated by the L2-projection no,(o0(^uh) ■ Other
constructions are of course also possible.

Since the matrix A(x,y, z) is symmetric and positive definite for all x G
fí, y G R, z g R", and since the functions in Xh = Yk vanish on dtoo,
we immediately obtain from Korn's inequality that B e Isom(XA, Yh*). Let
Mo G Xh De the unique solution of

(6.14) (Buo,y/) = (Fh(uh),tp)   V^gTa,
and set

(6.15) Wjco := ||"o||l,2;töo.
Note that problem (6.14) is equivalent to

/   Vtp'A0Vuo=      a_h(x,uh,Vuh)Vtp- I   bh(x,uh,Vuh)(p   Vtp e%.
Jwq J(Oo J(0(j

This shows that nXo falls into the class of a posteriori error estimators originally
introduced in [4, 5] for the Poisson equation.

Lemma 5.1 and equations (6.5) and (6.12) immediately imply that

Ç\\Fh(Uh)\\% < | Y 4 \     < c\\Fh(uh)\\%.

Together with Proposition 4.3, this yields the following result.

Proposition 6.5. Let Xo be an arbitrary vertex in the triangulation ¿7¡¡. Then
there are two constants cx, ci, which only depend on the polynomial degree of
the space Xh and on the ratio hr/ Qt , such that the following inequalities hold:

(        y/2 (       ^/2

cx < Yl It (     < »x0 < C2 I Y *It

Here, r\r and nXo are given by equations (6.3) and (6.15), respectively.

1. Eigenvalue problems for scalar linear elliptic operators
of 2nd order

As an example for the treatment of eigenvalue problems, we consider in this
section the problem

-V • (A(x)Vu) + d(x)u = Xu   inQ,
( ' ' u = 0     onY.
Here, d e C(Q, R+) and AeCx(Q, Rnxn) are such that A is symmetric and
uniformly positive definite on Q. Of course, we are only interested in solutions
u which do not identically vanish on Í2.
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When considering A as a parameter, problem (7.1) can be treated as a bifur-
cation problem similar to example (6) of the previous section. Here, we adopt
a different strategy and define

X:=Y:=Rx{ue Wx >2(fí) : u = 0 on Y},

Hk:=Hlr:={|-i2 + IHIi,2}1/2,

(F([X, «]), [p, v]) := i {Vv'AVu + duv - Xuv} + p j j u2 - 1 \ .

Then, [X, u]e X, ||m||o,2 = 1, is a weak solution of problem (7.1) if and only
if it is a solution of equation (1.1). Moreover, one easily checks that [X, u] is
a regular solution in the sense of Proposition 2.1 if and only if A is a simple
eigenvalue of the differential operator associated with problem (7.1).

As in the previous section, we do not specify the discretization of problem
(7.1) in detail. We only assume that

Xh = RxVhcX,        Yh = RxWhcY,

(Fh([Xh , uh\), [ph, vh]) = (F([Xh, uh]), [Ph , «*]>
V[Xh , uh] G Xh,  [ph, vh] e Yh,

where Vh, Wh are finite element spaces corresponding to ^ which consist
of affinely equivalent elements in the sense of [10] and which satisfy {Vh e
Sh1,0 : vh = 0 on Y} c Wh. Obviously, the consistency error of the above
discretization vanishes.   Moreover,  [Xh, Uh] G Xh  is a solution of equation
(1.2) if and only if

/ {VvlhAVUh + duhvh} = Xh     uhvh   Vvh e Wh ,
(7.2) Ja Jçi

u2 = l.
Ja

Hence, problem (1.2) is equivalent to a standard finite-dimensional eigenvalue
problem. In what follows, we will always assume that [Xh ,Uh]eXh is a solution
of problem (7.2).

Let m be the maximal polynomial degree of the functions in Wh . Proceeding
as in the previous section, we set
(7.3)

Ah '■=  Ynx'rA'
T££Th

dh '•= Y no,Td,

Rh:=[0,h],
Yh := Rx span{y/Tv, y/EPe ■■ v eYlm\T, aeUm\E, Tetf,, Eegh,a\,

eT := j 411 - V • ((A - Ah)Vuh) + (d - <4)"aIIo,2;T

sU2
+   Y   hE\\[n-((A-Ah)VUh)]E\\lE\     ,

ECdT\r J
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nT := ) «2 y - v • (AhVUh) + dhuh - AAufl||o>2;T

(7.4)
yi*+     Y    A£ll["-(^*V"A)kll2;£f       .

