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This paper deals with a posteriori error estimators for the linear finite element approx-

imation of second order elliptic eigenvalue problems in two or three dimensions. First,

we give a simple proof of the equivalence, up to higher order terms, between the error

and a residual type error estimator. Second, we prove that the volumetric part of the

residual is dominated by a constant times the edge or face residuals, again up to higher

order terms. This result was not known for eigenvalue problems.

Keywords: Eigenvalue problems, Finite elements, A posteriori error estimates.

1. Introduction

In many applications it is important to find the eigenvalues and eigenfunctions of

an elliptic partial differential equation. Finite element methods for these problems

have been widely used and analyzed under a general framework in many works. We

refer to Babuška and Osborn,4 Raviart and Thomas,9 Strang and Fix,13 and their

references, where convergence and optimal error estimates for both eigenvalues and

eigenfunctions are obtained.

In numerical computations it is important to use adaptive procedures based on

a posteriori error estimators. Several approaches have been considered to construct

estimators based on the residual equations (see the books by Ainsworth and Oden1

and Verfürth,14 and their references). For eigenvalue problems, Verfürht14,15 ob-

tained results based on a general analysis for non-linear equations. Also, Larson7

analyzed this problem obtaining similar results by using a different approach.

∗Member of CONICET, Argentina.
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In the present paper, we give a simpler analysis for a residual type error esti-

mator for the linear finite element approximations of a model eigenvalue problem.

We prove that the estimator is equivalent to the error up to higher order terms.

We remark that in the above mentioned papers by Larson7 and Verfürth15, the a

posteriori error estimates are obtained assuming that the numerical solution is close

enough to the exact one. We do not assume this and that is why we have to add ex-

plicit higher order terms in our reliability and efficiency estimates. If we neglect the

higher order terms, the constants appearing in the equivalence are independent of

the eigenvalue (they depend only on the regularity of the meshes). The constants in

front of the higher order terms depend also on the eigenvalue being approximated.

The second goal of this paper is to analyze a simpler error estimator based only

on the jumps of the normal derivative of the approximate solution, which turns

out to be equivalent to the error also up to higher order terms. Let us remark

that, in particular, this result allows proving the equivalence between the error

and a Zienkiewicz-Zhu type error estimator (see Rodŕıguez12), which is the most

used by engineers. In this way, results that are well known for source problems

can be generalized to eigenvalue problems (see, for example, Babuška and Miller,3

Carstensen and Verfürth5, Nochetto,8 and Rodŕıguez12).

The rest of the paper is organized as follows. In Section 2 we introduce the

model problem and recall some known a priori error estimates for its finite element

approximation. In Section 3 we define an error estimator and prove its equivalence

with the error up to higher order terms. Finally, in Section 4, we prove that the

edge or face residuals dominate the other part of the estimator and, therefore, a

simpler equivalent error estimator is obtained.

2. Model problem and finite element approximation

Let Ω ⊂ R
d be a polygonal domain for d = 2 and a polyhedral domain for d = 3.

We consider the following model problem:

Seek a real number λ and a non-zero real-valued function u satisfying
{

−∆u = λu in Ω,
u = 0 on ∂Ω.

We use standard notation for Sobolev spaces, norms, and seminorms. Hence,

the eigenvalues λ and normalized eigenfunctions u of the problem above satisfy,

u ∈ H1
0 (Ω) and,





∫

Ω

∇u · ∇v = λ

∫

Ω

uv ∀v ∈ H1
0 (Ω),

∫

Ω

|u|2 = 1.

(2.1)

It is well known that this problem attains a sequence of eigenpairs (λj , uj),

with positive eigenvalues λj diverging to +∞. We assume the eigenvalues to be
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increasingly ordered: λ1 ≤ · · · ≤ λj ≤ · · ·. The associated eigenfunctions satisfy

uj ∈ H1+r(Ω), for some r ∈ (0, 1] depending on Ω (r = 1 when Ω is convex).

We consider a family {Th} of triangulations of Ω, formed by triangles if d = 2,

or tetrahedra if d = 3, such that any two elements in Th share at most a vertex, an

edge, or a face. Let h stand for the mesh-size; namely h = maxT∈Th
hT , with hT

being the diameter of the element T . For each Th we denote with Vh ⊂ H1
0 (Ω) the

standard finite element space of continuous piecewise linear elements.

