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Abstract. For the finite volume discretization of a second-order elliptic model problem, we
derive a posteriori error estimates which take into account an inexact solution of the associated linear
algebraic system. We show that the algebraic error can be bounded by constructing an equilibrated
Raviart–Thomas–Nédélec discrete vector field whose divergence is given by a proper weighting of
the residual vector. Next, claiming that the discretization error and the algebraic one should be
in balance, we construct stopping criteria for iterative algebraic solvers. An attention is paid, in
particular, to the conjugate gradient method which minimizes the energy norm of the algebraic
error. Using this convenient balance, we also prove the efficiency of our a posteriori estimates; i.e.,
we show that they also represent a lower bound, up to a generic constant, for the overall energy
error. A local version of this result is also stated. This makes our approach suitable for adaptive
mesh refinement which also takes into account the algebraic error. Numerical experiments illustrate
the proposed estimates and construction of efficient stopping criteria for algebraic iterative solvers.
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1. Introduction. In a numerical solution of partial differential equations, the
computed result is an approximate solution found in some finite-dimensional space.
A natural question is whether this solution is a sufficiently accurate approximation of
the exact (weak) solution of the problem at hand. A posteriori error estimates aim
at giving an answer to this question while providing upper bounds on the difference
between the approximate and exact solutions that can be easily computed. Their
mathematical theory for the finite element method was started by the pioneering
paper by Babuška and Rheinboldt [6], and a vast amount of literature on this sub-
ject exists nowadays; we refer, e.g., to the books by Verfürth [48] or Ainsworth and
Oden [2]. For the cell-centered finite volume method, Ohlberger [31] derives a posteri-
ori estimates for the convection-diffusion-reaction case, whereas, for the pure diffusion
case, Achdou, Bernardi, and Coquel [1] use the equivalence of the discrete forms
of the schemes with some finite element ones, Nicaise [30] gives estimates for
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Morley-type interpolants of the original piecewise constant finite volume approxi-
mation, and Kim [23] develops a framework applicable to any locally conservative
method. Recently, a framework for general guaranteed a posteriori estimates for lo-
cally conservative methods has been derived in [50, 51, 52].

Apart from few exceptions, existing a posteriori estimates rely on the assumption
that the linear system resulting from discretization is solved exactly. This is not as-
sumed, e.g., in the work by Wohlmuth and Hoppe [54], but the bounds are valid only
for a sufficiently refined mesh and/or contain various unspecified constants. Rüde
[38, 39, 40] gives estimates of the energy norm of the error based on the norms of the
residual functionals obtained from some particular stable splitting of the underlying
Hilbert space. Repin [36] or Repin and Smolianski [35] do not use any information
about the discretization method and the method for solving the resulting linear alge-
braic system. This makes the estimates very general, but the price is that they may
be rather costly and not sufficiently accurate.

A moderately sized system of linear algebraic equations can be solved by a direct
method. For large systems, preconditioned iterative methods (see, e.g., Saad [41]) be-
come competitive, and with increasing size they represent the only viable alternative.
It should, however, be emphasized that applications of direct and iterative methods
are principally different. While in direct methods the whole solution process must be
completed to the very end in order to get a meaningful numerical solution, iterative
methods can produce an approximation of the solution at each iteration step. The
amount of computational work depends on the number of iterations performed, and
an efficient PDE solver should use this principal advantage by stopping the algebraic
solver whenever the algebraic error drops to the level at which it does not significantly
affect the whole error (cf. [7, 45]). The simplest, most often used, and mathemati-
cally most questionable stopping criterion is based on the evaluation of the relative
Euclidean norm of the residual vector; see, e.g., the discussion in [22, section 17.5].
There is only a rough connection of the algebraic residual norm with the size of the
whole error in approximation of the continuous problem (we discuss this point in
detail in section 7.1 below) and, usually, not even this connection is considered. Con-
sequently, one either continues the algebraic iterations until the residual norm is not
further reduced (i.e., one uses the iterative solver essentially as a direct solver, possibly
wasting resources and computational time without getting any further improvement
of the whole error) or one stops earlier with a risk that the computed solution is not
sufficiently accurate. For some enlightening comments we refer, e.g., to [32].

The question of stopping criteria has been addressed, e.g., by Becker, Johnson,
and Rannacher [9] with emphasize on the multigrid solver; see also [10] and the recent
paper [25]. A remarkable early approach relating the algebraic and discretization
errors is represented by the so-called cascadic conjugate gradient (CG) method of
Deuflhard [16], which was further studied by several other authors; see, e.g., [42].
In [5], Arioli compares the bound on the discretization error with the error of the
iterative method when solving self-adjoint second-order elliptic problems. He uses
the relationship between the energy norm defined in the underlying Hilbert space
for the weak formulation and its restriction onto the discrete space, in combination
with the numerically stable algebraic error bounds [44]; see also [45]. Arioli, Loghin,
and Wathen [3] extend these results for non-self-adjoint problems. Their approach is
interesting and useful in some applications but relies on an a priori knowledge, not an
a posteriori bound for the discretization error. It is also worth pointing out the recent
results on stopping criteria for Krylov subspace methods in the framework of mixed
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finite element methods applied to linear and nonlinear elliptic problems [4]. Stopping
the algebraic iterative solver based on a priori information on the discretization error
is also applied in the context of wavelet discretizations of elliptic partial differential
equations by Burstedde and Kunoth [13]. Finally, the interesting technique of Patera
and Rønquist [32] (see also Maday and Patera [24]) gives computable lower and upper
asymptotic bounds of a linear functional of an approximate linear system solution. If
the asymptotics are attained for a reasonable number of iterations, this allows one to
construct a stopping criterion. Such criterion is, however, tailored to a fast converging
preconditioned primal-dual CG Lanczos method, and, at least in the presented form,
it does not relate the discretization and algebraic parts of the error.

In this paper we consider a second-order elliptic pure diffusion model problem:
find a real-valued function p defined on Ω such that

(1.1) −∇ · (S∇p) = f in Ω, p = g on Γ := ∂Ω,

where Ω is a polygonal/polyhedral domain (open, bounded, and connected set) in Rd,
d = 2, 3, S is a diffusion tensor, f is a source term, and g prescribes the Dirichlet
boundary condition. Details are given in section 2. For the discretization of prob-
lem (1.1) on simplicial meshes, we consider in section 3 a general locally conservative
cell-centered finite volume scheme; cf. Eymard, Gallouët, and Herbin [17].

The first goal of this paper is to derive a posteriori error estimates which take
into account an inexact solution of the associated linear algebraic system. Section 5
extends for this purpose the a posteriori error estimates from [50, 51]. The derived
upper bound consists of three estimators: an estimator measuring the nonconfor-
mity of the approximate solution, which essentially reflects the discretization error;
an estimator corresponding to the interpolation error in the approximation of the
source term f , which in general turns out to be a higher-order term; and an abstract
algebraic error estimator corresponding to the inexact solution of the discrete lin-
ear algebraic problem, based on equilibrated vector fields rh from the lowest-order
Raviart–Thomas–Nédélec space whose divergences are given by a proper weighting of
the algebraic residual vector.

The second goal of this paper is to construct, in the context of solving prob-
lem (1.1), efficient stopping criteria for iterative algebraic solvers. Our approach is
based on a comparison of the discretization and algebraic error estimates; see sec-
tion 6. Under the assumption of a convenient balance between the two estimates,
we also prove the (local) efficiency of our estimates. They can thus correctly predict
the overall error size and distribution and are suitable for adaptive mesh refinement
which takes into account the inaccuracy of the algebraic computations.

Section 7 gives fully computable upper bounds or estimates for the abstract al-
gebraic error estimator of section 5. The first upper bound is given directly by the
components of the algebraic residual vector. The second approach is based on the
algebraic error measured in the energy norm, for which there exist efficient estimates,
namely, in the CG method. The last approach is based on a factual construction of
a vector field rh and on the use of its complementary energy ‖S− 1

2 rh‖ as the alge-
braic error estimator. All three approaches are numerically illustrated in section 8 on
several examples.