ECdT\r JECdT\r

and define Fh in the same way as F with A and d replaced by Ah and dh,
respectively. Note that

(7.5) ET <C«f{P||2,oo;HI"Alll,2;r + llalli,oo;HI"All0,2;r}.
With the same arguments as in the previous section we conclude that

(F([Xh,uh]),[p,v])= Y /{-v * (A^uh) + duh - Xhuh}v

+   Y   j[n-(AVuh)]Ev   V[p,v]eY,

(Fh([Xh , uh]), [p,v])= Y     {-V ■ (AhVuh) + dhuh - Xhuh}v
TetrhjT

+   Y   j [" ■ (AhVuh)]Ev   V[p,v]eY,
E&e¡,.n

(7.6)      ||(Idy -Rh)*[F([Xh , uh]) - Fh([Xh , uh])]\\Y. <c\Yst\      ,

1/2

(7.7) \\F([Xh , uh]) - Fh([h , uh])\\y. < c { Y 4

1/2
■re^

(7.8) ||(Idy -RhYFh([Xh , uh])\\Y. < c { Y 4

(7.9) \\Fh([h,uh])\\y,<c{ Y ri'
jefh

(7.10) nT<     sup^   \\[0,v]\\Yx(Fh([Xh,uh]),[0,v]).
[0,v]€Yh

suppvCwr

Inequalities (7.8) and (7.10), in particular, prove inequality (4.1).
Propositions 2.1 and 4.1 and inequalities (7.6)-(7.10) yield the following a

posteriori error estimate for problem (7.1).

Proposition 7.1. Let X be a simple eigenvalue of the differential operator as-
sociated with problem (7.1), and let u be a corresponding eigenfunction with
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||w||o,2 = 1 • Let [Xh, Uh\ e Xh be a solution of problem (7.2) which is suf-
ficiently close to [X, u] in the sense of Proposition 2.1. Then the following a
posteriori error estimates hold:

r      y/2    í      ^1/2
\X-Xh\ + \\u-Uh\\X,2<Cl<Yri\       +C2<   X

and
)l/2 , ^ 1/2

<Ci{\X-Xh\ + \\u-Uh\\x,2} + cA Y ri
\TZ9¡,

where the constants cx, ... , C4 only depend on the polynomial degree of the
spaces Vh and Wh and on the ratio hT/pT, and where eT and tjT are given
by equations (7.3) and (7.4), respectively.

Remark 7.2. The condition that [Xh , "/,] has to be sufficiently close to [X, u]
essentially means that \X - Xh\ has to be smaller than the distance of X to its
neighboring eigenvalues. In contrast to Proposition 6.1, we obtain in Proposi-
tion 7.1 only a global lower bound on the error. This is due to the global nature
of the constraint Jau2 = 1 inherent in the definition of F. Proposition 7.1
can easily be extended to the case of Neumann boundary conditions. One only
has to replace Y in equations (7.3) and (7.4) by the part of the boundary on
which Dirichlet boundary conditions are imposed.   D

8. Stationary, incompressible Navier-Stokes equations

As an example for the treatment of elliptic systems we consider the stationary,
incompressible Navier-Stokes equations

-î/Au + (u • V)u + Vp = f    inQ,
(8.1) V-u = 0   inQ,

u = 0   on T,
where v > 0 is the constant viscosity of the fluid.

In order to cast problem (8.1) into the framework of §2, set

M := {u G Wx >2(Q)" : u = 0 on Y},        Q := ¡p G L2(Q) : f p = o| ,

and define
X := Y := M x Q,        \\. ||x := || • ||y := {|| • ||2,2 + || • ||2i2}'/2,

(F([u,p]), [v, q]) :=v I VuVv+ / (u-V)uv-     pV -\+ / #V-u- / fv.
Ja Ja Ja Ja Ja

Let Mh C M and Q/, c Q be two finite element spaces corresponding to ^¡,
consisting of affinely equivalent elements in the sense of [10]. We assume that
there are two integers k, I > 1 such that

