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Abstract. We derive a posteriori error estimates in the L∞((0, T ]; L∞(Ω)) norm for approxima-
tions of solutions to linear parabolic equations. Using the elliptic reconstruction technique introduced
by Makridakis and Nochetto and heat kernel estimates for linear parabolic problems, we first prove
a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then
establish a posteriori bounds for a fully discrete backward Euler finite element approximation. The
elliptic reconstruction technique greatly simplifies our development by allowing the straightforward
combination of heat kernel estimates with existing elliptic maximum norm error estimators.
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1. Introduction. We consider finite element approximations to the problem

ut −∆u = f in Ω× (0, T ],
u = 0 on ∂Ω× [0, T ],

u(x, 0) = u0(x), x ∈ Ω.

(1.1)

Here Ω ⊂ Rn (n = 2, 3) is a bounded polyhedral domain, u0 ∈ L∞(Ω), and u is
a weak solution to (1.1) lying in L∞(0, T ;L∞(Ω)) ∩ H1(0, T ;H−1(Ω)) (a subset of
C0(0, T ;L∞(Ω))). We assume throughout that f ∈ L∞(0, T ;L∞(Ω)). Additional
regularity will be required of f in some of our results and will be specified as necessary.

Adaptive finite element methods for approximating solutions to parabolic partial
differential equations are popular because of their ability to efficiently resolve singular-
ities and other rapid local variations in solutions. While most adaptive finite element
methods are designed to control only energy norms of solutions, in many applied
problems the goal output of a finite element computation is related to some other
norm or functional of the solution. In this work we address control of the maximum
error ‖u − uh‖L∞(Ω×[0,T ]) for finite element approximations uh of u. Ensuring good
pointwise approximation of u is natural in many situations where u represents some
physical quantity. Pointwise error control is also a natural goal when computing free
boundaries, for example via level set methods (cf. [DDE05]). Several recent papers
have addressed adaptive finite element methods for controlling pointwise errors in el-
liptic problems (cf. [Noc95], [DDP00], [NSV03], [NSV05], [NSSV06], [De06], [De07]).
However, the only previous pointwise a posteriori estimates for parabolic problems
that we are aware of are contained in [EJ95] and [Bo00], which we describe below.
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The goal of this work is to prove a posteriori error estimates in L∞(Ω× [0, T ]) for
semi- and fully-discrete finite element approximations to (1.1). For practical purposes,
our main result is an easily-computable error estimator for the backward Euler finite
element discretization of (1.1). In order to describe this estimate, we introduce some
definitions and notation. Let 0 = t0 < t1 < ... < tN = T , Ii = (ti−1, ti), and
τi = ti − ti−1. For each 0 ≤ i ≤ N , let Ti be a triangulation of Ω. We place only
standard restrictions on the triangulations, requiring in particular that all triangles
have aspect ratios that are uniformly bounded with respect to i = 0, . . . , N and that
the triangulations are “edge-to-edge” (i.e., hanging nodes are not allowed). Let Si

0

be a finite element space consisting of the functions that are continuous piecewise
polynomials of degree k on Ti and which are 0 on ∂Ω. Letting vi(x) = v(ti, x) for
any function v defined on Ω × [0, T ], we discretize the weak form of (1.1) by letting
u0

h ∈ S0
0 approximate u0 and then defining ui

h ∈ Si
0, 1 ≤ i ≤ N , via the implicit Euler

recursion

1
τi

∫
Ω

(ui
h − ui−1

h )φi dx +
∫

Ω

∇ui
h∇φi dx =

∫
Ω

f iφi dx for all φi ∈ Si
0. (1.2)

In addition, let gi = f i − ui
h−ui−1

h

τi
, i ≥ 1. The definition of g0 is slightly different; cf.

§4.2. Then for any 1 ≤ j ≤ N ,

‖uj − uj
h‖L∞(Ω) ≤‖u0 − u0

h‖L∞(Ω)

+ C(Ω)(2 + c(n) ln
tj
τj

)(lnhj)
2 max

0≤i≤j
E∞,0(ui

h, gi)

+
j∑

i=1

∫
Ii

‖f − f i‖L∞(Ω) dt +
τi

2
‖gi − gi−1‖L∞(Ω).

(1.3)

Here c(n) = 3n

2n/2+1 , E∞,0(ui
h, gi) is a standard and easily-computable residual-type

estimator depending only on uh, gi, and the mesh Ti, and hj is the minimum diameter
of elements lying in ∪j

i=1Ti. A more precise definition of E∞,0 is provided in §2.3, and
Theorem 4.8 contains a precise statement of results.

The error bound on the right hand side of (1.3) consists of:
• an initial data estimator ‖u0 − u0

h‖L∞(Ω);
• a spatial estimator C(Ω)(2 + c(n) ln tj

τj
)(lnhj)

2 max0≤i≤j E∞,0(ui
h, gi) which

accounts for spatial errors; and
• a time estimator

∑j
i=1

∫
Ii
‖f − f i‖L∞(Ω) dt + τi

2 ‖g
i − gi−1‖L∞(Ω) which ac-

counts temporal errors.
Note that the constants in front of the initial data and time estimators are 1, so
that estimating these terms does not require estimating unknown constants. While
the spatial estimator does contain the constant C(Ω), we shall show later that C(Ω)
depends only on properties of an underlying elliptic a posteriori error estimator.

In addition to the bound (1.3), we also establish several other a posteriori es-
timates for semidiscrete finite element approximations of u as well as for the fully
discrete scheme (1.2). While more difficult than (1.3) to employ in practical adaptive
codes, these estimates provide additional insight into a posteriori theory for pointwise
norms, for example by establishing that the spatial terms in the middle line of (1.3)
can sometimes be bounded instead in a weaker negative norm.

We next briefly compare the estimate (1.3) with the results of the previously cited
works [EJ95] and [Bo00]. [EJ95] contains pointwise a posteriori estimates for parabolic
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problems discretized in space using standard piecewise linear finite element schemes
and in time using a discontinuous Galerkin approach. However, these estimates are
stated without proof, do not appear to be proven elsewhere in the literature, and ad-
ditionally assume restrictive hypotheses on the spatial finite element meshes. [Bo00]
similarly employs a discontinuous Galerkin time discretization and piecewise linear fi-
nite element spatial discretization. The proofs in [Bo00] involve proving quasi-optimal
regularity estimates for a regularization of the parabolic Green’s function, which is
fairly difficult and also leads to an uncomputable a priori term in the upper bound.
This method of proof essentially involves imitating in a parabolic context the maxi-
mum norm estimates for elliptic problems originally proven in [Noc95] and [DDP00].
We finally note that the results of both [Bo00] and [EJ95] are restricted to convex
polyhedral domains.

We emphasize some features of (1.3) that contrast positively with existing results.
First, in the present work Ω may be a nonconvex polyhedral domain. In addition,
we allow arbitrary orders of finite element spaces, and in particular do not restrict
ourselves to piecewise linear elements. The estimate (1.3) also does not require any
impractical restrictions on the spatial mesh (in contrast to [EJ95]), and does not
contain any uncomputable terms depending on u in the upper bound (in contrast to
[Bo00]). Finally, as we discuss further below, the proof of (1.3) is quite straightforward
because we are able to reuse difficult elliptic results instead of imitating their proofs
in a parabolic context. Thus the results that we present here are to our knowledge the
first rigorously proven, fully a posteriori pointwise error estimates for finite element
methods for parabolic problems.