2. Notation, assumptions, and the continuous problem. Our notation is
standard (see [15, 12, 17]), and it is included here for completeness. It can be skipped
and used as a reference, if needed, while reading the rest of the paper.
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Recall that Ω is a polygonal domain in R2 or a polyhedral domain in R3 with the
boundary Γ. Let Th be a partition of Ω into closed simplices, i.e., triangles if d = 2
and tetrahedra if d = 3, such that Ω = ∪K∈Th

K. Moreover, we assume that the
partition is conforming in the sense that if K,L ∈ Th, K �= L, then K ∩ L is either
an empty set, a common face, edge, or vertex of K and L. For K ∈ Th, we denote
by EK the set of sides (edges if d = 2, faces if d = 3) of K, by Eh = ∪K∈Th

EK the set
of all sides of Th, and by E int

h and Eext
h , respectively, the interior and exterior sides.

We also use the notation EK for the set of all σ ∈ E int
h which share at least a vertex

with K ∈ Th. For interior sides such that σ = σK,L := ∂K ∩ ∂L, i.e., σK,L is a part
of the boundary ∂K and, at the same time, a part of the boundary ∂L, we shall call
K and L neighbors. We denote the set of neighbors of a given element K ∈ Th by
TK ; TK stands for all triangles sharing at least a vertex with K ∈ Th. For K ∈ Th,
n will always denote its exterior normal vector; we shall also employ the notation nσ

for a normal vector of a side σ ∈ Eh, whose orientation is chosen arbitrarily but fixed
for interior sides and coinciding with the exterior normal of Ω for exterior sides. For
σK,L ∈ E int

h such that nσ points from K to L and a sufficiently smooth function ϕ,
we also define the jump operator [[·]] by [[ϕ]] := (ϕ|K)|σ − (ϕ|L)|σ. Finally, a family
of meshes T := {Th; h > 0} is parameterized by h := maxK∈Th

hK , where hK is the
diameter of K (we also denote by hσ the diameter of σ ∈ Eh).

For a given domain S ⊂ Rd, let L2(S) be the space of square-integrable (in
the Lebesgue sense) functions over S, (·, ·)S the L2(S) inner product, and ‖ · ‖S
the associated norm (we omit the index S when S = Ω). By |S| we denote the
Lebesgue measure of S and by |σ| the (d − 1)-dimensional Lebesgue measure of a
(d − 1)-dimensional surface σ in Rd. Let H(S) be a set of real-valued functions
defined on S. By [H(S)]d we denote the set of vector functions with d compo-
nents each belonging to H(S). Let next H1(S) be the Sobolev space with square-
integrable weak derivatives up to order one, H1

0 (S) ⊂ H1(S) its subspace of functions
with traces vanishing on Γ, H1/2(S) the trace space, H(div, S) := {v ∈ [L2(S)]d;
∇ · v ∈ L2(S)} the space of functions with square-integrable weak divergences, and
let finally 〈·, ·〉∂S stand for the (d− 1)-dimensional L2(∂S) inner product on ∂S. We
also let H1

Γ(Ω) := {ϕ ∈ H1(Ω); ϕ|Γ = g} be the set of functions satisfying the Dirich-
let boundary condition on Γ in the sense of traces. For a given partition Th of Ω,
let H1(Th) := {ϕ ∈ L2(Ω); ϕ|K ∈ H1(K) ∀K ∈ Th} be the broken Sobolev space.
Finally, we let W (Th) be the space of functions with mean values of the traces contin-
uous across interior sides, i.e., W (Th) := {ϕ ∈ H1(Th); 〈[[ϕ]], 1〉σ = 0 ∀σ ∈ E int

h }, and
W0(Th) its subspace with mean values of traces over boundary sides equal to zero,
W0(Th) := {ϕ ∈ W (Th); 〈ϕ, 1〉σ = 0 ∀σ ∈ Eext

h }.
We next denote by Pk(S) the space of polynomials on S of total degree less

than or equal to k and by Pk(Th) := {ϕh ∈ L2(Ω); ϕh|K ∈ Pk(K) ∀K ∈ Th} the
space of piecewise k-degree polynomials on Th. We define RTN(K) := [P0(K)]d +
xP0(K) for an element K ∈ Th the local and RTN(Th) := {vh ∈ [L2(Ω)]d; vh|K ∈
RTN(K) ∀K ∈ Th} ∩ H(div,Ω) the global lowest-order Raviart–Thomas–Nédélec
space of specific piecewise linear vector functions. Recall that the normal components
of vh ∈ RTN(K), vh · n, are constant on each σ ∈ EK and that they represent
the degrees of freedom of RTN(K). By consequence, the constraint vh ∈ H(div,Ω)
imposing the normal continuity of the traces is expressed as vh|K · n + vh|L · n = 0
∀σK,L ∈ E int

h , and there is one degree of freedom per side in RTN(Th). Recall also
that ∇ · vh is constant for vh ∈ RTN(K). For more details, we refer to Brezzi and
Fortin [12] or Quarteroni and Valli [33].
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Assumption 2.1 (data). Let S be a symmetric, bounded, and uniformly positive
definite tensor, piecewise constant on Th. Let in particular cS,K > 0 and CS,K > 0
denote its smallest and largest eigenvalues, respectively, on each K ∈ Th. In addition,
let f ∈ Pl(Th) be an elementwise l-degree polynomial function and g ∈ H1/2(Γ).

The assumptions on S and f are made for the sake of simplicity and are usually
satisfied in practice. Otherwise, interpolation can be used in order to get the desired
properties. In what follows, we will employ the notation SK := S|K , and, in general,
ϕK := ϕh|K for ϕh ∈ P0(Th).

We define a bilinear form B by

B(p, ϕ) :=
∑

K∈Th

(S∇p,∇ϕ)K , p, ϕ ∈ H1(Th)

and the corresponding energy (semi)norm by

(2.1) |||ϕ|||2 := B(ϕ, ϕ).

Note that ||| · ||| becomes a norm on the space W0(Th); cf. [49]. Also note that B
is well-defined for functions from the space H1(Ω) as well as from the broken space
H1(Th). The weak formulation of problem (1.1) is then to find p ∈ H1

Γ(Ω) such that

(2.2) B(p, ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω).

Assumption 2.1 implies that problem (2.2) admits a unique solution [15].

3. Finite volume methods and postprocessing. We start with description
of the finite volume methods for problem (1.1). In these methods, the approximation
ph of the solution p in (1.1) is only piecewise constant, and it is not appropriate for
an energy a posteriori error estimate as ∇ph = 0. We therefore construct a locally
postprocessed approximation using information about the known fluxes. Finally, we
will in the a posteriori error estimates need anH1(Ω)-conforming approximation using
the so-called Oswald interpolate.

3.1. Finite volume methods. A general cell-centered finite volume method
for problem (1.1) (cf., e.g., [17]) can be written as follows: find ph ∈ P0(Th) such that

(3.1)
∑
σ∈EK

UK,σ = fK |K| ∀K ∈ Th,

where fK := (f, 1)K/|K| and UK,σ is the diffusive flux through the side σ of an
element K, depending linearly on the values of ph, so that (3.1) represents a system
of linear algebraic equations of the form

(3.2) SP = H,

where S ∈ RN×N and P,H ∈ RN with N being the number of elements in the partition
Th. Here we assume only the continuity of the fluxes, i.e., UK,σ = −UL,σ ∀σ = σK,L ∈
E int
h , so that practically all finite volume schemes can be included. We next give an

example which clarifies the ideas.
Let there be a point xK ∈ K for each K ∈ Th such that if σK,L ∈ E int

h , then
xK �= xL and the straight line connecting xK and xL is orthogonal to σK,L. Let an
analogous orthogonality condition hold also on the boundary. Then Th is admissible
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in the sense of [17, Definition 9.1]. Under the additional assumption SK = sKI (I
denotes the identity matrix) on each K ∈ Th, the following choice is possible:

(3.3)

UK,σ = −sK,L
|σK,L|
dK,L

(pL − pK) for σ = σK,L ∈ E int
h ,

UK,σ = −sK
|σ|
dK,σ

(gσ − pK) for σ ∈ EK ∩ Eext
h .