[Slh'0]nnMcMhc[Skh'°r
and

SXh'°nQcQhCSlh'°   or  ^-'nßcö^c^-'.
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Define
Xh := Yh := MhxQh,

(Fh([Uh,Ph]),[vh,qh])
:= (F([uh , Ph\), V>h, Qh\)

(8 2) +ôY,hT f {-"AuA + (uh ■ V)uh + Vph - f}{(uh • V)vA + Vqh}

+ ô   Y   hE Í \PhMQh\E + aô / V-uAV-vA.
c,»        Je Ja

Here, a > 0, S > 0 are stability parameters. If a > O, S > O, the above
discretization is capable of stabilizing both the influence of the convection term
and of the divergence constraint without any conditions about the spaces Mh ,
Qh or the Peclet number «j-z/-1 (cf. [23], where also optimal a priori error
estimates are established). The case a = ô = 0 corresponds to the standard
mixed finite element discretization of problem (8.1). The spaces Mh , Qh then
have to satisfy the Babuska-Brezzi condition

(8.3) inf        sup     „V"!'?    >ß>0
Ph£Qh\{0} uheMh\{0} IIPaI|0,2||U/,||i,2

with a constant ß independent of h. Moreover, the Peclet number hTV~x
must be sufficiently small in order to balance the influence of the convection
term (cf. [17], where examples of spaces Mh , Qh satisfying inequality (8.3)
are also given).

If a = ô = 0, the consistency error obviously vanishes.   If Ô > 0, we
conclude from standard inverse estimates that it is bounded by

(8.4)

\\F([uh,Ph])-Fh([Uh,Ph])\\Yh>

SUP        ¿Yri      {-"AuA + (»A • V)«A + VPh - f}
[T>h,<ih]eYk     T r     Jt

•{(Uh-V)yh + Vqh}

+ S   Y   hE I \PhhUhte + aô I V-uhV-vh
Eç.%h,a     Je Ja

<c(l+a)i(l + |N*||i,2)

• |   Y iriW - "AUA + (UA • V)UA + Vph - f\\o,2;T + IIV • uA||g>2.r]

V/2
+    Y   kEWlPhteWl.Et     ■

E^h,a >

In order to cast this discretization into the framework of §4, we define Fh in
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the same way as F with f replaced by %o,tÍ and set

Rh[*,P]-=\hu\, ■■■ ,/*"«, 0],
Yh := span{[<i/rv, 0], [y/EPo, 0], [0, y/Tp] : v G [IIm| Tf , oe [nm-1 E]n ,

peUk_x\T, Te&h, Ee%h,a),

where m := max{2/c - 1, / - 1} and m' := max{k - 1, /} .
Lemma 5.1 and inequality (5.1) immediately imply

\\Fh([Uh,Ph])-F([xth,Ph])\\y.=      sup       X / (f_7ro,rf)vA
*       [T*,ft]er*   Te9-hjT

,nrs ll[v*,ftlllr=l
(8-5) , ^ 1/2

<c{ Yri\\i-no,Tf\\2o,2;T
T6Ä

and

||(Idy -Rh)*[Fh([nh , ph]) - F([uh , p*])||y.

=       SUP        X XI / (■/«' - n0,Tfi)(Vi - IhVi)
(8.6) |fcjfr**";r

,1/2

^CS £ «rllf-7to,rf|lo,2;r

For abbreviation, we define for all T eSh

ECdT\r

Observing that the identity

{■

y
+     Y     hE\\[vdnUh-Phn]E\\22;E + \\V-"h\\o,2;T\

ECdT\T )

tjr := < Aril - ^AuA + (uA • V)uA + Vph - Äo,rf|lo.2;r

(8-7) , ,/2

(Fk([uk,ph]),[v,q])

= Y \ I {-^AuA + (»a • V)uA + Vph - 7T0,rf}v + / qV • uA i
(8.8) rlá Ur ;r J

+    Y     I [vd^h - Ph^E?
E&%h,a
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holds for all [v, q] e Y, we conclude from Lemma 5.1 and inequalities (5.1),
(5.2) that
(8.9)
\\Fk([nk,pk])\\y.

sup       Y \     {~vAah + («A • V)uA + Vph - tío, rf}vA + / tfÄV • uA \
i«, «.icv.   ^ ur Jr J

+   Y    I [ud"nh - Ph*]EVh

IIK,?*JI|y=l

EÇ.%h,a

i 1/2

and
(8.10)

||(Idy-ÄA)*FB([nA,^])||y.