Essential to our development is the elliptic reconstruction technique introduced
in [MN03] in the context of semidiscrete problems and extended to fully discrete
problems in [LM06]. In essence, the elliptic construction Ruh is a continuous elliptic
representation of the discrete solution uh, and uh is the elliptic finite element approx-
imation to Ruh with respect to the finite element space under consideration. Thus
any a posteriori error estimates which are valid for elliptic problems on Ω may be
used to estimate Ruh − uh. The overall error u − uh may then be bounded by first
estimating u−Ruh using PDE techniques for continuous parabolic problems and then
estimating Ruh−uh using elliptic a posteriori estimators. The elliptic reconstruction
may thus be regarded as an a posteriori analogue to the Ritz-Wheeler projection in
standard a priori error analysis for parabolic problems (cf. [Wh73], [Th97]).

Our use of the elliptic reconstruction technique in the context of pointwise error
estimation for parabolic problems highlights its ability to fully leverage existing elliptic
estimates. In particular, establishing a rigorous theory for a posteriori estimation
of pointwise errors for Poisson’s problem on polyhedral domains was a technically
difficult enterprise (cf. [Noc95], [DDP00], [NSSV06]). Relying on these elliptic results
instead of mimicking them, our proofs employ only basic estimates for the heat kernel
for the continuous problem (1.1) and are relatively short and straightforward. A direct
“parabolic” approach to the problem which does not use the elliptic reconstruction
is also possible (cf. [Bo00]), but such an approach is much more technically involved
and as already mentioned has not led to the sharpest possible results.

An outline of the paper follows. In §2, we provide common preliminaries and recall
some facts concerning residual-type a posteriori error estimation for elliptic problems.
In §3 we prove a posteriori estimates for semidiscrete approximations of (1.1), while
in §4 we consider a backward Euler time discretization of (1.1).
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2. Preliminaries. In this section we provide a number of preliminaries regarding
heat kernel estimates, maximum norm a posteriori estimates for elliptic problems,
and issues concerning mesh compatibility that arise in some of our estimates for fully
discrete schemes.

2.1. Notation. We begin by defining suitable notation. W j
p (Ω), where j is

a nonnegative integer, will denote the standard Sobolev space of functions having j

derivatives in Lp(Ω), and
◦

W 1
p(Ω) will denote the functions in W 1

p (Ω) which in addition
have zero trace on the boundary ∂Ω. In addition, (·, ·) denotes either the L2(Ω)- or
[L2(Ω)]n-inner product. Finally, we denote by Lp([a, b],W j

q (Ω)) the functions whose
spatial W j

q norm lies in Lp over the time interval [a, b].

2.2. Analytical preliminaries. Our analysis relies heavily on properties of the
heat kernel for the problem (1.1). We sum up the necessary results in the following
lemma.

Lemma 2.1. Let Ω ⊂ Rn be a bounded open domain. Let the data u0, f in
(1.1) satisfy u0 ∈ L2(Ω), f ∈ Ls([0, T ], Lr(Ω)) for some r, s satisfying 1 < r, s ≤ ∞,
n
2r + 1

s < 1. Then there exists a Green’s function G(x, t; y, s) for the problem (1.1).
That is, there exists a kernel G such that for u satisfying (1.1) and (x, t) ∈ Ω× (0, T ],

u(x, t) =
∫

Ω

G(x, t; y, 0)u0(y) dy +
∫ t

0

∫
Ω

G(x, t; y, s)f(y, s) dy ds (2.1)

is a weak solution of (1.1). For s < t, G additionally satisfies the bound

‖G(x, t; ·, s)‖L1(Ω) ≤ 1. (2.2)

Let also 2 < p, q ≤ ∞ with

n

2p
+

1
q

<
1
2
.

Then we have in addition that G(x, t; ·, ·) ∈ Lq′([0, T ],
◦

W 1
p′(Ω)), where p′ and q′ are

the conjugate exponents to p and q. Also,

‖G(x, t; ·, ·)‖Lq′ ([0,T ],W 1
p′ (Ω)) ≤ Cp,q(T ), (2.3)

where Cp,q depends on p, q, |Ω|, and T . In addition, G(x, t; ·, s) ∈ H1
0 (Ω) for 0 ≤ s <

t.
Finally, there exists a constant c(n) depending only on the space dimension n

such that for s < t,

‖Gs(x, t; ·, s)‖L1(Ω) ≤
c(n)
t− s

. (2.4)

Here we use the notation Gs(x, t; ·, s) = ∂
∂sG(x, t; ·, s).

Proof: The existence of a Green’s function satisfying (2.1) and (2.3) may be
found in Theorem 6 (p. 657) and Theorem 9 (p. 671) of the fundamental work [Ar68]
of Aronson. To prove (2.2), we note that

0 ≤ G(x, t; ·, s) ≤ Γ(x, t; y, s) = (4π(t− s))−n/2e−
|x−y|2
4(t−s) . (2.5)
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That is, the heat kernel on Ω is bounded pointwise by the heat kernel on Rn. This
fact may be proven e.g. by combining Lemma 7 (p. 677) of [Ar68] with Corollary
8.2 and Theorem 8.3 of [Da00]. Inequality (2.2) then follows from the fact that∫

Rn Γ(x, t; y, s) dy = 1 for t < s.
In order to prove (2.4), we apply Corollary 5 of [Dav97] with δ = 1

2 and ε = 1
9 to

find that

Gs(t, x; y, s) ≤ 2n/2−1(t− s)−1(4π(t− s))−n/2e−
|x−y|2
9(t−s) . (2.6)

Performing a change of variables and integrating over Rn yields (2.4) with c(n) =
3n

2n/2+1 . �
Remark 2.2. One may take advantage of the bound (2.5) and (2.6) in order to

explicitly incorporate dissipation of the heat kernel into (2.2) and (2.6). For example,
for n = 2 and s < t one may compute that

‖G(x, t; ·, s)‖L1(Ω) ≤ 1− e−
diam(Ω)2

4(t−s) , (2.7)

‖Gs(x, t :, ·, s)‖L1(Ω) ≤
c(n)
t− s

(1− e−
diam(Ω)2

9(t−s) ). (2.8)

It is possible to incorporate (2.7) and (2.8) into pointwise a posteriori bounds with
no great difficulty, and we shall pursue this briefly in Corollary 4.5.

2.3. Elliptic a posteriori estimates. In this section we cite several results
that will enable us to bound a posteriori the elliptic reconstruction terms appearing
in our estimates for parabolic problems. In this subsection we assume that v satisfies

−∆v = g in Ω,

v = 0 on ∂Ω

where Ω ⊂ Rn, n = 2, 3 is a polyhedral domain. We additionally assume that T is a
shape-regular simplicial decomposition of Ω, and define the Lagrange finite element
space S = {wh ∈ H1(Ω) : wh|K is a polynomial of degree k on K, K ∈ T }. Let also
S0 = S∩H1

0 (Ω). Finally, let vh ∈ S0 be the finite element approximation to v defined
by ∫

Ω

∇vh∇wh dx =
∫

Ω

gwh dx for all wh ∈ S0.