Here pK are the cell values of ph (pK := ph|K ∀K ∈ Th), and the value of sK,L on a side
σ = σK,L ∈ E int

h is given by sK,L = ωσ,KsK + ωσ,LsL, where ωσ,K = ωσ,L = 1
2 in the

case of the arithmetic averaging and ωσ,K = sL/(sK + sL) and ωσ,L = sK/(sK + sL)
in the case of the harmonic averaging of the diffusion coefficients sK . The symbol
dK,L stands for the Euclidean distance between the points xK and xL and dK,σ for the
distance between xK and σ ∈ EK∩Eext

h . Finally, gσ := 〈g, 1〉σ/|σ| is the mean value of
g on a side σ ∈ Eext

h . To express (3.1), (3.3) in the matrix form (3.2), let the elements
of Th be enumerated using a bijection � : Th → {1, . . . , N}. With the corresponding
ordering of the unknown values pK of ph defined by (P )�(K) = pK for each K ∈ Th
and denoting, respectively, by (·)kl and (·)k the matrix and vector components, the
system matrix S and the right-hand side vector H are all zero except the elements
defined by

(S)�(K),�(K) =
∑

L∈TK

sK,L
|σK,L|
dK,L

+
∑

σ∈EK∩Eext
h

sK
|σ|
dK,σ

,

(S)�(K),�(L) = −sK,L
|σK,L|
dK,L

, L ∈ TK ,

(H)�(K) = fK |K| +
∑

σ∈EK∩Eext
h

sK
|σ|
dK,σ

gσ.

The system matrix S is therefore symmetric and positive definite (SPD) and, more-
over, irreducibly diagonally dominant (for the definition of this term, see, e.g., [47]).

3.2. Postprocessing. Let uh ∈ RTN(Th) be prescribed by the fluxes UK,σ; i.e.,
for each K ∈ Th and σ ∈ EK , let uh be such that

(3.4) (uh|K · n)|σ := UK,σ/|σ|.

We define a postprocessed approximation p̃h ∈ P2(Th) in the following way:

−SK∇p̃h|K = uh|K ∀K ∈ Th,(3.5a)

(1− μK)(p̃h, 1)K/|K|+ μK p̃h(xK) = pK ∀K ∈ Th.(3.5b)

Here μK = 0 or 1, depending on whether in the particular finite volume scheme (3.1)
pK represents the approximate mean value of ph on K ∈ Th or the approximate point
value in xK , respectively. It is not difficult to show that such p̃h exists, is unique, but is
nonconforming (does not belong to H1(Ω)); see [50, section 4.1] and [51, section 3.2.1].
For the finite volume scheme (3.1), (3.3), p̃h ∈ W (Th) if f = 0, but if f �= 0, then
p̃h �∈ W (Th) in general. Under the condition that the finite volume scheme at hand
satisfies some convergence properties, it is shown in [51] that ∇p̃h → ∇p and p̃h → p in
the L2(Ω)-norm for h → 0 and that optimal a priori error estimates hold. Note finally
that the described postprocessing is local on each element and its cost is negligible.
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3.3. Oswald interpolation operator. For a given function ϕh ∈ Pk(Th), the
Oswald interpolation operator IOs from Pk(Th) to Pk(Th)∩H1(Ω) is defined as follows
(cf., e.g., [1]): let x be a Lagrangian node, i.e., a point where the Lagrangian degree of
freedom for Pk(Th)∩H1(Ω) is prescribed; see [15, section 2.2]. If x lies in the interior
of some K ∈ Th or in the interior of some boundary side, IOs(ϕh)(x) = ϕh(x).
Otherwise, the value of IOs(ϕh) at x is defined by the average of the values of ϕh at
this node from the neighboring elements, i.e.,

IOs(ϕh)(x) =
1

Nx

∑
K∈Tx

ϕh|K(x),

where Tx := {K ∈ Th; x ∈ K} is the set of elements of Th containing the node x
and Nx denotes the number of elements contained in this set. Finally, let IΓ

Os(ϕh) be
a modified Oswald interpolate (cf. [51]) differing from IOs(ϕh) only on such K ∈ Th
that contain a boundary side and such that

IΓ
Os(ϕh)|Γ = g in the sense of traces.

4. Inexact solution of systems of linear algebraic equations. Let P a be
an approximate solution of (3.2), i.e., SP a ≈ H . We then have the equation

(4.1) SP a = H −R,

where R := H−SP a is the algebraic residual vector associated with the approximation
P a. This means that an approximate solution P a of problem (3.2) is the exact solution
of the same problem with a perturbed right-hand side Ha := H − R. Defining pah ∈
P0(Th) by paK := (P a)�(K) and a residual function ρh ∈ P0(Th) associated with the
algebraic residual vector R by

(4.2) ρK := (R)�(K)/|K|, K ∈ Th,

(4.1) is equivalent to the set of conservation equations

(4.3)
∑
σ∈EK

Ua
K,σ = fK |K| − ρK |K| ∀K ∈ Th.

The fluxes Ua
K,σ are of the same form as UK,σ, with the values of ph replaced by pah.

Compared to (3.1), (4.3) contains an additional term on the right-hand side rep-
resenting the error from the inexact solution of the algebraic system. We can now
define ua

h ∈ RTN(Th) by (ua
h|K · n)|σ := Ua

K,σ/|σ| so that (4.3) implies

(4.4) 〈ua
h · n, 1〉∂K = fK |K| − ρK |K| ∀K ∈ Th.

We can consequently, as in section 3.2, build a postprocessed approximation p̃ah ∈
P2(Th) by

−SK∇p̃ah|K = ua
h|K ∀K ∈ Th,(4.5a)

(1− μK)(p̃ah, 1)K/|K|+ μK p̃ah(xK) = paK ∀K ∈ Th.(4.5b)

The backward error idea of incorporating the algebraic error into (4.1), together with
the construction (4.4) and (4.5), will form a basis for our a posteriori error estimates
presented next.
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5. A posteriori error estimates including the algebraic error. We first
recall the following result proved as a part of [50, Lemma 7.1] (here ||| · ||| is the energy
(semi)norm defined by (2.1)).

Lemma 5.1 (abstract a posteriori error estimate). Consider arbitrary p ∈ H1
Γ(Ω)

and p̃ ∈ H1(Th). Then

|||p− p̃||| ≤ inf
s∈H1

Γ(Ω)
|||p̃− s|||+ sup

ϕ∈H1
0 (Ω)

|||ϕ|||=1

B(p− p̃, ϕ).

Before formulating the a posteriori error estimate, we recall the Poincaré inequal-
ity. It states that for a convex polygon/polyhedron K and ϕ ∈ H1(K),

(5.1) ‖ϕ− ϕK‖K ≤ 1

π
hK‖∇ϕ‖K ,

where ϕK := (ϕ, 1)K/|K| is the mean of ϕ over K. Our a posteriori error estimates
are based on the following theorem.

Theorem 5.2 (a posteriori error estimate including the algebraic error). Let p be
the weak solution of (1.1) given by (2.2) with the data satisfying Assumption 2.1. Let a
couple pah ∈ P0(Th), ua

h ∈ RTN(Th) be given, where ua
h satisfies (4.4) for some given

function ρh ∈ P0(Th). Finally, let p̃ah ∈ P2(Th) be the postprocessed approximation
given by (4.5a)–(4.5b). Then

(5.2) |||p− p̃ah||| ≤ ηNC + ηO + ηAE,

where the global nonconformity and oscillation estimators are given by

ηNC :=

{ ∑
K∈Th

η2NC,K

} 1
2

and ηO :=

{ ∑
K∈Th

η2O,K

} 1
2

,

respectively, and ηAE stands for the algebraic error estimator defined by

(5.3) ηAE := inf
rh∈RTN(Th)

∇·rh=ρh

sup
ϕ∈H1

0 (Ω)
|||ϕ|||=1

(rh,∇ϕ).

The local nonconformity and oscillation estimators are, respectively, given by

ηNC,K := |||p̃ah − IΓ
Os(p̃

a
h)|||K , ηO,K :=

1

π
√
cS,K

hK‖f − fK‖K ,

and IΓ
Os(p̃

a
h) is the modified Oswald interpolant of p̃ah described in section 3.3.