The finite element approximate solutions of our spectral problem are defined by

uh ∈ Vh and, 



∫

Ω

∇uh · ∇vh = λh

∫

Ω

uhvh ∀ vh ∈ Vh,

∫

Ω

|uh|
2

= 1.

(2.2)

The problem above reduces to a generalized eigenvalue problem involving posi-

tive definite symmetric matrices. It attains a finite number of eigenpairs (λjh, ujh),

1 ≤ j ≤ Nh = dimVh, with positive eigenvalues, which we also assume increasingly

ordered: λ1h ≤ · · · ≤ λNhh.

The following a priori error estimates are well known (see for example Theorem

6.4-3 and Lemma 6.4-4 in Raviart and Thomas9). If (λj , uj) is a solution of (2.1),

then there exists (λjh, ujh) satisfying (2.2) such that

|uj − ujh|1,Ω ≤ Chr, (2.3)

‖uj − ujh‖0,Ω ≤ Chr|uj − ujh|1,Ω, (2.4)

|λj − λjh| ≤ C|uj − ujh|
2

1,Ω, (2.5)

where, here and thereafter, C denotes a positive constant, depending only on the

particular eigenvalue and the regularity of Th.

3. Error estimator

In this section we introduce the error estimator and prove its equivalence with the

error.

First we introduce some notation. Let F be the set of all interior faces of the

mesh (i.e., faces of elements not lying on ∂Ω) and FT ⊂ F be the subset of faces of

T . For each face F ∈ F we choose an arbitrary unit normal vector nF and denote

the two elements sharing this face Tin and Tout, where nF points outwards Tin. For

vh ∈ Vh we introduce the jump JF of the normal derivative of vh across the face F ,

namely,

JF = ∇
(
vh|Tout

)
· nF −∇

(
vh|Tin

)
· nF .

Note that this value is independent of the choice of nF .

We consider a particular eigenpair (λj , uj) and its corresponding finite element

approximation (λjh, ujh). From now on, we drop out the subindices j to simplify

the notation. Our goal is to estimate the error e = u − uh.
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The following lemmas provide some error equations which will be the starting

points of our error analysis.

Lemma 3.1 For v ∈ H1
0 (Ω) there holds

∫

Ω

∇e · ∇v −

∫

Ω

(λu − λhuh) v =
∑

T∈Th

(∫

T

λhuhv +
1

2

∑

F∈FT

∫

F

JF v

)
.

Proof. Take v ∈ H1
0 (Ω). Integrating by parts in each element we have

∫

Ω

∇e · ∇v −

∫

Ω

(λu − λhuh) v =
∑

T∈Th

(∫

T

λhuhv +

∫

∂T

∂e

∂n
v

)

=
∑

T∈Th

(∫

T

λhuhv +
1

2

∑

F∈FT

∫

F

JF v

)
.

Lemma 3.2 There holds
∫

Ω

(λu − λhuh) e = (λ + λh)

(
1 −

∫

Ω

uuh

)
=

λ + λh

2

∫

Ω

e2.

Proof. It follows easily by using that
∫
Ω
|u|2 =

∫
Ω
|uh|

2
= 1.

Let us now define the local error indicator ηT by

ηT =

(
h2

T λ2
h‖uh‖

2

0,T +
1

2

∑

F∈FT

hF ‖JF ‖
2

0,F

)1/2

,

where hF denotes the diameter of the face F , and the global error estimator by

η =

(
∑

T∈Th

η2
T

)1/2

.

As usual in residual-type error indicators, ηT consists of two conveniently weighted

terms: the L2 norm of the volumetric residual, which in our problem reduces to

λh‖uh‖0,T , and the L2 norm of the jumps JF across the interior faces of the element.

Meshes generated for adaptive refinement in problems involving singularities

are usually highly non-uniform (i.e., the elements of Th may have very different

sizes). However, if the refinement is done in a proper way, the family {Th} can be

constructed in such a way that the regularity is preserved (see for instance Arnold

et al.,2 Rivara,10 and Rivara and Vénere11). Therefore, it is natural to seek error

estimates with constants depending only on the regularity of the meshes (and not

on the element size). We will show that the estimator η is of this kind.

The following theorem gives an upper error estimate.

