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A POSTERIORI ERROR ESTIMATION AND ADAPTIVITY
FOR DEGENERATE PARABOLIC PROBLEMS

R. H. NOCHETTO, A. SCHMIDT, AND C. VERDI

Abstract. Two explicit error representation formulas are derived for degener-
ate parabolic PDEs, which are based on evaluating a parabolic residual in neg-
ative norms. The resulting upper bounds are valid for any numerical method,
and rely on regularity properties of solutions of a dual parabolic problem in
nondivergence form with vanishing diffusion coefficient. They are applied to a
practical space-time discretization consisting of C0 piecewise linear finite ele-
ments over highly graded unstructured meshes, and backward finite differences
with varying time-steps. Two rigorous a posteriori error estimates are derived
for this scheme, and used in designing an efficient adaptive algorithm, which
equidistributes space and time discretization errors via refinement/coarsening.
A simulation finally compares the behavior of the rigorous a posteriori error
estimators with a heuristic approach, and hints at the potentials and reliability
of the proposed method.

1. Introduction

A posteriori error estimates are a fundamental component in the design of reliable
and efficient adaptive algorithms for the numerical solution of PDEs. Even though
rigorous results are available for linear and mildly nonlinear parabolic PDEs [5],
[6], [7], the theory is much less satisfactory for strongly nonlinear PDEs. There are
no results applicable to degenerate parabolic PDEs, which in turn exhibit lack of
regularity across interfaces and corresponding numerical pollution effects. The use
of highly graded meshes and varying time-steps is thus motivated by the nonlinear
structure of the PDE, as opposed to domain geometry, and is a vehicle for resolving
small scale features with optimal computational complexity.

In this paper we introduce a rigorous theory of a posteriori error estimation for
degenerate parabolic problems of the form

∂tu−∆β(u) = f in Q := Ω× (0, T ),(1.1)

where β is nondecreasing and Lipschitz. A typical example of industrial interest is
that of solidification (classical Stefan problem), for which

β(s) := β− min(s, 0) + β+ max(s− L, 0).(1.2)
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This corresponds to an ideal material with constant thermal coefficients β−, β+ > 0
and latent heat L. Any approximation U of u satisfies

∂tU −∆β(U) = f −R in Q,(1.3)

where R, an oscillatory distribution of singular character, is the so-called parabolic
residual. In spite of the simple parabolic structure of (1.1), (1.2), its degenerate
nature makes the theory of [5] fail in that it exploits the regularizing effect of a
linear parabolic dual problem. The corresponding dual PDE in this context is the
nonstrictly parabolic equation in nondivergence form

∂tζ + b∆ζ = η in Q,(1.4)

with vanishing and rough diffusion coefficient 0 ≤ b ≤ max(β−, β+) [8], [9], [10].
Such a PDE does not exhibit a regularizing mechanism, and is not computable in
that b is discontinuous and depends on both u and U . Problem (1.4) measures the
error accumulation in time, and is thus crucial. Our objective is to prove global
regularity properties of ζ in §2, and use them in §3 to derive two representation
formulas for the errors u − U and β(u) − β(U) in energy norms. These formulas
are valid for any numerical method, evaluate R in two distinct negative norms,
and lead to rigorous a posteriori upper error bounds. Since negative norms entail
averaging, they are appropriate to quantify the oscillatory character of R.

We next apply these ideas to a practical scheme consisting of C0 piecewise linear
finite elements over highly graded unstructured meshes and backward finite differ-
ences with varying time-steps. The method uses mass lumping and evaluates β(U)
solely at the nodes, which makes it easy to implement and solve iteratively. We
discuss the method in §4 and derive in §5 two rigorous a posteriori error estimates
for it of the form (Approaches I and II):

‖u− U‖L∞(0,T ;H−1(Ω)) + ‖β(u)− β(U)‖L2(Q) ≤ E(u0, f, T,Ω;U, h, τ).(1.5)

The estimator E is computable in terms of data u0 = u(·, 0), f, T,Ω, computed
solution U , meshsize h, and time step τ , but entails L1 or L2 norms in time. This
is impractical in that the entire evolution history would be needed to control E .

We thus resort to an L∞ norm in time, and introduce an adaptive algorithm
which equidistributes space discretization errors for a uniform error distribution in
time. Such errors are estimated via local a posteriori error indicators, and further
equidistributed via a refinement/coarsening strategy based on bisection. This yields
compatible consecutive meshes. These issues are fully discussed in §6.

We conclude in §7 with simulations illustrating the viability of our Approaches
I and II, as well as a heuristic Approach III based on using local regularity of ζ
in (1.4) and heat estimators away from discrete interfaces. We clearly show that
they are all able to detect the presence of interfaces, and refine accordingly, and
that Approaches II and III perform best. There is no need to compute the interface
explicitly for mesh design, which is a major improvement with respect to [12].

Further simulations, comparisons of several nonlinear solvers, and a detailed de-
scription of the adaptive algorithm will be presented elsewhere [14]. Even though
our error estimates (1.5) are rigorous, they do not necessarily imply that
E(u0, f, T,Ω; U, h, τ) → 0 as h, τ → 0, because E depends on discrete quantities
that change with h and τ . Stability and convergence are assessed in [13].
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2. Setting and parabolic duality

Let Ω ⊂ Rd (d > 1) be a bounded convex polyhedral domain, let T > 0 be the
final time, and set Q := Ω × (0, T ). Let β ∈ W 1,∞(R) satisfy β(s) = 0 for all
s ∈ (0, L) and 0 < a ≤ β′(s) ≤ A for a.e. s /∈ (0, L). Let u0 indicate the initial
enthalpy, let θ0 := β(u0) denote the initial temperature, and let F0 := {x ∈ Ω :
θ0(x) = 0} be the initial interface. They satisfy

θ0 ∈ W 1,∞
0 (Ω), F0 is a Lipschitz curve.