Proof. For any s ∈ H1
Γ(Ω) we have from Lemma 5.1

|||p− p̃ah||| ≤ |||p̃ah − s|||+ sup
ϕ∈H1

0(Ω)
|||ϕ|||=1

B(p− p̃ah, ϕ)

= |||p̃ah − s|||+ sup
ϕ∈H1

0(Ω)
|||ϕ|||=1

[TO(ϕ) + TAE(ϕ)]

≤ |||p̃ah − s|||+ sup
ϕ∈H1

0(Ω)
|||ϕ|||=1

TO(ϕ) + sup
ϕ∈H1

0(Ω)
|||ϕ|||=1

TAE(ϕ),

(5.4)
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where TO(ϕ) :=
∑

K∈Th
(S∇(p − p̃ah) + rh,∇ϕ)K and TAE(ϕ) := −(rh,∇ϕ) for an

arbitrary rh ∈ RTN(Th) such that ∇ · rh = ρh.
The term TO(ϕ) can be expressed using the definition of the weak solution (2.2),

(4.5a), and the Green theorem as (recall that rh, u
a
h ∈ H(div,Ω) and ϕ ∈ H1

0 (Ω))

TO(ϕ) = (f, ϕ) −
∑

K∈Th

(S∇p̃ah − rh,∇ϕ)K

= (f, ϕ) + (rh + ua
h,∇ϕ) = (f −∇ · (rh + ua

h), ϕ).

(5.5)

Since the divergence is piecewise constant for functions in RTN(Th), the Green the-
orem with (4.4) gives for any K ∈ Th

(5.6) (∇ · ua
h)|K = (∇ · ua

h, 1)K/|K| = 〈ua
h · n, 1〉∂K/|K| = fK − ρK .

Thus, employing ∇ · rh|K = ρK ,

f −∇ · (rh + ua
h) = f − ρK − fK + ρK = f − fK ∀K ∈ Th.

Now let ϕK := (ϕ, 1)K/|K| be the mean value of ϕ overK. Using the above identities,
we can rewrite (5.5) in the form

TO(ϕ) =
∑

K∈Th

(f − fK , ϕ− ϕK)K ,

and from the Cauchy–Schwarz inequality, the Poincaré inequality (5.1), and using
|||ϕ||| = 1, we obtain the estimate

TO(ϕ) ≤
∑

K∈Th

‖f − fK‖K‖ϕ− ϕK‖K ≤
∑

K∈Th

ηO,K |||ϕ|||K ≤
{ ∑

K∈Th

η2O,K

} 1
2

.

With (5.4), putting s = IΓ
Os(p̃

a
h) and noticing that rh ∈ RTN(Th) such that∇·rh = ρh

was chosen arbitrarily, the proof is finished.
Remark 5.3 (form of the a posteriori error estimate). By (4.5a) and by defini-

tion (2.1) of the energy (semi)norm, posing u := −S∇p,

|||p− p̃ah||| =
∥∥S− 1

2 (u− ua
h)
∥∥,

so that the a posteriori error estimate of Theorem 5.2 equivalently controls the energy
norm of the error in the flux.

The a posteriori error estimate given in Theorem 5.2 consists of three parts: the
nonconformity estimator ηNC indicating the departure of the approximate solution p̃ah
from the space H1

Γ(Ω), the oscillation estimator ηO which measures the interpolation
error in the right-hand side of problem (1.1), and the algebraic error estimator ηAE

which accounts for the error from the inexact solution of the algebraic system. Note
that the nonconformity estimator depends on the actual approximation p̃ah of p̃h and
thus implicitly also on ρh and not only on the discretization error, whereas the al-
gebraic error estimator depends only on the residual function ρh associated with the
algebraic residual vector R; see (4.2). We discuss computable upper bounds on ηAE

in section 7 below. Finally, whenever f ∈ H1(Th), the oscillation estimator ηO is of
higher order by the Poincaré inequality (5.1) (it converges as O(h2) for h → 0) and
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its value is significant only on coarse grids or for highly varying S. We shall give some
more details in the next section.

The following remark follows from the freedom of choice of s and rh in the proof
of Theorem 5.2.

Remark 5.4 (abstract form of Theorem 5.2). With the assumptions of Theo-
rem 5.2,

|||p− p̃ah||| ≤ ηANC + ηO + ηAAE,

with

(5.7) ηANC := inf
s∈H1

Γ(Ω)
|||p̃ah − s|||, ηAAE := inf

r∈H(div,Ω)
∇·r=ρh

sup
ϕ∈H1

0 (Ω)
|||ϕ|||=1

(r,∇ϕ),

and ηO as in Theorem 5.2. Please note that

ηANC ≤ ηNC and ηAAE ≤ ηAE.

We now show that the abstract algebraic error estimator ηAAE given above is equal
to the complementary energy of the flux of the solution of the original problem (1.1)
with homogeneous Dirichlet boundary condition and the right-hand side replaced by
the residual function ρh.

Theorem 5.5 (equivalence of the abstract algebraic error estimator and of the
minimal complementary energy). Consider an arbitrary ρh ∈ P0(Th) and ηAAE given
by (5.7). Then

ηAAE = ‖S− 1
2q‖,

where q ∈ H(div,Ω), ∇·q = ρh, is the unique minimizer of the complementary energy
characterized by

(5.8) ‖S− 1
2q‖ = min

r∈H(div,Ω)
∇·r=ρh

‖S− 1
2 r‖

or, equivalently, by q = −S∇e, where e ∈ H1
0 (Ω) is the unique weak solution of

(5.9) −∇ · (S∇e) = ρh in Ω, e = 0 on Γ.

Proof. Using the Cauchy–Schwarz inequality,

ηAAE = inf
r∈H(div,Ω)
∇·r=ρh

sup
ϕ∈H1

0(Ω)
|||ϕ|||=1

(r,∇ϕ) ≤ sup
ϕ∈H1

0(Ω)
|||ϕ|||=1

(q,∇ϕ)

= sup
ϕ∈H1

0(Ω)
|||ϕ|||=1

(S− 1
2q,S

1
2∇ϕ) ≤ sup

ϕ∈H1
0 (Ω)

|||ϕ|||=1

(
‖S− 1

2q‖|||ϕ|||
)
= ‖S− 1

2q‖.

Before proceeding to the converse, let us recall that the problem of finding q as
the minimizer of the complementary energy is equivalent to the problem of finding
q ∈ H(div,Ω), ∇ · q = ρh, such that

(5.10) (S−1q,v) = 0 ∀v ∈ H(div,Ω); ∇ · v = 0;
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see, e.g., [1, Theorem 7.1.1]. Let now r ∈ H(div,Ω), such that ∇·r = ρh, be arbitrary.
Then, by (5.10), it holds that (S−1q,q− r) = 0, and using that q = −S∇e, we get

‖S− 1
2q‖2 = (S−1q,q) = (S−1q,q− r) + (S−1q, r) = (−∇e, r).

Hence

‖S− 1
2q‖ = |||e||| =

(
r,

−∇e

|||e|||

)
≤ sup

ϕ∈H1
0 (Ω)

|||ϕ|||=1

(r,∇ϕ),

which concludes the proof by virtue of the fact that r ∈ H(div,Ω) such that ∇·r = ρh
was chosen arbitrarily.

6. Stopping criterion for iterative solvers and efficiency of the a poste-
riori error estimate. In PDE solvers, the discretization and algebraic errors should
be in balance. This requirement leads to a stopping criterion for iterative algebraic
solvers applied to discretized linear algebraic systems. Using this approach, we also
prove in this section global and local efficiency of our a posteriori error estimates in
the sense that the estimators also represent global and local lower bounds (up to a
generic constant) for the error. Please note that all of the results still hold when ηAE

is replaced by one of its computable upper bounds presented in section 7 below.

6.1. Stopping criterion. A stopping criterion that we propose requires the
value of the algebraic error estimator to be related to the nonconformity one via

(6.1) ηAE ≤ γ ηNC, 0 < γ ≤ 1,

where γ is typically close to 1. This leads to the bound

|||p− p̃ah||| ≤ (1 + γ)ηNC + ηO.

Let ηAE be constructed using local contributions ηAE,K corresponding to individual
elements K ∈ Th so that

(6.2) ηAE =

{ ∑
K∈Th

η2AE,K

} 1
2

.