Theorem 3.1 There exists a constant C, depending only on the regularity of Th,

such that

|e|
1,Ω ≤ Cη +

(
λ + λh

2

) 1

2

‖e‖
0,Ω.
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Proof. Let eI ∈ Vh be such that
∥∥e − eI

∥∥
0,T

≤ ChT |e|1, eT (3.1)

and

∥∥e − eI
∥∥

0,F
≤ Ch

1/2

F |e|
1, eT , (3.2)

where T̃ is the union of all the elements sharing a vertex with T . We can take,

for example, the well known Clément average interpolant of e (see, for example,

Clément6).

Using Eqs. (2.1) and (2.2) we have
∫

Ω

|∇e|2 =

∫

Ω

∇e · ∇
(
e − eI

)
+

∫

Ω

(λu − λhuh) eI.

Hence, from Lemma 3.1 with v = e − eI, we have

∫

Ω

|∇e|2 =
∑

T∈Th

[∫

T

λhuh

(
e − eI

)
+

1

2

∑

F∈FT

∫

F

JF

(
e − eI

)
]

+

∫

Ω

(λu − λhuh) e,

and using Lemma 3.2, Schwartz inequality, (3.1), and (3.2), we obtain
∫

Ω

|∇e|2 ≤ Cη|e|
1,Ω +

(λ + λh)

2
‖e‖2

0,Ω,

which allows us to conclude the proof.

Remark 3.1 As a consequence of the previous theorem and the a priori estimate

(2.4), the global estimator provides an upper bound of the error in energy norm up

to a multiplicative constant and a higher order term:

|e|
1,Ω ≤ C

(
η + hr|e|

1,Ω

)
.

Our next goal is to show that the local error indicators ηT are efficient in the

sense of pointing out which elements should be effectively refined because they

support large local errors.

For T ∈ Th, let bT ∈ H1
0 (T ) be the standard cubic bubble function, if d = 2, or

the standard quartic bubble function, if d = 3, in both cases attaining the value one

at the barycenter of T . Using scaling arguments as those used to prove standard

local inverse inequalities one can see that there exists a constant C, which only

depends on the regularity of the element T , such that

‖uhbT ‖0,T ≤ ‖uh‖0,T ≤ C

(∫

T

|uh|
2
bT

)1/2

(3.3)

and

|uhbT |1,T ≤
C

hT
‖uh‖0,T . (3.4)

The following lemma provides an upper estimate of the volumetric residual term.
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Lemma 3.3 There exists a constant C, depending only on the regularity of T , such

that

hT λh‖uh‖0,T ≤ C
(
|e|

1,T + hT ‖λu − λhuh‖0,T

)
.

Proof. Take v = uhbT . Using (2.1) and the fact that
∫

T
∇uh · ∇v = 0, we

obtain

λh

∫

T

uhv =

∫

T

∇e · ∇v −

∫

T

(λu − λhuh) v

and the lemma follows easily by using (3.3) and (3.4).

Now, for F ∈ F , let T 1
F and T 2

F be the two elements in Th sharing F and let

bF ∈ H1
0

(
T 1

F ∪ T 2
F

)
be the piecewise quadratic function, if d = 2, or cubic function,

if d = 3, in both cases attaining the value 1 at the barycenter of F . Then, using

again scaling arguments, it is easy to see that there exists a constant C such that

‖bF ‖0,T i

F

≤ Ch
d/2

F and |bF |1,T i

F

≤
C

hT i

F

‖bF ‖0,T i

F

, i = 1, 2.

The following lemma provides an upper estimate for the jump terms of the local

error indicator.

Lemma 3.4 There exists a constant C, depending only on the regularity of T 1
F and

T 2
F , such that

h
1/2

F ‖JF ‖0,F ≤ C
(
|e|

1,T 1

F
∪T 2

F

+ hF ‖λu − λhuh‖0,T 1

F
∪T 2

F

)
.

Proof. For any v ∈ H1
0

(
T 1

F ∪ T 2
F

)
it follows from Lemma 3.1 that

∫

F

JF v =

∫

T 1

F
∪T 2

F

∇e · ∇v −

∫

T 1

F
∪T 2

F

(λu − λhuh) v − λh

∫

T 1

T
∪T 2

F

uhv.

Taking v = bF in this equation and using the fact that JF is constant together with

Lemma 3.3, we conclude the proof.

Now we are in order to prove an upper estimate of the local error indicator.

Theorem 3.2 Let T ∗ be the union of T and the neighboring elements T ′ sharing

a face with T . There exists a positive constant C, depending only on the regularity

of the elements of T ∗, such that

ηT ≤ C
(
|e|

1,T∗ + hT ‖λu − λhuh‖0,T∗

)
.