=     sup
[».«ley

ll[v,9]||y=l

Y ï E / {-^"A.i + («A ' V)uhj + diPh - n0,Tf}

• {V; - /„!>/} +   /  tfV • «A

+   XI  S / \.vdnUh,i-Phnih(Vi - hVi)
£€g*,n <=1

i 1/2

<c<¡ E*r

In order to prove inequality (4.1), consider an arbitrary simplex T e^¡, and an
arbitrary face E e %?h,a of T and define Yh\ w , to e {T, œE, coT} , as in §6.
The definition of Yk , equation (8.8), and Lemma 5.1 then yield the estimates

Ci||V • UA||o,2;r

sup       IklloVr / v-UhWrr
k-,\T\{0}       ' '   Jt

<

(8.11) =       sup      (Fh([Uh,Ph]),[0,tpTr])\\r\\ol2.T
renr_,|r\{0}

<     sup    (Fh([xih , Ph)), [v,tf]),
[v,Q]€Yh\T
\\[y,q]\\y=l
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(8.12)
C\cA xhT\\ - vAuh + (uA • V)uh + Vph - 7ro,rf||o,2;r

sup       ||V(^rw)||o \.T I {-"¿.«A + (uh • V)uh + Vph - 7t0,rf}Vrw
*\t]"\{0] ' '   Jt

<

sup       ||V(^rw)||0,2.r(F/!([u/!,jp/!]),[^rw,0])
we[nm|r]»\{0} ' '

<     sup    (Fh([uh,Ph],[y,q])

II[v,?1IIk=i

and, using inequality (8.12),
(8.13)

c2c6~1c7~1«|/2||[i/d„uA-pAn]£||2;£

< SUp C2C¿XCÍXhXE/2\\o\\2XE  / [vdnMh-Ph^\WEPo
°e[nm,\E]»\{0} '   Je

sup       c2c^cfxh)¿1\\a\\l}E
"e[um,\Er\{0}

'\(Fh([nh,ph]),[y/EPa,0])

- /   {-vtoh + (uh • V)uh + Vph - no,tÎJVePo \
JcoE j

<      sup     (Fh([uh , ph]), [v, q])
[v,«]e7A|M£

[v,?1IIk=1

+ C¿lhE\\ - uAuh + (UÄ • V)UA + Vph - 7tO,rf||o,2;c<;£

<c     sup     {Fk([uk,pk]),[\,q]).
[v.iiei*!^
Il[v,9]||y=l

Inequalities (8.11)—(8.13) imply

(8.14) nT<c     sup     (Fh([Mh,Ph]),[y,q])
[y,Q]eYh\a,T
II[t,?]I1k=I

and

(8.15) \Hri\     <c\\Fh([Mh,Ph\)\\y..\t%     J
Inequalities (8.9), (8.10), and (8.15) prove inequality (4.1) and show that, up
to multiplicative constants, ||FA([u/,, /fy])||y» is bounded from above and from

below by {^2Tri}^2 • Propositions 2.1 and 4.1 and inequalities (8.4), (8.5),
(8.6), (8.9), and (8.14) now yield the following a posteriori error estimate, which
is a generalization of the results in [25, 27].
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Proposition 8.1. Let [u, p] be a weak solution of problem (8.1) which is regular
in the sense of Proposition 2.1, and let [uA , Ph\ e Xh be a solution of

(Fh([Uh , Ph\), [»A , <7a]> = 0,     V[vA , qh] e Yh ,

where Fh is given in equation (8.2), which is sufficiently close to [u, p] in the
sense of Proposition 2.1. Then the following a posteriori error estimates hold:

i 1/2

In- «aII2,2 + \\P-Ph\\l,2}l/2 < Ci[l + (1 + a)ô(l + K||1>2)] { Y ri: '

+ c2{ Y *rll'-*o,rf|lo,2¡r
je<rh

nT < C3{||U - Uh\\2l,2;wT + \\P -Ph\\o,2;coT}l/2
I 1/2

+ c4l   Y *rllf'-,ro.rlllo,2;r'
(T'CWt

where rjT is given by equation (8.7) and the constants cx, ... , C4 only depend
on the polynomial degrees of the spaces Mh , Qh and on the ratio ^/Qt ■