Our parabolic results assume a posteriori bounds for ‖v− vh‖L∞(Ω), and in some
circumstances also for ‖v − vh‖W−1

p (Ω). With 1
p + 1

p′ = 1, here

‖w‖W−1
p (Ω) = sup{(w, z) : z ∈

◦

W 1
p′(Ω), ‖z‖W 1

p′ (Ω) = 1}.

We shall employ residual-type estimates. We first define the jump residual J∇vhK on
an (n − 1)-dimensional element face e = K1 ∩ K2, where K1,K2 ∈ T . Let ~n be an
arbitrary unit normal vector on e, and for x ∈ e let

J∇vhK(x) = lim
δ→0

(∇vh(x + δ~n)−∇vh(x− δ~n)) · ~n.

Let also hK be the diameter of the element K. For 1 ≤ p ≤ ∞ and j ≥ 0, we then
define the elementwise error indicator

ηp,−j(K) = h2+j
K ‖g + ∆vh‖Lp(K) + h

j+1+ 1
p

K ‖J∇vhK‖Lp(∂K).
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Finally, we define the global estimator

Ep,−j(vh, g) =

{
(
∑

K∈T ηp,−j(K)p)1/p, 1 ≤ p < ∞,

maxK∈T η∞,−j(K), p = ∞.
(2.9)

We first quote an elliptic pointwise estimate which holds for all orders of finite
element spaces and all polyhedral domains; cf. [NSSV06] for a proof.

Lemma 2.3. Assume that Ω is a polyhedral domain in Rn, n = 2, 3, and let
h = minK∈T hK . Then

‖v − vh‖L∞(Ω) ≤ C(Ω)(lnh)2E∞,0(vh, g). (2.10)

Remark 2.4. It is not entirely clear whether Lemma 2.3 holds on polyhedral
domains having cracks (as defined in the standard reference [Da88]). (2.10) is proved
in [Noc95] and [DDP00] for domains with cracks, but only for piecewise linear elements
and under a slightly more restrictive condition on the mesh than shape regularity. The
generalization of (2.10) to arbitrary-order elements and general shape regular meshes
in [NSSV06] requires a classical Hölder estimate which does not seem to appear in
the literature for crack domains (cf. Lemma 3.7 of [NSSV06]). Note also that it is
not difficult to prove that (2.10) holds for arbitrary element order and general shape-
regular meshes on crack domains under a reasonable non-degeneracy assumption (cf.
[De07] for the case of pointwise gradient errors). Thus it is reasonable to apply (2.10)
and also our parabolic a posteriori estimates below to the case of crack domains,
but a rigorous proof does not appear in the literature. We finally note that our
reconstruction estimates (as opposed to a posteriori estimates) appearing below do
apply to the case of crack domains.

When allowed by the domain geometry, it may be advantageous to instead mea-
sure the error in a negative norm. In such cases we shall employ the following result.

Lemma 2.5. Assume that Ω is a convex polyhedral domain in Rn, n = 2, 3, where
the maximum vertex opening angle (for n = 2) or edge opening angle (for n = 3) is
denoted by ω = π

α , α > 1. Assume also that the degree of the finite element space S0

is at least 2, that is, S0 contains the continuous piecewise quadratic functions. Then
for 2

α−1 < p < ∞,

‖v − vh‖W−1
p (Ω) ≤ C(p, Ω)Ep,−1(vh, g). (2.11)

Proof: Assume that −∆w = z, where z ∈ W 1
p′(Ω) for 1

p + 1
p′ = 1. Combining the

comments of §4.c and Corollary 3.9 of [Da92] yields the regularity result

‖w‖W 3
p′ (Ω) ≤ C(p′,Ω)‖z‖W 1

p′ (Ω).

Given this estimate, the result (2.11) may be obtained using a duality argument and
standard techniques for proving residual-type a posteriori bounds. �

Remark 2.6. We emphasize that Lemma 2.5 only holds on convex polyhedral
domains. It should be possible to similarly prove usable negative norm estimates on
nonconvex polygonal domains in R2, but explicit information about corner singular-
ities would appear in such estimators (cf. [LN03] for analogous global L2 bounds on
nonconvex polygonal domains). On nonconvex polyhedral domains in R3, such a re-
sult is much less practical as the precise nature of vertex singularities is often difficult
to ascertain.
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Remark 2.7. Care must be taken when employing (2.11) as the constant C(p, Ω)
degenerates as p →∞, and possibly as p approaches the lower bound 2

α−1 as well. In
particular, one is not able to choose p(α) so that C(p(α),Ω) remains bounded as the
maximum edge opening angle approaches π (i.e., as α → 1).

2.4. Compatible meshes and estimates for differences in finite element
solutions. Some of our fully discrete a posteriori estimates require bounding elliptic
finite element errors of the form v1−v2−(vh1−vh2), where vh1 and vh2 lie in different
finite element spaces (in particular, in finite element spaces defined on meshes at
adjacent time steps). In this subsection we make assumptions and definitions on the
pair of meshes that allow us to establish such estimates. We follow closely Appendices
A and B of [LM06], so we shall be brief and refer the reader to that work for more
details.

Two simplicial decompositions T1 and T2 of Ω are said to be compatible if they are
derived from the same macro triangulation M by an admissible refinement procedure
which preserves shape regularity and assures that for any elements K ∈ T1 and K ′ ∈
T2, either K∩K ′ = ∅, K ⊂ K ′, or K ′ ⊂ K. The bisection-based refinement procedure
used for example in the ALBERTA finite element toolbox (cf. [SS05]) is known to be
admissible.

There is a natural partial ordering of compatible triangulations, with T1 ≤ T2 if
T2 is a refinement of T1. The finest common coarsening T1∧T2 of T1 and T2 is defined
in a natural way, and ĥ = max(h1, h2), where h1, h2, and ĥ are the local mesh size
functions for T1, T2, and T1 ∧ T2. Finally, let S1 and S2 be finite element spaces of
degree k on T1 and T2. Ŝ = S1 ∩ S2 is then the corresponding space of degree k on
T1∧T2. Standard interpolation inequalities hold for all of the above-mentioned spaces,
though the constants in these bounds may depend on the number of refinement steps
used to pass from T1 to T2. We again refer to Appendix B of [LM06], Appendix B for
more discussion.

Let vh1 ∈ S1 and vh2 ∈ S2 be the elliptic finite element approximations to v1

and v2 lying in finite element spaces S1 and S2 defined on different meshes T1 and T2,
respectively. Here we assume that −∆v1 = g1, −∆v2 = g2, and v1 = v2 = 0 on ∂Ω. In
essence, Lemma 2.3 and Lemma 2.4 still hold, but with the local mesh size h replaced
by the local mesh size ĥ of the finest common coarsening. Let Σi, i = 1, 2, be the
union of the faces of elements lying in Ti. For K̂ ∈ T1 ∧ T2, let ΣK̂ = (Σ1 ∪ Σ2) ∩ K̂,
where K̂ is taken to be closed.

For 1 ≤ p ≤ ∞ and j ≥ 0, we then define the elementwise error indicator

η̂p,−j(K̂) = ĥ2+j

K̂
‖g1−g2 +∆regvh1−∆regvh2‖Lp(K̂) + ĥ

j+1+ 1
p

K̂
‖J∇(vh1−vh2)K‖Lp(ΣK̂).