We will use such construction below. Then one can consider also a local stopping
criterion of the form

(6.3) ηAE,K ≤ γK ηNC,K , 0 < γK ≤ 1 ∀K ∈ Th,

where γK are typically close to 1.
In the rest of this section we will employ the notation cS,TK := minL∈TK cS,L,

which is the lower bound on the eigenvalues of the diffusion tensor S on the patch
of elements TK (see section 2). The notation C, C̃, and C will stand for generic
constants dependent on the quantities specified below, possibly different at different
occurrences. We will also make use of the following assumption.

Assumption 6.1 (shape regularity of T ). There exists a constant θT > 0 such
that minK∈Th

hK/vK ≤ θT ∀ Th ∈ T , where vK is the diameter of the largest ball
inscribed in K.
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6.2. Efficiency of the estimates. Let us first introduce some additional no-

tation. For ϕ ∈ H1(Th) and σ = σL,M ∈ E int
h , put ‖ϕ‖#,σ := h

− 1
2

σ |〈[[ϕ]], 1〉σ |. Note
that 〈[[ϕ]], 1〉σ = 0 ∀σ ∈ E int

h for ϕ ∈ W (Th), as ‖ϕ‖#,σ measures only the jump in the
mean values of ϕ. Then, for a given set of sides E , let

|||ϕ|||2#,E := cS,E
∑
σ∈E

‖ϕ‖2#,σ ,

where cS,E is the minimum of the values cS,K over all K ∈ Th which have at least
one side in the set E . The following theorem shows that using the local stopping
criterion (6.3), the derived estimates also represent local lower bounds for the error.
Consequently, they are suitable for adaptive mesh refinement.

Theorem 6.2 (local efficiency of the a posteriori error estimate). Let the as-
sumptions of Theorem 5.2 and Assumption 6.1 be satisfied. Let (6.2) hold together
with (6.3). Then, for each K ∈ Th,

ηNC,K + ηAE,K ≤ (1 + γK)
(
CC

1
2

S,Kc
− 1

2

S,TK
(|||p− p̃ah|||TK + |||p− p̃ah|||#,EK )

+|||IOs(p̃
a
h)− IΓ

Os(p̃
a
h)|||K

)
.

If, moreover, the local algebraic error estimators are given by ηAE,K = ‖S− 1
2 rh‖K for

some rh such that rh ∈ RTN(Th), ∇ · rh = ρh, then

ηNC,K + ηO,K + ηAE,K ≤ C̃(1 + γK)(|||p − p̃ah|||TK + |||p− p̃ah|||#,EK

+ |||IOs(p̃
a
h)− IΓ

Os(p̃
a
h)|||K).

(6.4)

Here the constant C depends only on the space dimension d and on the shape regu-
larity parameter θT , and C̃ depends in addition on the polynomial degree l of f (see
Assumption 2.1) and on the ratio CS,K/cS,TK .

Proof. It has been proved in [50, Theorem 4.4, 51, Theorem 4.2, and 52, Theo-
rem 6.16] using the tools from [48] and [1], that for any piecewise polynomial function
p̃ah ∈ Pm(Th),

ηNC,K ≤ C

(
C

1
2

S,Kc
− 1

2

S,TK
|||p− p̃ah|||TK + C

1
2

S,K

∑
σ∈EK

‖p− p̃ah‖#,σ

)
(6.5a)

+|||IOs(p̃
a
h)− IΓ

Os(p̃
a
h)|||K ,

π−1c
− 1

2

S,K hK‖f +∇ · (S∇p̃ah)‖K ≤ CC
1
2

S,Kc
− 1

2

S,K |||p− p̃ah|||K ,(6.5b)

where the constant C depends only on d, θT , and the polynomial degree m of p̃ah and
C depends in addition on the polynomial degree l of f .

The first assertion of the theorem is thus an immediate consequence of (6.5a) and
of (6.3). For the second one, we have to bound ηO,K . Using fK = (∇ · ua

h)|K + ρK
from (5.6), ua

h|K = −SK∇p̃ah|K from (4.5a), the triangle inequality, and ∇ · rh = ρh,
we have

ηO,K = π−1c
− 1

2

S,K hK‖f − fK‖K ≤ π−1c
− 1

2

S,K hK(‖f +∇ · (S∇p̃ah)‖K + ‖∇ · rh‖K).

The first term on the right-hand side of this inequality is bounded by (6.5b). Using
the inverse inequality (cf. [33, Proposition 6.3.2]) and Assumption 2.1,

‖∇ · rh‖K ≤ Ch−1
K ‖rh‖K ≤ Ch−1

K C
1
2

S,K‖S− 1
2 rh‖K
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for some constant C depending only on d and θT . Thus, using (6.3),

ηO,K ≤ CC
1
2

S,Kc
− 1

2

S,K |||p− p̃ah|||K + CC
1
2

S,Kc
− 1

2

S,KγKηNC,K .

The assertion (6.4) thus follows by combining the above estimate with the previous
ones.

Using the global stopping criterion (6.1) without (6.2) and (6.3), we obtain the
following global lower bound (note that the result for estimators ηNC and ηAE is
standard and sufficient, as the estimator ηO represents only data oscillations and is
generally of higher order; it can also be included as shown in Theorem 6.2).

Theorem 6.3 (global efficiency of the a posteriori error estimate). Let the as-
sumptions of Theorem 5.2 and Assumption 6.1 be satisfied, and let (6.1) hold. Then

ηNC + ηAE ≤ C̃(1 + γ)(|||p− p̃ah|||+ |||p− p̃ah|||#,E int
h

+ |||IOs(p̃
a
h)− IΓ

Os(p̃
a
h)|||),

where the constant C̃ depends only on d, θT , and maxK∈Th
CS,K/cS,TK .

Proof. From (6.1), ηNC+ ηAE ≤ (1+ γ)ηNC. Using the definition of ηNC, employ-
ing (6.5a) and the inequality (a+ b)2 ≤ 2a2 + 2b2, we have

ηNC + ηAE ≤ (1 + γ)
√
2

{ ∑
K∈Th

(
CCS,Kc−1

S,TK
(|||p− p̃ah|||2TK

+ |||p− p̃ah|||2#,EK
)

+|||IOs(p̃
a
h)− IΓ

Os(p̃
a
h)|||2K

)} 1
2

,

from where the assertion of the theorem follows.
We remark that the terms |||IOs(p̃

a
h)−IΓ

Os(p̃
a
h)|||K in the above theorems penalize

the possible violation of the Dirichlet boundary condition and that they can be nonzero
only for boundary simplices. The term |||p − p̃ah|||#,E int

h
= |||p̃ah|||#,E int

h
then accounts

for the discontinuity of the means of traces of the postprocessed approximation p̃ah
and for a part of the algebraic error. In our numerical experiments it was negligible.
Bound (6.4) is in particular relevant to the cases investigated in section 7.3 below,
where the algebraic error estimator admits the desired form.

7. Computable upper bounds and estimates for the algebraic error
estimator. The algebraic error estimator ηAE of section 5 was defined in a general
way without specification of the techniques for computing it. In this section we discuss
three different approaches giving computable upper bounds on ηAE or its efficient
estimates.

7.1. Simple bound using the algebraic residual vector. A guaranteed up-
per bound on the algebraic error ηAE can be obtained using a weighted Euclidean
norm of the algebraic residual vector R defined in (4.1). This worst-case-like scenario
approach can lead to large overestimation (cf. section 8 below). For a supportive
algebraic reasoning, see, e.g., [22, section 17.5].

Lemma 7.1 (algebraic error estimator using the algebraic residual vector). The
algebraic error estimator ηAE from Theorem 5.2 can be bounded as

(7.1) ηAE ≤ η
(1)
AE :=

√
CF,Ω

cS,Ω
hΩ

{ ∑
K∈Th

ρ2K |K|
} 1

2

,
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where cS,Ω := minK∈Th
cS,K and hΩ is the diameter of the domain Ω.

Proof. Using the Green theorem and the Cauchy–Schwarz inequality, we have

(7.2) (rh,∇ϕ) = −(∇ · rh, ϕ) = −
∑

K∈Th

(ρK , ϕ)K ≤
{ ∑

K∈Th

ρ2K |K|
} 1

2

‖ϕ‖.