Proof. It follows immediately from Lemmas 3.3 and 3.4.

Remark 3.2 The term hT ‖λu − λhuh‖0,T∗ in the previous theorem is a higher

order term. In fact, for each T ′ ∈ Th,

hT ′‖λu − λhuh‖0,T ′ ≤
|λ − λh|

|λh|
λhhT ′‖uh‖0,T ′ + λhT ′‖u − uh‖0,T ′

≤ Ch2rηT ′ + λhT ′‖e‖
0,T ′
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the last inequality because of (2.5) and the definition of ηT ′ . Note that the first term

in the right hand side is asymptotically negligible with respect to the local indicator

ηT ′ , whereas the second term is asymptotically negligible with respect to the local

error ‖e‖
1,T ′ .

Consequently, the theorem above shows that the error indicator of an element

T is bounded above by the energy error on T ∗, up to a multiplicative constant, and

higher order terms, namely,

ηT ≤ C|e|
1,T∗ + O(h2r)ηT∗ + O(hT )‖e‖

0,T∗ .

where, η2
T∗ =

∑
T∈T∗ η2

T .

Therefore, ηT is an efficient error indicator, in the sense that when ηT is large,

the error in the vicinity of the element T must be large too. Thus, ηT points out

correctly the elements which should be refined, at least when the global term |λ−λh|
|λh|

is small enough.

4. A face residual error estimator

The goal of this section is to define a new error indicator not involving the volumetric

part of ηT . To do this, we will prove that the face residuals dominate the volumetric

ones up to higher order terms.

Let N be the set of interior vertices of the triangulation Th (i.e., vertices P /∈

∂Ω). For P ∈ N , let ΩP =
⋃
{T ∈ Th : P ∈ T}. Let ϕP ∈ Vh be the basis function

with suppϕP = ΩP and hP the diameter of ΩP . Finally, let FP ⊂ F be the subset

of faces containing the vertex P and TP = {T ∈ Th : T ∋ P}.

The following relation between the basis functions and the jumps is used in the

sequel.

Lemma 4.1 For all P ∈ N , there holds

λh

∫

ΩP

uhϕP =
∑

F∈FP

meas (F )

d
JF .

Proof. Using (2.2) and integrating by parts we have

λh

∫

ΩP

uhϕP =

∫

Ω

∇uh · ∇ϕP =
∑

F∈FP

meas (F )

d
JF .

Our next step is to prove a local estimate for the volumetric part of the residual.

Lemma 4.2 For all P ∈ N , there holds

∑

T∈TP

h2
T λ2

h‖uh‖
2

0,T ≤ C

(
∑

F∈FP

hF ‖JF ‖
2

0,F + h4
P λ2

h‖∇uh‖
2

0,ΩP

)
,

where C is a constant depending only on the regularity of the mesh.



8 R. G. Durán, C. Padra, and R. Rodŕıguez

Proof. Let uP
h denote the L2(ΩP ) projection of uh onto the constants. Then,

we have

∑

T∈TP

h2
T λ2

h‖uh‖
2

0,T ≤ h2
P λ2

h‖uh‖
2

0,ΩP
= h2

P λ2
h

(∥∥uh − uP
h

∥∥2

0,ΩP

+
∥∥uP

h

∥∥2

0,ΩP

)
. (4.1)

Now,

∥∥uP
h

∥∥2

0,ΩP

=
(d + 1)2

meas (ΩP )

(∫

ΩP

uP
h ϕP

)2

≤
2 (d + 1)

2

meas (ΩP )

{[∫

ΩP

(
uP

h − uh

)
ϕP

]2
+

(∫

ΩP

uhϕP

)2
}

.

Then, using Lemma 4.1 and Cauchy-Schwartz in the previous estimate, we have

∥∥uP
h

∥∥2

0,ΩP

≤ C

(
∥∥uh − uP

h

∥∥2

0,ΩP

+
1

λ2
h meas (ΩP )

∑

F∈FP

hd−1

F ‖JF ‖
2

0,F

)
.

Thus, substituting the expression above in (4.1), using the standard estimate for

the L2(ΩP ) projection and the fact that hF , hP and meas(ΩP )1/d are all equivalent,

we conclude the proof.