Here ∆reg is the (regular) piecewise polynomial portion of the Laplacian computed
by ignoring jumps across interior edges of K̂. Finally, we define the global estimator

Êp,−j(vh1 − vh2, g1 − g2; T1, T2) =

{
(
∑

K̂∈T1∧T2
η̂p,−j(K̂)p)1/p, 1 ≤ p < ∞,

maxK̂∈T1∧T2
η̂∞,−j(K̂), p = ∞.

Corollary 2.8. Assume that Ω is an arbitrary polyhedral domain in Rn, n =
2, 3, and that T1 and T2 are compatible triangulations. In addition, define ĥ =
minx∈Ω min(h1(x), h2(x)). Then

‖v1 − v2 − (vh1 − vh2)‖L∞(Ω) ≤ C(Ω)(ln ĥ)2Ê∞,0(vh1 − vh2, g1 − g2; T1, T2). (2.12)
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Here C(Ω) depends on the number of refinement steps used to pass from T1 to T2.
Corollary 2.9. Assume that Ω is a convex polyhedral domain in Rn, n = 2, 3,

where the maximum vertex opening angle (for n = 2) or edge opening angle (for n = 3)
is denoted by ω = π

α , α > 1. Assume also that the degree k of the finite element
spaces S1 and S2 is at least 2, that is, both spaces contain the continuous piecewise
quadratic functions. Assume also that T1 and T2 are compatible triangulations. Then
for 2

α−1 < p < ∞,

‖v1 − v2 − (vh1 − vh2)‖W−1
p (Ω) ≤ C(p, Ω)Êp,−1(vh1 − vh2, g1 − g2; T1, T2). (2.13)

Here C(p, Ω) depends on p and the number of refinement steps used to pass from T1

to T2.
The main observation used to derive the above corollaries is the fact that (v1 −

v2)− (vh1− vh2) is Galerkin orthogonal to the space S1 ∩S2. The compatibility of T1

and T2 ensures that this intersection is rich enough to obtain (2.12) and (2.13). The
proofs otherwise follow closely those of Lemma 2.3 and Lemma 2.5, and we do not
give details here.

3. Analysis of the semidiscrete scheme.

3.1. Semidiscrete finite element approximation. For simplicity in handling
finite element approximations, we assume that Ω is a polyhedral domain in Rn, n =
2, 3, and that Th is a simplicial decomposition of Ω. We emphasize that we admit here
nonconvex as well as convex polyhedral domains. Let S ⊂ H1(Ω) and S0 = S∩H1

0 (Ω)
be standard simplicial Lagrange finite element spaces as in §2.3. The semidiscrete
approximation uh ∈ C([0, T ], S0) of u then satisfies

(uh,t, vh) + (∇uh,∇vh) =(f, vh), vh ∈ S0 and t ∈ (0, T ],

uh(0) =u0
h,

(3.1)

where u0
h ∈ S0 is a finite element approximation to u0. We let Ph : L2 → S be the

L2 projection onto the finite element space S, and additionally define the modified
discrete Laplacian −∆h(t) : H1

0 (Ω) → (S0 + Phf(t)) by

(∇u,∇vh) = (−∆h(t)u, vh), vh ∈ S0. (3.2)

From (3.1) and (3.2), we have the pointwise formula

−∆huh = Phf − uh,t. (3.3)

Remark 3.1. Our definition of −∆h is nonstandard in that here −∆hu has nonzero
boundary values which depend on the data f in addition to u. We use this definition
in order to maintain consistency in the pointwise relationship (3.3). In particular,
because uh,t = 0 on ∂Ω, we also have Phf = −∆uh on ∂Ω. Note that we instead
could enforce this relationship by letting −∆huh ∈ S0 and taking the L2 projection
of f onto S0. This distinction will make little practical difference in our development,
but it is possible to define the elliptic reconstruction in such a way that −∆huh and
Phf must be computed a posteriori (cf. [LM06]).

3.2. Elliptic reconstruction for the semidiscrete problem. Given a finite
element approximation uh, we define its elliptic reconstruction Ruh ∈ H1

0 (Ω) by

(∇Ruh,∇v) = (g, v), v ∈ H1
0 (Ω), (3.4)
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where g = f − uh,t. We thus have −∆huh = Phf − uh,t, −∆Ruh = f − uh,t, and
−∆u = f−ut. Note that R = R(t) is a time-dependent operator, but we shall depress
its dependence on t in the sequel in order to avoid unnecessary clutter in our notation.
We will deal more explicitly with the time dependence of the reconstruction operator
in our analysis of the fully discrete scheme. Also note that we may differentiate (3.4)
with respect to t to obtain

(∇(Ruh)t,∇v) = (gt, v), v ∈ H1
0 (Ω),

where gt = ft − uh,tt.
Combining (3.2), (3.3), and (3.4), we find that uh and Ruh satisfy the Galerkin

orthogonality relationship

(∇(Ruh − uh),∇vh) = 0, vh ∈ S0. (3.5)

Differentiating (3.5) with respect to t also yields the time-differentiated Galerkin or-
thogonality relationship

(∇(Ruh − uh)t,∇vh) = 0, vh ∈ S0(Ω).

In addition, it is easy to calculate that for 0 < t ≤ T and v ∈ H1
0 (Ω),

((u−Ruh)t, v) + (∇(u−Ruh),∇v) = ((uh −Ruh)t, v). (3.6)

The fact that u−Ruh thus satisfies a parabolic equation will play a fundamental role
in our development.

Remark 3.2. In [MN03], the elliptic reconstruction is defined by

(∇Ruh,∇v) = (−∆huh + f − Phf, v), v ∈ H1
0 (Ω). (3.7)

From (3.3), we see that −∆huh + f − Phf = f − uh,t so that (3.7) and (3.4) are
equivalent. In fact, the elliptic reconstruction allows us to write the pointwise form
(3.3) of the discrete equation as

uh,t −∆Ruh = f.

The above equation does not involve the discrete Laplacian and thus allows for a
straightforward comparison with the PDE (1.1), leading in its weak form to (3.6).
We use the definition (3.4) because in what follows we employ residual estimators to
estimate the elliptic error Ruh−uh. These estimators require pointwise access to the
right-hand-side data for Ruh. It is not practical to directly compute −∆huh or Phf ,
and in [MN03], the authors develop an expression for the residual that does not involve
the operators −∆h or Ph (cf. p. 1592). Thus the definition in [MN03] emphasizes the
underlying structure of the reconstruction operator, that is, R = (−∆)−1(−∆h) up
to terms that are L2-orthogonal to the finite element space. Our equivalent definition
instead reflects the practical concern of computing using the resulting a posteriori
error estimates.

3.3. Semidiscrete reconstruction results. Our a posteriori estimates are
based upon the following theorem.

Theorem 3.3. Let the assumptions and definitions of §3.1 and §3.2 hold. Then
for any 0 < t0 ≤ T ,

‖(u− uh)(t0)‖L∞(Ω) ≤‖(Ruh − uh)(t0)‖L∞(Ω) + ‖(u−Ruh)(0)‖L∞(Ω)

+ ‖(uh −Ruh)t‖L1([0,t0];L∞(Ω)).
(3.8)
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Alternatively, let 2 < p, q ≤ ∞ satisfy n
2p + 1

q < 1
2 . Then

‖(u− uh)(t0)‖L∞(Ω) ≤‖(Ruh − uh)(t0)‖L∞(Ω) + ‖(u−Ruh)(0)‖L∞(Ω)

+ Cp,q(t0)‖(uh −Ruh)t‖Lq([0,t0];W
−1
p (Ω)).