Remark 8.2. Proposition 8.1 can be extended to the case of the slip boundary
condition

u • n = T(i/u, p) - [n • T(i/u, p) • n]n = 0,

where

T(u,p):=[ ~(diUj + djUi) -pôu 1
\z /\<i,j<n

denotes the stress tensor. One then has to replace vVu-p\ in equation (8.7) by
T(i/u, p), and Y by the part of the boundary on which the no-slip condition u =
0 is imposed. Here, I := (àij)i<ij<n denotes the unit tensor. Of course, the
discretization then also has to take account of the different boundary condition
(cf., e.g., [24, 26]).   D

Remark 8.3. The previous results can also be extended to non-Newtonian fluids.
Combining the arguments used to establish Propositions 6.1, 6.3, and 8.1, one
can prove that the error estimator of [9] also yields local lower bounds similar
to the second estimate of Proposition 8.1.   D

Next, we introduce an a posteriori error estimator for problem (8.1), which
is based on the solution of discrete local Stokes problems and which fits into
the framework of Proposition 4.3. This estimator is an extension to the Navier-
Stokes equations of the one introduced in [4, 5] for the Poisson equation.

We choose an arbitrary vertex Xo in the partition <9¿ and keep it fixed in
what follows. Let too, •% and &o be as in §6. Put

Mo^span^rv^P^vGin^lr]", <7G[nm,|£]\  Te^, Ee%o},
Qo := span{y/Tp : p eUk_x\T, Te^o},
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where   m   :-   max{2fc - 1,/ - 1},   m'   :=  max{k - 1,/},  and   m"   :=
max{m, k + n - 1} , and define

Xh:=Yh:=MoxQo,

(*([▼, fl]),[w,r]):=i/ / VvVw- / qV • w

+ [ rV-v   V[v,<?], [w,r]G^A.

The definition of m" implies that y/TVq e Mo for all q G ßo ■ Together with
Lemma 5.1, this shows that the spaces M0, Qo satisfy an analogon of equation
(8.3). Hence, we have B e lsom(Xh, Yh*). Let [u0,A)] G Xh be the unique
solution of
(8.16) (fi([uo,/>o]), [w,r]> = (FA([nB,pk]), [w, r])   V[w,r]erA)
and define

(8.17) ^0 := {^||uo||T,2;C(Jo + ll/'ollo.a^o}172-
Note, that problem (8.16) is equivalent to

v /   VuoVw - /   poV • w = v /   Vu^Vw + /   (uA • V)uAw
J(l)0 J(Oo Ja>o J(Oo

- /   phV • w - /   7T0,rfw   Vw G Mo,
■/«uo •'too

f rV-u0=  /   rV-uÄ   Vr G ßo-
■/coo •'û,o

This shows that nXo falls into the class of a posteriori error estimators originally
introduced in [4, 5] for the Poisson equation.

Obviously, we have Yh\ œo c Yh . Lemma 5.1 and equation (8.8), on the other
hand, immediately imply

\\Fh([*h,Ph\)\\y.

=     sup^    Y \ / {-^AuA + (»a • V)uA + Vph - no, rf}v +     qV-uh\
[v,q]€Yh   re.55
[v,i]||y=l

+ E  / [^^«A-^nkv
£er0 "^

He^'
Together with inequality (8.14), this proves

\\Fh([uh , Ph])\\y. < c     sup     (Fk([*h,Ph]), &,<!])•
h        [y,9)eYhlW0

ll[»,?]||y=l
These results and Proposition 4.3 yield the following proposition, which is a
generalization of results in [4, 5, 25, 27, 28].
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Proposition 8.4. Let Xo be an arbitrary vertex in the partition J¡,. Then there
are two constants cx, C2, which only depend on the polynomial degree of the
spaces Mh , Qh and on the ratio hT¡' QT, such that the following inequalities
hold:

f      y12 (      *1/2

ci { E ri \   < «*o < c21 Y ri
{TeJi     J {re.95

Here, nT and nXo are given by equations (8.7) and (8.17), respectively.
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