Now we are in order to define the simpler indicator

η̃T =

(
1

2

∑

F∈FT

hF ‖JF ‖
2

0,F

)1/2

,

and the corresponding global error estimator

η̃ =

(
∑

T∈Th

η̃2
T

)1/2

.

The following theorem shows that this estimator is globally reliable and locally

efficient up to higher order terms.

Theorem 4.1 There exists a constant C, depending only on the regularity of Th,

such that

|e|
1,Ω ≤ C

[
η̃ +

(
λ + λh

2

) 1

2

‖e‖
0,Ω + λ

3/2

h h2

]

and

η̃T ≤ C
(
|e|

1,T∗ + hT ‖λu − λhuh‖0,T∗

)
.

Proof. Theorem 3.2 yields the second estimate above, whereas Theorem 3.1

leads to

|e|2
1,Ω ≤ C

(
η̃2 +

∑

T∈Th

h2
T λ2

h‖uh‖
2

0,T +
λ + λh

2
‖e‖2

0,Ω

)
.
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From Lemma 4.2 we have
∑

T∈Th

h2
T λ2

h‖uh‖
2

0,T ≤ C
(
η̃2 + h4λ2

h‖∇uh‖
2

0,Ω

)
.

Then, we conclude the proof from these two estimates and (2.2).

Remark 4.1 The first estimate in the theorem above involves an additional term

λ
3/2

h h2 which, under very mild assumptions, is also of higher order. Indeed, since

the eigenfunctions of the Laplace operator are analytic in Ω, −∆u = λu cannot

vanish identically in any open subset. Therefore, according to Lemma 1.5.4 from

Babuška and Miller,3 if there exist a disc D ⊂ Ω and a constant κ > 0 such that

min
T∈Th

T⊂D̄

hT ≥ κh ∀Th, (4.2)

then there exists a constant c > 0 such that |e|
1,Ω ≥ ch. Hence, in this case, the

term λ
3/2

h h2 is asymptotically negligible with respect to |e|
1,Ω. Notice that the local

quasi-uniformity property (4.2) holds in all practical cases.

The result of the previous theorem can be improved for the lowest eigenvalue.

Indeed, the corresponding eigenfunction satisfies u > 0, and so it is reasonable to

assume that also uh > 0. (This is usually the case in practice; for instance, it is

always true in 2D when the angles of all the triangles are not greater than π
2
). In

this case, the term λ
3/2

h h2 can be dropped out from the reliability estimate. This is

an immediate consequence of the following lemma, which shows that the volumetric

residuals are dominated by the jumps when uh > 0.

Lemma 4.3 If uh > 0, then there exists a constant C > 0, depending only on the

regularity of Th, such that
∑

T∈Th

λ2
hh2

T ‖uh‖
2

0,T ≤ C
∑

F∈F

hF ‖JF ‖
2

0,F .

Proof. We have

∑

T∈Th

λ2
hh2

T ‖uh‖
2

0,T =
∑

T∈Th

∫

T

λ2
hh2

T uh

[
∑

P∈N

uh(P )ϕP

]

=
∑

P∈N

uh(P )

(
∑

T∈Th

λ2
hh2

T

∫

T

uhϕP

)

≤
∑

P∈N

λhh2
P uh(P )

(
λh

∫

Ω

uhϕP

)

≤
∑

P∈N

λhh
1+d/2

P uh(P )

[
h

1−d/2

P

∑

F∈FP

meas(F )

d
|JF |

]

≤ C

[
∑

P∈N

λ2
hh2+d

P |uh(P )|2
]1/2(∑

F∈F

hF ‖JF ‖
2

0,F

)1/2

,
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where we have used that uh > 0 for the first inequality and Lemma 4.1 for the

second one. For the last one, we have used Cauchy-Schwartz inequality, twice, and

the regularity of the mesh.

On the other hand, standard scaling arguments yield the following inequality

hd
T

∑

P∈NT

|uh(P )|2 ≤ C‖uh‖
2

0,T .

Then, we have

∑

P∈N

h2+d
P |uh(P )|2 ≤ C

∑

T∈Th

h2+d
T

∑

P∈NT

|uh(P )|2 ≤ C
∑

T∈Th

h2
T ‖uh‖

2

0,T ,

which allows us to conclude the proof.
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aux Dérivées Partielles (Masson, 1983).
10. M. C. Rivara, Mesh refinement processes based on the generalized bisection of simplices,

SIAM J. Numer. Anal. 21 (1984) 604–613.
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