As ϕ ∈ H1
0 (Ω), we can now relate ‖ϕ‖ to |||ϕ||| using the Friedrichs inequality and

(2.1) by

‖ϕ‖ ≤
√
CF,Ω hΩ‖∇ϕ‖ ≤

√
CF,Ω

cS,Ω
hΩ|||ϕ||| .(7.3)

Considering |||ϕ||| = 1 and combining (7.2) and (7.3) proves the statement. As for the
value of CF,Ω, we refer to, e.g., Nečas [29, section 1.2] or Rektorys [34, Chapter 30]; it
ranges between 1/π2 and 1. Note that hΩ may be replaced by the infimum over the
thicknesses of Ω in the given direction; cf., e.g., [49].

We point out that (7.1) can be rewritten in the algebraic form as

(7.4) η
(1)
AE =

√
CF,Ω

cS,Ω
hΩ

√
RtD−1R =

√
CF,Ω

cS,Ω
hΩ ‖R‖D−1,

where D := diag(|�−1(k)|)Nk=1 is a finite volume-type mass matrix and � represents
the enumeration of elements in Th defined in section 3.1.

7.2. Estimate based on the energy norm of the algebraic error. Inspired
by Theorem 5.5, consider the approximation of (5.9) by the finite volume scheme given
in section 3.1. It consists of finding eh ∈ P0(Th) such that

(7.5)
∑
σ∈EK

UK,σ = ρK |K| ∀K ∈ Th,

where UK,σ are the prescribed fluxes which depend linearly on the values of eh. In
matrix form, this leads to

(7.6) SE = R,

where S is the matrix from (3.2). The matrix S is SPD (see section 3.1) so that it
induces an algebraic energy norm ‖ · ‖S by ‖X‖2S := XtSX for a vector X ∈ RN . We
now shed some light on the relationship between ηAE and ‖E‖S.

Let us construct a postprocessed error ẽh ∈ P2(Th) from eh and UK,σ given
by (7.5) as described in section 3.2, and put qh := −S∇ẽh. Then qh ∈ RTN(Th) and
∇ · qh = ρh by (7.5) so that

(7.7) ηAE ≤ η
(2)
AE := ‖S− 1

2qh‖
follows directly from definition (5.3) of ηAE and the Cauchy–Schwarz inequality; see
the proof of Theorem 5.5. Suppose for the moment that ẽh ∈ W0(Th) and that μK = 0
in (3.5b) ∀K ∈ Th. Under these conditions and using the Green theorem,(

η
(2)
AE

)2
= ‖S− 1

2qh‖2 =
∑

K∈Th

(S∇ẽh,∇ẽh)K

=
∑

K∈Th

{
(−∇ · (S∇ẽh), ẽh)K + 〈S∇ẽh|K · n, ẽh〉∂K

}
=
∑

K∈Th

(−∇ · (S∇ẽh), ẽh)K =
∑

K∈Th

eKρK |K| = ‖E‖2S.
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Here the term
∑

K∈Th
〈S∇ẽh|K ·n, ẽh〉∂K vanishes due to the fact that S∇ẽh ·n is side-

wise constant as S∇ẽh ∈ RTN(Th) and the assumption ẽh ∈ W0(Th). Unfortunately,
as discussed in section 3.2, ẽh in the finite volume method does not in general belong
to the space W0(Th). Numerical experiments, however, show that the violations of
the means of traces continuity are typically very slight. Therefore

(7.8) ηAE ≤ η
(2)
AE = ‖S− 1

2qh‖ ≈ ‖E‖S,

and ‖E‖S suggests itself as an a posteriori algebraic error estimate. We now switch
to linear algebra considerations of estimating ‖E‖S.

Let a system of the form (3.2) be given, and let S be SPD, so the CG method [21]
can be used. Let PCG

n be the CG approximation to the solution P computed at
the iteration step n, P a = PCG

n , SPCG
n = H − RCG

n (see (4.1)), ECG
n := P − PCG

n ,
SECG

n = RCG
n ; see (7.6). Since the original paper [21], it is known that the Euclidean

norm of the residual ‖RCG
n ‖ does not represent a reliable measure of the quality of

the CG approximation PCG
n . CG minimizes the algebraic energy norm of the error

‖ECG
n ‖S over the Krylov subspaces

Kn(S, R
CG
0 ) := span{RCG

0 , SRCG
0 , . . . , Sn−1RCG

0 } = span{RCG
0 , RCG

1 , . . . , RCG
n−1} ,

RCG
0 := H−SPCG

0 . Therefore ‖ECG
n ‖S is the appropriate convergence measure which

should be used for the evaluation of the algebraic error. It can unfortunately not be
computed, and its efficient estimation is nontrivial. Using the inequalities

(7.9)
1

σmax(S)
‖RCG

n ‖2 ≤ ‖ECG
n ‖2S = ‖RCG

n ‖2S−1 ≤ 1

σmin(S)
‖RCG

n ‖2 ,

where σmax and σmin denote, respectively, the largest and the smallest singular values
(eigenvalues) of the matrix S, the algebraic energy norm of the error ‖ECG

n ‖S can
be approximated for well-conditioned S by the Euclidean norm of the CG residual;
cf. [28, section 4]. In many practical cases S is, however, ill-conditioned, and this
approach can give misleading information. In practice, preconditioning is used to
accelerate convergence. In theory, preconditioned CG (PCG) can be viewed as CG
applied to the preconditioned system, and therefore (7.9) holds for the quantities rel-
evant to PCG; cf. [45]. However, the energy norm of the error in PCG is identical to
the energy norm of the error in CG applied to the unpreconditioned system (i.e., to
the original data); see [45, section 3, pages 794–795]. Consequently, if the condition
number of the preconditioned system is small, then the Euclidean norm of the pre-
conditioned residual provides good information on the size of the energy norm of the
error with respect to the original data. Upper bounds can be in theory constructed
using the Gauss–Radau quadrature, which uses the a priori knowledge of σmin(S) or
using techniques based on the anti-Gauss quadrature; cf. [18, 19, 20, 28, 14]. Due
to rounding errors, the upper bounds cannot be guaranteed in practice; see [44, 45].
Despite some open questions and intricate implementation issues, which are out of
the scope of this paper, estimates for ‖ECG

n ‖S can be computed at a very low cost.
In what follows, we restrict ourselves to presenting a lower bound for ‖ECG

n ‖S,
following [21, 44, 45, 27]. Its justification is based on the matching moments idea,
which can be considered a basic principle behind CG and other Krylov subspace
methods; see [53, 46]. In CG, the approximate solution is updated using the formula

PCG
n+1 = PCG

n + μCG
n DCG

n ,
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where μCG
n is the scalar coefficient giving the minimum of the energy norm of the error

along the line defined by the previous approximation PCG
n and the search direction

DCG
n ; see [21]. Considering ν additional CG iterations, we obtain (see [44, 28] and a

detailed survey in [27, sections 3.3 and 5.3])

(7.10) ‖ECG
n ‖2S =

n+ν∑
j=n

μCG
j ‖RCG

j ‖2 + ‖ECG
n+ν‖2S.

The squared algebraic energy norm of the error is at step n approximated from below
by

(7.11) ‖ECG
n ‖2S ≈

(
η̂
(2)
AE

)2
:=

n+ν∑
j=n

μCG
j ‖RCG

j ‖2,

with the inaccuracy given by the squared size of the algebraic energy error at the

(n+ ν)th step. If ‖ECG
n+ν‖2S is significantly smaller than ‖ECG

n ‖2S, then η̂
(2)
AE represents

an accurate approximation of ‖ECG
n ‖S. The choice of ν depends on the problem to be

solved, and an efficient algorithm for an adaptive choice of ν is still under investigation.

7.3. Guaranteed upper bound using a particular construction of the
vector function rh. The following corollary is an immediate consequence of the
definition of ηAE in Theorem 5.2; cf. the proof of Theorem 5.5.

Corollary 7.2 (algebraic error estimator based on an explicitly constructed
rh). Consider an arbitrary rh ∈ RTN(Th) such that ∇ · rh = ρh. Then the algebraic
error estimator ηAE from Theorem 5.2 can be bounded from above by

(7.12) ηAE ≤ η
(3)
AE(rh) := ‖S− 1

2 rh‖.