(3.9)

Proof: For any x0 ∈ Ω,

|(u− uh)(x0, t0)| ≤ |(u−Ruh)(x0, t0)|+ ‖(Ruh − uh)(t0)‖L∞(Ω).

Using (2.1) and (3.6), we find that

(u−Ruh)(x0, t0) =
∫

Ω

G(x0, t0; y, 0)(u−Ruh)(y, 0) dy

+
∫ t0

0

∫
Ω

G(x0, t0; y, s)(uh −Ruh)t(y, s) ds.

The first term on the right hand side above may be bounded by combining Hölder’s
inequality with (2.2). In order to bound the second term, we apply (2.2) to obtain
(3.8) or (2.3) to obtain (3.9). �

Remark 3.4. We have assumed a polyhedral domain and a specific type of finite
element space in Theorem 3.3, but similar results hold under more general circum-
stances. Indeed, the analytical results of Lemma 2.1 hold on general bounded domains,
and only those estimates along with the relationship (3.6) are used in the proof. The
bound (2.2) also holds for a fairly general class of elliptic differential operators, though
in more general cases one must perhaps replace 1 on the right hand side by an un-
known constant with unknown dependence on T . The reconstruction technique is
thus able to transfer most difficulties and issues concerning the precise nature of the
finite element approximation (including for example the type of elements used and
difficulties arising from finite element approximations on nonpolygonal domains) to
the a posteriori estimation of elliptic errors.

3.4. A posteriori error estimates for the semidiscrete problem. In this
subsection we shall estimate the right hand sides of (3.8) and (3.9) a posteriori using
the residual estimators of §2.3. We first present an estimate which is valid for general
polyhedral domains.

Theorem 3.5. Let Ω ⊂ Rn, n = 2, 3, be an arbitrary polyhedral domain, and
let uh ∈ S0 be a standard Lagrange finite element approximation defined on an arbi-
trary shape-regular simplicial decomposition of Ω having minimum mesh diameter h.
Assume also that f ∈ L∞(0, T ;L∞(Ω)) ∩W 1

1 (0, T ;L∞(Ω)). Then for 0 < t0 ≤ T ,

‖(u− uh)(t0)‖L∞(Ω) ≤‖u0 − u0
h‖L∞(Ω)

+ C(Ω)(lnh)2[E∞,0(uh(0), g(0)) + E∞,0(uh(t0), g(t0))
+ ‖E∞,0(uh,t, gt)‖L1((0,T ))],

where E∞,0 is the L∞-type residual estimator defined in (2.9).
Proof: We proceed by bounding the terms in (3.8) using Lemma 2.3. Recalling

(3.4) and (3.5), we find that

‖(Ruh − uh)(t0)‖L∞(Ω) ≤ C(Ω)(lnh)2E∞,0(uh(t), g(t))

and similarly

‖Ruh(0)− u0‖L∞(Ω) ≤ ‖u0 − u0
h‖L∞(Ω) + C(Ω)(lnh)2E∞,0(u0

h, g(0)).
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Finally,

‖(uh −Ruh)t‖L1([0,t],L∞(Ω)) ≤ C(Ω)(lnh)2‖E∞,0(uh,t, gt)‖L1([0,t]).

Inserting the above inequalities into (3.8) completes the proof. �
We next present a theorem which allows us to bound the main error term with a

higher-order estimator. However, this estimate only holds for quadratic and higher-
order elements and convex polygonal domains.

Theorem 3.6. Assume that Ω is a convex polyhedral domain in Rn, n = 2, 3, with
maximum vertex (if n = 2) or edge (if n = 3) opening angle π

α , α > 1. Let also 2 <
p, q ≤ ∞ satisfy n

2p + 1
q < 1

2 and 2
α−1 < p. Assume also that f ∈ L∞(0, T ;L∞(Ω)) ∩

W 1
q (0, T ;Lp(Ω)). Finally, assume that the polynomial degree of the finite element

space S0 is at least two. Then with h = minK∈Th
diam(K),

‖(u−uh)(t0)‖L∞(Ω) ≤ ‖u0 − u0
h‖L∞(Ω)

+ C(Ω)(lnh)2[E∞,0(uh(0), g(0)) + E∞,0(uh(t0), g(t0))]
+ Cp,q(t0)C(p, Ω)‖Ep,−1(uh,t, gt)‖Lq([0,t0]).

Proof: The proof is completely analogous to that of Theorem 3.5 above, the only
difference being that we now employ Lemma 2.5 in addition to Lemma 2.3. �

4. Analysis of the fully discrete scheme.

4.1. Fully discrete finite element approximation. As in §1, let 0 = t0 <
t1 < ... < tN = T , Ii = (ti−1, ti), and τi = |Ii|. For each 0 ≤ i ≤ N , let Ti be a shape-
regular simplicial decomposition of Ω. Let also Si be a space of continuous piecewise
polynomials of degree k on Ti, k ≥ 1, and Si

0 = Si ∩H1
0 (Ω). Defining vi(x) = v(ti, x)

for v ∈ C(Ω× [0, T ]), we discretize the weak form of (1.1) using the backward Euler
method as follows. Let u0

h ∈ S0
0 be some approximation to u0. ui

h ∈ Si
0, 1 ≤ i ≤ N ,

is then defined via the recursion(
ui

h − ui−1
h

τi
, φi

)
+ (∇ui

h,∇φi) = (f i, φi) for all φi ∈ Si
0. (4.1)

In order to obtain a discrete approximation to u on the whole parabolic domain
Ω× [0, T ], we interpolate the functions ui

h linearly between ti−1 and ti:

uh(x, t) = (1− t− ti−1

τi
)ui−1

h (x) +
t− ti−1

τi
ui

h(x), ti−1 ≤ t ≤ ti.

Finally, we define ui
h,t = ∂

∂tuh|Ii
, that is,

ui
h,t(x) =

ui
h(x)− ui−1

h (x)
τi

, i ≥ 1. (4.2)

Next we define L2 projections onto Si and Si
0. For 0 ≤ i ≤ N , we define P i

h :
L2(Ω) → Si and P i

h,0 : L2(Ω) → Si
0 by

(P i
hu, vi) = (u, vi) ∀ vi ∈ Si,

(P i
h,0u, vi) = (u, vi) ∀ vi ∈ Si

0.

The discrete Laplacian −∆i
h : H1

0 (Ω) → Si
0 + P i

hf i is then given by

(−∆i
hu, vi) = (∇u,∇vi) for all vi ∈ Si

0. (4.3)



12 A. DEMLOW, O. LAKKIS, AND C. MAKRIDAKIS

The weak-form fully discrete scheme (4.1) may easily be transformed into the
pointwise equation

ui
h − P i

h,0u
i−1
h

τi
−∆i

hui
h = P i

hf i.

Referring to (4.2), we thus find that

ui
h,t −∆i

hui
h = P i

hf i +
P i

h,0u
i−1
h − ui−1

h

τi
, i ≥ 1. (4.4)

4.2. Elliptic reconstruction. We define the elliptic reconstruction by first
defining it at the time nodes and then interpolating linearly between them. Following
(3.4), for 0 ≤ i ≤ N we let

(∇Riui
h,∇v) = (gi, v) ∀ v ∈ H1

0 (Ω), (4.5)

where

gi =

{
−∆0

hu0
h + f0 − P 0

hf0, i = 0,

f i − ui
h,t, i ≥ 1.