Proof. Let rh ∈ RTN(Th) such that ∇ · rh = ρh. Then

ηAE ≤ sup
ϕ∈H1

0 (Ω)
|||ϕ|||=1

(rh,∇ϕ) = sup
ϕ∈H1

0 (Ω)
|||ϕ|||=1

(S− 1
2 rh,S

1
2∇ϕ) ≤ ‖S− 1

2 rh‖ = η
(3)
AE(rh)

using the definition of ηAE in Theorem 5.2 and the Cauchy–Schwarz inequality.
We now present a simple algorithm with a linear complexity in the number of

mesh elements which finds an appropriate function rh without needing to solve any
global problem. The first step is to find an enumeration of the elements of Th such
that for eachKi, there is a side σ ∈ EKi which does not lie on the boundary of ∪i−1

j=1Kj .
Such an enumeration of the elements of Th can always be found for meshes consisting
of simplices using, e.g., the standard depth-first search in the graph associated with
the partition Th. The algorithm is described as follows: set T := Th, i := N , and
while i ≥ 2

1. find K ∈ T such that there is a side σ ∈ K which lies on the boundary of T ;
2. set Ki := K, T := T \K, i := i− 1.

Finally denote K1 as the last element.
With such an enumeration, we construct rh locally on each element of Th while

proceeding sequentially for i = 1, 2, . . . , N :
1. Find ri ∈ RTN(Ki) such that

ri = arg min
r̃∈R̃TN(Ki)

‖S− 1
2 r̃‖Ki ,
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where R̃TN(Ki) are functions of RTN(Ki) such that

∇ · r̃i = ρKi , r̃i · nσ = rh · nσ on all σ ∈ EKi ∩ EKj , j < i;

2. Set rh|Ki := ri.
The vector function rh constructed in this way is not optimal, but, as shown in the
experiments, it represents a good candidate for giving a useful estimate.

8. Numerical experiments. In this section we illustrate the proposed esti-
mates and stopping criteria on model problems with both homogeneous and inhomo-
geneous diffusion tensors. We will consider two examples.

Example 8.1 (Laplace equation). We consider the Laplace equation −Δp = 0,
i.e., S = I and f = 0 in (1.1), Ω = (−1, 1)× (−1, 1). Let

p(x, y) = exp
( x

10

)
cos
( y

10

)
,

and let g in (1.1) be defined by the values of this p on the boundary Γ of Ω. Then p
is the (weak as well as classical) solution of problem (1.1).

Example 8.2 (problem with an inhomogeneous diffusion tensor). We consider the
diffusion equation −∇ · (S∇p) = 0 and suppose that Ω = (−1, 1)× (−1, 1) is divided
into four subdomains Ωi corresponding to the axis quadrants numbered counterclock-
wise. Let S be piecewise constant and equal to siI in Ωi. Then with the two choices
of si presented in Table 8.1, the analytical solution in each subdomain Ωi has in polar
coordinates (, ϑ) the form

(8.1) p(, ϑ)|Ωi = α(ai sin(αϑ) + bi cos(αϑ))

with the Dirichlet boundary condition imposed accordingly to (8.1), where the coef-
ficients α, ai, and bi are also given in Table 8.1; see [37]. Note that p belongs only
to H1+α(Ω), and it exhibits a singularity at the origin. It is continuous, but only the
normal component of its flux −S∇p is continuous across the interfaces.

In our experiments we use the finite volume scheme (3.1), (3.3), which we ex-
tend from triangular grids admissible in the sense of [17, Definition 9.1] to strictly
Delaunay triangular meshes; cf. [17, Example 9.1]. For the diffusion tensor the har-
monic averaging is employed and modified by taking into account the distances of the
circumcenters xK , K ∈ Th, from the sides of K; for details, we refer to [51].

We start our computations with an unstructured mesh Th of Ω consisting of 112
elements. In Example 8.1 the mesh is refined uniformly, i.e., each triangular element
in Th is subdivided into four elements. In Example 8.2 it is refined adaptively. The
adaptive mesh refinement strategy is described in detail in [51]; the essential point
is in equilibration of the estimated local discretization errors while keeping the mesh
strictly Delaunay. The refinement process is stopped when the number of elements

Table 8.1

The values of the coefficients in (8.1) for the two choices of the diffusion tensor S.

s1 = s3 = 5, s2 = s4 = 1
α = 0.53544095
a1 = 0.44721360 b1 = 1.00000000
a2 = −0.74535599 b2 = 2.33333333
a3 = −0.94411759 b3 = 0.55555556
a4 = −2.40170264 b4 = −0.48148148

s1 = s3 = 100, s2 = s4 = 1
α = 0.12690207
a1 = 0.10000000 b1 = 1.00000000
a2 = −9.60396040 b2 = 2.96039604
a3 = −0.48035487 b3 = −0.88275659
a4 = 7.70156488 b4 = −6.45646175
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Fig. 8.1. Adaptively refined mesh with 1812 elements for Example 8.2 with s1 = s3 = 5,
s2 = s4 = 1 (left) and with 1736 elements for the problem with s1 = s3 = 100, s2 = s4 = 1 (right).

in Th exceeds 1700, which results in all cases in algebraic systems of similar size.
This relatively small number of elements was chosen because of the second choice of
coefficients in Example 8.2. Due to significant singularity, for around 2000 triangles,
the diameter of the smallest triangles near the origin is about 10−15. The final mesh
in Example 8.1 consists of 1792 elements, in the first case of Example 8.2 of 1812
elements, and in the second case of Example 8.2 of 1736 elements. The last two
meshes are shown in Figure 8.1. Recall that the matrix size is equal to the number
of mesh elements.

The arising algebraic systems (3.2) are solved approximately by CG precondi-
tioned by the incomplete Cholesky (IC) factorization with no fill-in (IC(0)); see [26].
For illustrative purposes, we use for all meshes the zero initial guess. In practical
computations, the approximate solution from the previous refinement level should be
interpolated onto the current mesh and used as a starting vector, together with the
possible scaling; see [27, page 530]. In our experiments, for each approximate solu-
tion P a = PCG

n of (3.2), we evaluate the estimator ηNC defined in Theorem 5.2 as
|||p̃ah − IOs(p̃

a
h)||| (we consider the additional error from the inhomogeneous boundary

condition negligible). Then we compute the algebraic error estimators described in
section 7. Note that ηO is zero since f = 0 in both examples. CG is stopped when the

local stopping criterion (6.3) based on the estimator η
(3)
AE(rh) is satisfied, i.e., when

η
(3)
AE,K(rh) := ‖S− 1

2 rh‖K ≤ γ ηNC,K ∀K ∈ Th.

In order to illustrate the behavior of the nonconforming and algebraic error estimators,
we have chosen γ = 10−3. In practical computations, it is advisable to use a value of
γ much closer to one, in dependence on the given problem, and ηNC,K should not be
evaluated at every CG step; see the comment on efficiency in section 9 below.

Results for meshes obtained at the last stage of the uniform or adaptive mesh
refinement process are illustrated in Figures 8.2–8.4. The results for the Laplace
equation in Example 8.1 are plotted in Figure 8.2. The results for Example 8.2 with
the inhomogeneous S with si given in the left and right part of Table 8.1 are plotted
in Figures 8.3 and 8.4, respectively.

The left parts of Figures 8.2–8.4 show the values of the algebraic error estima-
tors described in section 7, together with the true algebraic energy norm of the error
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Fig. 8.2. Different errors and estimators for Example 8.1, uniformly refined mesh with 1792
elements. Algebraic error only (left); overall error (right).
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Fig. 8.3. Different errors and estimators for Example 8.2 with s1 = s3 = 5, s2 = s4 = 1,
adaptively refined mesh with 1812 elements. Algebraic error only (left); overall error (right).

‖ECG
n ‖S (bold solid lines), the Euclidean norm of the algebraic residual ‖RCG

n ‖ (cir-

cles), and the upper bound ‖RPCG
n ‖/σ1/2

min(SPCG) (crosses) for ‖ECG
n ‖S constructed

from the preconditioned residual; see (7.9). Please note that σmin(SPCG) is not avail-
able and must be approximated. The true algebraic energy error ‖ECG

n ‖S is evaluated
by solving SECG

n = RCG
n using a direct solver. The estimator η

(1)
AE based on the

weighted norm of the algebraic residual vector (see Lemma 7.1) is plotted by dot-

ted lines. The estimate η̂
(2)
AE evaluated for ν = 5 is plotted by dashed lines, and the

estimator η
(3)
AE of section 7.3 is plotted by dash-dotted lines.