(4.6)

We then obtain the time-continuous elliptic reconstruction

Ruh = (1− t− ti−1

τi
)Ri−1ui−1

h +
t− ti−1

τi
Riui

h, ti−1 ≤ t ≤ ti.

Using the formula (4.4), it is easy to compute that

f i − ui
h,t = [−∆i

hui
h] + [f i − P i

hf i] + [
ui−1

h − P i
h,0u

i−1
h

τi
]. (4.7)

This relationship combined with the definitions (4.3) and (4.6) yields the Galerkin
orthogonality relationship

(∇(ui
h −Riui

h),∇vh) = 0 ∀ vh ∈ Si
0. (4.8)

Similarly, we have on Ii that

(∇(ui
h,t − (Ruh)t),∇vh) = 0 ∀ vh ∈ Si−1

0 ∩ Si
0. (4.9)

We finally state an error equation which will play a fundamental role in our
analysis. For t ∈ Ii and φ ∈ H1

0 (Ω),

((u−Ruh)t, φ) + (∇(u−Ruh),∇φ) =((uh −Ruh)t, φ) + (f − f i, φ)

+ (1− t− ti−1

τi
)(gi − gi−1, φ).

(4.10)

Comparing (4.10) with (3.6), we see that (4.10) contains additional terms which all
result from the time discretization of (1.1).

Remark 4.1. From (4.7), we see that the elliptic reconstruction for the fully
discrete problem lifts the sum of a discrete Laplacian term, a spatial data approxima-
tion term, and a mesh coarsening term. Note that the last term is nonzero only if
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Si−1
0 * Si

0, that is, if the mesh is coarsened in the i-th time step. Our definitions of Ri

for i = 0 and i > 0 therefore differ only by the exclusion of the mesh coarsening term
when i = 0. The definition of Ri in [LM06] does not incorporate the data approxi-
mation and mesh coarsening terms in (4.7) into the right hand side of the equation
solved by Riui

h. The advantage of including these terms is that the error equation
(4.10) now includes only the term ((uh −Ruh)t, φ) plus terms which result from the
discretization in time, resulting finally in a posteriori estimators which have a simpler
structure.

4.3. Fully discrete reconstruction results. Here we present three alternative
results.

Theorem 4.2. Let all assumptions and definitions be as in §4.1 and §4.2. Then
for any 1 ≤ j ≤ N ,

‖(u− uh)(tj)‖L∞(Ω) ≤‖(Ruh − uh)(tj)‖L∞(Ω) + ‖(u−Ruh)(0)‖L∞(Ω)

+ ‖(uh −Ruh)t‖L1([0,tj ];L∞(Ω))

+
j∑

i=1

∫
Ii

‖f − f i‖L∞(Ω) dt +
τi

2
‖gi − gi−1‖L∞(Ω).

(4.11)

Alternatively, for 2 < p, q ≤ ∞ satisfying n
2p + 1

q < 1
2 and for any i ≤ j ≤ N , we have

‖(u− uh)(tj)‖L∞(Ω) ≤‖(Ruh − uh)(tj)‖L∞(Ω) + ‖(u−Ruh)(0)‖L∞(Ω)

+ Cp,q(tj)‖(uh −Ruh)t‖Lq([0,tj ];W
−1
p (Ω))

+
j∑

i=1

∫
Ii

‖f − f i‖L∞(Ω) dt +
τi

2
‖gi − gi−1‖L∞(Ω).

(4.12)

Finally let c(n) be the constant from (2.4). Then

‖(u−uh)(tj)‖L∞(Ω) ≤ ‖u0 − uh0‖L∞(Ω)

+ (2 + c(n) ln
tj
τj

) max
0≤i≤j

‖Riui
h − ui

h‖L∞(Ω)

+
j∑

i=1

∫
Ii

‖f − f i‖L∞(Ω) dt +
τi

2
‖gi − gi−1‖L∞(Ω).

(4.13)

Proof: We first fix a point x0 ∈ Ω with ‖(u − uh)(tj)‖L∞(Ω) = |(u − uh)(x0, tj)|
and compute

|(u− uh)(x0, tj)| ≤ |(u−Ruh)(x0, tj)|+ ‖(Ruh − uh)(tj)‖L∞(Ω).
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Using (2.1), (4.10), and (2.2), we find that

(u−Ruh)(x0, tj) =
∫

Ω

G(x0, tj ; y, 0)(u−Ruh)(y, 0) dy

+
∫ tj

0

∫
Ω

G(x0, tj ; y, s)(uh −Ruh)s(y, s) dy ds

+
j∑

i=1

∫
Ii

∫
Ω

G(x0, tj ; y, s)(f − f i)(y, s) dy ds

+
j∑

i=1

∫
Ii

∫
Ω

G(x0, tj ; y, s)(1− s− ti−1

τi
)(gi − gi−1) dy ds

≤‖(u−Ruh)(0)‖L∞(Ω) +
∫ tj

0

∫
Ω

G(x0, tj ; y, s)(uh −Ruh)s(y, s) dy ds

+
j∑

i=1

∫
Ii

‖f − f i‖L∞(Ω) dt +
τi

2
‖gi − gi−1‖L∞(Ω).

(4.14)

The term
∫ tj

0

∫
Ω

G(x0, tj ; y, s)(uh −Ruh)t(y, s) dy ds above may then be bounded by
using (2.2) in order to obtain (4.11), or by using (2.3) to obtain (4.12).

In order to prove (4.13), we begin as in (4.14), split the second integral into two
integrals, and perform integration by parts in time on [0, tj−1] to compute

(u−Ruh)(x0, tj) = [
∫

Ω

G(x0, tj ; y, 0)(u−Ruh)(y, 0) dy]

+ [
∫ tj

0

∫
Ω

G(x0, tj ; y, s)(uh −Ruh)s(y, s) dy ds]

+ [
j∑

i=1

∫
Ii

∫
Ω

G(x0, tj ; y, s)(f − f i)(y, s) dy ds]

+ [
j∑

i=1

∫
Ii

∫
Ω

G(x0, tj ; y, s)(1− s− ti−1

τi
)(gi − gi−1) dy ds]

=[I] + [II + III + IV + V ] + [V I] + [V II],

(4.15)
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where

I =
∫

Ω

G(x0, tj ; y, 0)(u−Ruh)(y, 0) dy,

II =
∫

Ω

G(x0, tj ; y, tj−1)(uh −Ruh)(y, tj−1) dy,

III = −
∫

Ω

G(x0, tj ; y, 0)(uh −Ruh)(y, 0) dy,

IV = −
∫ tj−1

0

∫
Ω

Gs(x0, tj ; y, s)(uh −Ruh)(y, s) dy ds,

V =
∫ tj

tj−1

∫
Ω

G(x0, tj ; y, s)(uh −Ruh)s(y, s) dy ds,

V I =
j∑

i=1

∫
Ii

∫
Ω

G(x0, tj ; y, s)(f − f i)(y, s) dy ds,

V II =
j∑

i=1

∫
Ii

∫
Ω

G(x0, tj ; y, s)(1− s− ti−1

τi
)(gi − gi−1) dy ds.

In order to bound the terms in (4.15), we use (2.3) to find that

I + II + III =
∫

Ω

G(x0, tj ; y, 0)(u− uh)(y, 0) dy

+
∫

Ω

G(x0, tj ; y, tj−1)(uh −Ruh)(y, tj−1) dy

≤‖G(x0, tj ; ·, 0)‖L1(Ω)‖u0 − uh0‖L∞(Ω)

+ ‖G(x0, tj ; ·, tj−1)‖L1(Ω)‖(uh −Ruh)(tj−1)‖L∞(Ω)

≤‖u0 − uh0‖L∞(Ω) + ‖(uh −Ruh)(tj−1)‖L∞(Ω).

(4.16)

Employing (2.4), we obtain

IV ≤
∫ tj−1

0

‖Gs(x0, t0; ·, s)‖L1(Ω)‖(uh −Ruh)(s)‖L∞(Ω) ds

≤‖uh −Ruh‖L∞(Ω×(0,tj−1))

∫ tj−1

0

c(n)
tj − s

ds

≤c(n) ln
tj
τj

max
0≤i≤j−1

‖ui
h −Riui

h‖L∞(Ω).

(4.17)

In order to bound the term V , we calculate

V ≤‖G(x0, t0, ·, ·)‖L1(Ω×Ij)‖(uh −Ruh)t‖L∞(Ω×Ij)

≤τj‖
(uj

h −Rjuj
h)− (uj−1

h −Rj−1uj−1
h )

τj
‖L∞(Ω)

≤‖uj
h −R

juj
h‖L∞(Ω) + ‖uj−1

h −Rj−1uj−1
h ‖L∞(Ω).

Finally, we compute directly that

V I + V II ≤
j∑

i=1

∫
Ii

‖f − f i‖L∞(Ω) dt +
τi

2
‖gi − gi−1‖L∞(Ω). (4.18)
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Collecting the previous inequalities and inserting them into (4.15) completes the proof
of (4.13). �

Remark 4.3. One may approach the proofs of (4.11) and (4.13) of Theorem 4.2
and (3.8) of Theorem 3.3 from the perspective of semigroup theory instead of using
fundamental solutions. Let E be the semigroup generated by the Laplace operator,
i.e., let E(t)v0 be the solution of vt − ∆v = 0, v(0) = v0. Then using Duhamel’s
principle we have

u(t) = E(t)u0 +
∫ t

0

E(t− s)f(s) ds.

Assume that the stability and strong stability properties

‖E(t)‖L∞→L∞ ≤ 1, t > 0, (4.19)

‖E′(t)‖L∞→L∞ ≤ C

t
, t > 0 (4.20)

hold. The bounds (3.8) and (4.13) are then easily obtained by respectively combining
(3.6) and (4.10) with (4.19). (4.13) may be obtained by combining (4.19), (4.20), and
(4.10). We note, however, that we are not aware of a proof for the results (4.19) and
(4.20) under the weak restrictions that we have placed on Ω. The standard reference
[St74], for example, assumes that ∂Ω is C2 in order to obtain the analyticity of E in
C0 and thus obtain (4.20).

Remark 4.4. Following [MN03], we next consider the regularity of u that is implic-
itly required by Theorem 4.2. First we comment on the estimate (4.12), which as noted
above is obtained by employing stability of the solution operator. Following Remark
3.3 of [MN03], approximation theory requires u ∈ L∞(0, T ;W k+1

∞ (Ω)) in order to ob-
tain an optimal-order bound for ‖u− uh‖L∞(0,T ;L∞(Ω)). Heuristically, (4.12) requires
u ∈ Lq(0, T ;W k+2

p (Ω)) for polynomial degree k ≥ 2 in order to obtain an optimal-
order estimate. Thus if we can bound ‖u‖L∞(0,T ;W k+1

∞ (Ω) and ‖u‖Lq(0,T ;W k+2
p (Ω)) by

the same constant depending on data, we obtain optimal-order regularity for polyno-
mial degree k ≥ 2 (though not for piecewise linear elements). It is not clear that such
an estimate holds, though in the analogous situation involving L2 norms the necessary
estimate does hold (see the last equation in Remark 3.3 of [MN03]). (4.11), on the
other hand, requires ut ∈ L1(0, T ;W k+1

∞ (Ω)) or u ∈ L1(0, T ;W k+3
∞ (Ω)), which is not

optimal. In contrast, the estimate (4.13) clearly requires only optimal regularity for
all degrees of finite element spaces. The difference in regularity required is due to the
fact that we use strong stability to prove (4.13) instead of the stability estimate used
to prove (4.11) and (4.12). As we note below, (4.13) is the most practically useful of
the estimates above.

We finally note that it is possible to sharpen the reconstruction estimate (4.13)
somewhat, though at the cost of a more complex result. In particular, we may employ
the estimates (2.7) and (2.8) that reflect the dissipation of the heat kernel when n = 2
and also accumulate the spatial errors in `1 instead of `∞. Let φi(s) be the piecewise
linear “hat” function satisfying φi(ti) = 1, φi(tm) = 0 for m 6= i. Instead of (4.17),



MAXIMUM NORM ESTIMATES FOR PARABOLIC PROBLEMS 17

we may then calculate

IV ≤
∫ tj−1

0

‖Gs(x0, t0; ·, s)‖L1(Ω)‖(uh −Ruh)(s)‖L∞(Ω) ds

≤c(n)[‖u0
h −R0u0

h‖L∞(Ω)

∫ t1

0

φ0(s)
1

tj − s
(1− e

− diam(Ω)2

9(tj−s) ) ds

+
j−2∑
i=1

‖ui
h −Riui

h‖L∞(Ω)

∫ ti+1

ti−1

φi(s)
1

tj − s
(1− e

− diam(Ω)2

9(tj−s) ) ds

+ ‖uj−1
h −Rj−1uj−1

h ‖L∞(Ω)

∫ tj−1

tj−2

φj−1(s)
1

tj − s
(1− e

− diam(Ω)2

9(tj−s) ) ds]

≤c(n)[
τ1

2(tj − t1)
(1− e

− diam(Ω)2

9(tj−t1) )‖u0
h −R0u0

h‖L∞(Ω)

+
j−2∑
i=1

1
2
(

τi

tj − ti
+

τi+1

tj − ti+1
)(1− e

− diam(Ω)2

9(tj−ti+1) )‖ui
h −Riui

h‖L∞(Ω)

+
τj−1

2τj
(1− e

− diam(Ω)2

9τj )‖uj−1
h −Rj−1uj−1

h ‖L∞(Ω)].

(4.21)

Employing (4.21) instead of (4.17) and similarly inserting (2.7) into (4.16) and (4.18)
leads to the following result.

Proposition 4.5. If the spatial dimension n = 2 and the conditions of Theorem
4.2 are met, then

‖(u− uh)(tj)‖L∞(Ω) ≤ β4(0)‖u0 − uh0‖L∞(Ω)

+ c(n)
τ1

2(tj − t1)
β9(t1)‖u0

h −R0u0
h‖L∞(Ω)

c(n)
j−2∑
i=1

1
2
(

τi

tj − ti
+

τi+1

tj − ti+1
)β9(ti+1)‖ui

h −Riui
h‖L∞(Ω)

+ (2 + c(n)
τj−1

2τj
β9(tj−1))‖uj−1

h −Rj−1uj−1
h ‖L∞(Ω) + 2‖uj

h −R
juj

h‖L∞(Ω)

+
j∑

i=1

∫
Ii

β4(t)‖f − f i‖L∞(Ω) dt +
j∑

i=1

τi

2
β4(ti)‖gi − gi−1‖L∞(Ω).