The estimate η̂
(2)
AE is close to ‖E‖S, with some visible but insignificant underesti-

mations (due to the rather slow convergence of CG; cf. [44, 45]) in Figures 8.3 and 8.4.

The estimator η
(3)
AE represents a guaranteed upper bound for the algebraic error. The

estimator η
(1)
AE, as expected, provides the worst information among all considered mea-

sures of the algebraic error. This is in particular evident in Example 8.2 where the
adaptive mesh refinement is employed; see Figures 8.3 and 8.4 (in Figure 8.4 it is out
of scale for almost all iterations). For both examples, ‖RCG

n ‖ is remarkably close to
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Fig. 8.4. Different errors and estimators for Example 8.2 with s1 = s3 = 100, s2 = s4 = 1,
adaptively refined mesh with 1736 elements. Algebraic error only (left); overall error (right).

‖ECG
n ‖S. For examples of a different behavior see [45]. The upper bound constructed

from the preconditioned residual is here quite tight.
On the right parts of Figures 8.2–8.4 we present the actual energy (semi)norm of

the overall error |||p − p̃ah||| (bold solid lines). We compute it in each triangle by the
7-point quadrature formula; see, e.g., [55, section 9.10] (we consider the associated

additional error negligible). The guaranteed upper bound ηNC + η
(3)
AE on |||p − p̃ah|||

is represented by solid lines, while its components, the nonconformity estimator ηNC

and the algebraic error estimator η
(3)
AE, are plotted by dots and dash-dotted lines,

respectively. For comparison, we also include the estimate ηNC + η̂
(2)
AE plotted by

dashed lines.
Figures 8.2–8.4 show that for small number of iterations the algebraic part of

the error dominates. As the number of iterations of the CG method grows, the
algebraic part of the error drops to the level of the nonconformity error, which is

reflected by the fact that the curves of ηNC and η
(3)
AE intersect. While ηNC almost

stagnates, the estimate on the algebraic error η
(3)
AE further decreases, and it ultimately

gets negligible in comparison with the nonconformity error. Our stopping criteria for
iterative solvers (6.1) and (6.3) essentially state that it is meaningless to continue the

algebraic computation after η
(3)
AE,K(rh) ≈ γ ηNC,K is reached.

The quality of our estimates, i.e., the effectivity indices (ηNC + η
(1)
AE)/|||p − p̃ah|||

(dotted line), (ηNC + η̂
(2)
AE)/|||p− p̃ah||| (dashed line), and (ηNC + η

(3)
AE)/|||p− p̃ah||| (solid

line), is illustrated in the left part of Figure 8.5 and in Figure 8.6. Estimate η
(1)
AE

overestimates largely the actual algebraic error, and the corresponding effectivity
index is very poor (in the right part of Figure 8.6 it is completely out of scale). Recall

that the estimate ηNC + η
(3)
AE gives a guaranteed upper bound. Its effectivity index is

very reasonable, even in the first PCG iterations in the second case of Example 8.2.

Finally, even though η̂
(2)
AE does not represent a guaranteed upper bound for η

(2)
AE, the

estimate ηNC+ η̂
(2)
AE gives in our experiments very tight estimates for the overall error.

The effectivity index is here in all cases remarkably close to one.
Without taking into consideration the algebraic part of the error, it is sometimes

claimed in the literature that adaptive mesh refinement can provide an arbitrary
accurate numerical solution. Similar claims should be in some cases examined and
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Fig. 8.5. Effectivity indices for Example 8.1 (left) and condition number of system matrix S

for Examples 8.1 and 8.2 (right).

5 10 15 20 25 30 35 40 45
1

2

3

4

5

6

7

8

9

10

CG iteration number

ef
fe

ct
iv

ity
 in

de
x

eff. index of

eff. index of

eff. index of

ηNC +η (1)
AE

ηNC + η̂(2)
AE

ηNC +η(3)
AE

10 20 30 40 50 60 70 80
1

2

3

4

5

6

7

8

9

10

CG iteration number

ef
fe

ct
iv

ity
 in

de
x

eff. index of

eff. index of

eff. index of

ηNC +η (1)
AE

ηNC + η̂ (2)
AE

ηNC +η (3)
AE

Fig. 8.6. Effectivity indices for Example 8.2 with s1 = s3 = 5, s2 = s4 = 1 (left) and
s1 = s3 = 100, s2 = s4 = 1 (right). The dotted line is essentially out of the scale of the figure.

revisited. Adaptive discretization in the presence of singularity can lead to highly
ill-conditioned systems of linear algebraic equations. This can have two main effects:

• the iterative solvers can become slow, and the computation of the numerical
solution can become expensive;

• the maximum attainable accuracy of the (direct as well as iterative) linear
algebraic solvers can for highly ill-conditioned systems become very poor,
which can prevent reaching the desired accuracy of the numerical solution of
the original problem regardless of how small the discretization error becomes.

The right part of Figure 8.5 shows for our examples the dependence of the spectral
condition number of the system matrix S on the number of elements in the mesh.
In the case of the homogeneous diffusion tensor and the uniform mesh refinement of
Example 8.1, the condition number of S is growing according to the well-known the-
oretical result as O(1/h2). In Example 8.2 with inhomogeneous diffusion coefficients,
adaptive mesh refinement compensates for the effect of the singularity. This results in
the growth of the condition number of the system matrix S; see the right part of Fig-
ure 8.5. If we proceed with the refinement, the condition number of S will soon reach
the value of the inverse of machine precision, which will make algebraic computations
practically meaningless. Though a more detailed discussion of this phenomenon is
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beyond the scope of this paper, we believe that its role can be substantial, and it will
have to be systematically investigated in a near future. If the conditioning of S is
reasonably bounded independently of the mesh (see, e.g., [11, section 9.6]), then the
matter is resolved.

9. Concluding remarks. Deriving tight a posteriori estimates under the as-
sumption that the associated systems of linear algebraic equations are solved exactly
is much easier than without this assumption. It, however, precludes the efficient use of
such estimates in practical large scale computations, where the linear systems, solved
by iterative algebraic solvers, are never solved exactly and should even be solved
inexactly on purpose.

The efficient usage of iterative algebraic solvers requires balancing the algebraic
and discretization errors. It is useless to make a large number of algebraic solver
iterations after the algebraic error drops significantly below the discretization error.
A stopping criterion must be cheap to compute. This may seem in contradiction with
evaluation of the ηNC estimator presented above, with the cost proportional to the
number of mesh elements. But ηNC does not need to be evaluated at each iteration
of CG. A viable strategy is to monitor the algebraic convergence at a negligible cost

using the algebraic error estimator η̂
(2)
AE (in addition to monitoring the CG and PCG

residuals) and to evaluate any other estimators only after η̂
(2)
AE drops below a certain

level. The strategy of evaluating error estimators can be tailored for a given problem
in order to minimize the overall extra cost in comparison with the cost of actual
computations.

If an adaptive mesh refinement leads in the presence of singularity to patholog-
ically ill-conditioned linear algebraic systems, this can eventually prevent obtaining
a numerical solution with a single digit of accuracy. Modeling, discretization, and
computation form interconnected stages of a single solution process. As stated in [8,
page 273], “The purpose of computation is not to produce a solution with least error
but to produce reliably, robustly and affordably a solution which is within a user-
specified tolerance.” Therefore the errors on the different stages should be in balance;
see, e.g., [43]. Considering the numerical analysis and the discretization stages sep-
arately from computations is philosophically wrong. In solving difficult problems,
similar approaches will lead to dead ends.
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[43] Z. Strakoš and J. Liesen, On numerical stability in large scale linear algebraic computations,
ZAMM Z. Angew. Math. Mech., 85 (2005), pp. 307–325.
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[45] Z. Strakoš and P. Tichý, Error estimation in preconditioned conjugate gradients, BIT, 45
(2005), pp. 789–817.

[46] Z. Strakoš, Model reduction using the Vorobyev moment problem, Numer. Algorithms, 51
(2009), pp. 363–379.

[47] R. S. Varga, Matrix Iterative Analysis, 2nd ed., Springer-Verlag, Berlin, 1992.
[48] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement tech-

niques, Teubner-Wiley, Stuttgart, 1996.
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