(4.22)

Here

β4(s) = 1− e
− diam(Ω)2

4(tj−s) ,

β9(s) = 1− e
− diam(Ω)2

9(tj−s) .

In contrast to (4.13), (4.22) reflects damping of the error effects from times ti
for which tj − ti >> 0. This damping is reflected in two ways. First, in (4.22) the
spatial indicators ‖ui

h − Rui
h‖L∞(Ω) accumulate in `1 instead of in `∞ as in (4.13).

The weights 1
2 ( τi

tj−ti
+ τi+1

tj−ti+1
) in (4.22) deemphasize the spatial indicators for times

ti << tj relative to contributions from times ti ≈ tj . This yields a sharper bound than
(4.13), where the spatial indicators are all weighted equally. Note that similar weights
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can also be obtained when using a duality-reconstruction combination (cf. [LM07]). In
addition, the dissipation estimates (2.7) and (2.8) are used above to quantify damping
in the initial data error (first line above) and time discretization indicators (last line)
as well as in the spatial errors. While not dramatic, these dissipation effects can
be substantial. If for example tj = diam(Ω) = 1, then β4(0) ≈ .222, corresponding
roughly to one level of refinement in the initial mesh if piecewise linear elements are
used.

We finally note that (4.22) still holds when n > 2, but the dissipation weights
β4(s) and β9(s) take a different form.

4.4. A posteriori error estimates for the fully discrete problem. We
finally obtain three different a posteriori estimates.

Theorem 4.6. Let Ω ⊂ Rn, n = 2, 3, be an arbitrary polyhedral domain, and
define hj = min0≤i≤j minT∈Ti hT . Then for any 1 ≤ j ≤ N ,

‖(u− uh)(tj)‖L∞(Ω) ≤‖u0 − u0
h‖L∞(Ω)

+ C(Ω)(lnhj)
2[E∞,0(u

j
h, gj) + E∞,0(u0

h, g0)

+
j∑

i=1

Ê∞,0(ui
h − ui−1

h , gi − gi−1; Ti−1, Ti)]

+
j∑

i=1

∫
Ii

‖f − f i‖L∞(Ω) dt +
τi

2
‖gi − gi−1‖L∞(Ω).

(4.23)

Theorem 4.7. Assume that Ω is a convex polyhedral domain in Rn, n = 2, 3
with maximum vertex (if n = 2) or edge (if n = 3) opening angle π

α , α > 1. Let also
2 < p, q ≤ ∞ satisfy n

2p + 1
q < 1

2 and 2
α−1 < p. Finally, assume that the polynomial

degree of the finite element space S0 is at least two. Then for 1 ≤ j ≤ N ,

‖(u−uh)(tj)‖L∞(Ω) ≤ ‖u0 − u0
h‖L∞(Ω)

+ C(Ω)(lnhj)
2[E∞,0(u

j
h, f j − uj

h,t) + E∞,0(u0
h, g0)]

+ Cp,q(tj)Cp(Ω)

(
j∑

i=1

τ−q+1
i Êp,1(ui

h − ui−1
h , gi − gi−1; Ti−1, Ti)q

)1/q

+
j∑

i=1

∫
Ii

‖f − f i‖L∞(Ω) dt +
τi

2
‖gi − gi−1‖L∞(Ω).

(4.24)

Theorem 4.8. Let Ω ⊂ Rn, n = 2, 3, be an arbitrary polyhedral domain, and
define hj = min0≤i≤j minT∈Ti hT . Then for any 1 ≤ j ≤ N ,

‖(u− uh)(tj)‖L∞(Ω) ≤‖u0 − u0
h‖L∞(Ω)

+ (2 + c(n) ln
tj
τj

)C(Ω)(lnhj)
2 max

0≤i≤j
E∞,0(ui

h, gi)

+
j∑

i=1

∫
Ii

‖f − f i‖L∞(Ω) dt +
τi

2
‖gi − gi−1‖L∞(Ω),

(4.25)

where c(n) = 3n

2n/2+1 .



MAXIMUM NORM ESTIMATES FOR PARABOLIC PROBLEMS 19

Proof: The proofs of the three preceding theorems follow easily by inserting the
estimates of Lemma 2.3, Lemma 2.5, Corollary 2.8, and Corollary 2.9 into the esti-
mates (4.11), (4.12), and (4.13) while recalling the definitions (4.5) and (4.6) and the
Galerkin orthogonality results (4.8) and (4.9). �

Remark 4.9. In contrast to (4.23) and (4.24), the estimate (4.25) does not re-
quire the computation of residual-based estimators with respect to a finest common
coarsening. The fact that spatial errors in (4.25) accumulate in L∞ in time as well
as in space also is practically advantageous as it is easier to ensure that these errors
are of the correct size at each time step in an adaptive algorithm. In addition, (4.25)
more readily lends itself to establishing a convenient bound for ‖u− uh‖L∞(Ω×[0,tj ]).
Thus for practical purposes, (4.25) is of greatest interest among the results in this
paper. We also emphasize that (4.25) does not include any unknown time-dependent
constants. In fact, all unknown constants in (4.25) stem from the use of a posteriori
error estimators for elliptic problems.

While not as practically advantageous as Theorem 4.8, Theorem 4.6 and Theorem
4.7 also have interesting theoretical features. (4.23) is interesting in that it includes no
time-dependent constants of any sort. (4.24) bounds the spatial errors at intermediate
times in a weaker negative norm in which u− uh is of higher order for quadratic and
higher-order finite element spaces.

Remark 4.10. One may sharpen Theorem 4.8 as in Corollary 4.5. The latter
result may easily be adapted to obtain an a posteriori estimate, but the resulting
estimator is cumbersome and we thus do not record it here.

Remark 4.11. Note that Theorem 4.6, Theorem 4.7, and Theorem 4.8 above
only require f ∈ L∞(0, T ;L∞(Ω)), whereas the corresponding results Theorem 3.5
and Theorem 3.6 for the semidiscrete case additionally place regularity assumptions
upon ft. However, Theorem 4.6 and Theorem 4.7 do in some sense implicitly employ
regularity of ft corresponding to that required in Theorem 3.5 and Theorem 3.6,
respectively. In (4.23), for example, the term

∑j
i=1 Ê∞,0(ui

h−ui−1
h , gi−gi−1; Ti−1, Ti)

may be rewritten as
∑j

i=1 τiÊ∞,0(
ui

h−ui−1
h

τi
, gi−gi−1

τi
; Ti−1, Ti), which in the limit of

small time steps corresponds to the term ‖E∞,0(uh,t, gt)‖L1((0,T )) in Theorem 3.5. On
the other hand, the spatial term (2 + c(n) ln tj

τj
)C(Ω)(lnhj)

2 max0≤i≤j E∞,0(ui
h, gi) in

(4.25) of Theorem 4.8 does not employ (either implicitly or explicitly) any regularity
of f beyond f ∈ L∞(0, T ;L∞(Ω)). Here the time-dependent logarithmic factor ln tj

τu

can be seen as a penalty for the lowered regularity requirement upon f .
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