Therefore, u0 ∈ W 1,∞(Ω\F0) and u0 has a jump discontinuity across F0. Finally
let f be sufficiently smooth. The continuous problem then reads as follows.

Continuous problem. Find u and θ such that

θ ∈ L2(0, T ;H1
0(Ω)), u ∈ L∞(0, T ;L2(Ω)) ∩H1(0, T ;H−1(Ω)),

θ(x, t) = β(u(x, t)) a.e. (x, t) ∈ Q,
u(·, 0) = u0,

and for a.e. t ∈ (0, T ) and all η ∈ H1
0 (Ω) the following equation holds:

〈∂tu, η〉+ 〈∇θ,∇η〉 = 〈f, η〉.(2.1)

Hereafter, 〈·, ·〉 stands for either the inner product in L2(Ω) or the duality pairing
between H−1(Ω) and H1

0 (Ω). It is to be observed that the vanishing Dirichlet
boundary condition on θ is assumed only for simplicity and so that the interface
F (t) := {x ∈ Ω : θ(x, t) = 0} does not include ∂Ω. Existence and uniqueness for
this problem are known [8], [9].

To motivate the dual problem (1.4), already studied in [8], [9], [10], we subtract
(1.3) from (1.1) and integrate by parts over Q against a smooth test function ζ
vanishing on ∂Ω× (0, T ). The error eu := u− U satisfies

〈eu, ζ〉|t=T = 〈eu, ζ〉|t=0 +
∫ T

0

〈eu, ∂tζ + b∆ζ〉+R(ζ),(2.2)

where 0 ≤ b(x, t) ≤ A is the discontinuous function

b(x, t) :=

{
β(u(x,t))−β(U(x,t))

u(x,t)−U(x,t) if u(x, t) 6= U(x, t),
A otherwise.

We could thus represent norms of eu(·, T ) or their integrals over Q by making
judicious choices of ζ(·, T ) and ∂tζ+b∆ζ. Evaluation of R(ζ) depends on regularity
of ζ, which we now investigate. Given a regularization parameter δ > 0 to be chosen
later, we consider two backward parabolic problems

J (ψ) = −b1/2χ in Q, ψ(·, T ) = 0 in Ω,(2.3)

J (φ) = 0 in Q, φ(·, T ) = ρ in Ω,(2.4)

with operator J in nondivergence form

J (ζ) := ∂tζ + (b+ δ)∆ζ,(2.5)

ψ, φ = 0 on ∂Ω× (0, T ), and χ ∈ L2(Q), ρ ∈ H1
0 (Ω). Existence of unique solutions

ψ, φ ∈ H2,1(Q) follows directly from the theory of nonlinear strictly parabolic
problems [9].
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Lemma 2.1. The following a priori bounds are valid for all 0 ≤ t ≤ T :

2‖∇ψ(·, t)‖2
L2(Ω),

1
A+δ‖∂tψ‖2

L2(Q), 4δ‖∆ψ‖2
L2(Q) ≤ ‖χ‖2

L2(Q).(2.6)

Proof. We multiply (2.3) by ∆ψ and integrate by parts in Ω× (t, T ) to obtain

1
2

∫
Ω

|∇ψ(·, t)|2 +
∫

Ω

∫ T

t

(b+ δ)|∆ψ|2 = −
∫

Ω

∫ T

t

b1/2χ∆ψ

≤
∫

Ω

∫ T

t

b|∆ψ|2 + 1
4

∫
Ω

∫ T

t

|χ|2.

This yields the a priori bounds for ∇ψ and ∆ψ. Finally, we multiply (2.3) by
∂tψ/(b+ δ) and integrate by parts in Ω× (t, T ) to get∫

Ω

∫ T

t

1
b+δ |∂sψ|2 + 1

2

∫
Ω

|∇ψ(·, t)|2 = −
∫

Ω

∫ T

t

b1/2

b+δ χ∂sψ

≤ 1
2

∫
Ω

∫ T

t

1
b+δ |∂sψ|2 + 1

2

∫
Ω

∫ T

t

|χ|2,

because δ > 0. This implies the a priori bounds for ∂tψ, because b ≤ A.

Lemma 2.2. The following a priori bounds are valid for all 0 ≤ t ≤ T :

‖∇φ(·, t)‖2
L2(Ω),

2
A+δ‖∂tφ‖2

L2(Q), 2δ‖∆φ‖2
L2(Q) ≤ ‖∇ρ‖2

L2(Ω).(2.7)

Proof. We multiply (2.4) by ∆φ and integrate by parts in Ω× (t, T ) to get

1
2

∫
Ω

|∇φ(·, t)|2 +
∫

Ω

∫ T

t

(b+ δ)|∆φ|2 = 1
2

∫
Ω

|∇ρ|2.

The a priori bound for ∆φ thus follows from b ≥ 0. In view of (2.4) we further have

‖∂tφ‖2
L2(Q) = ‖(b+ δ)∆φ‖2

L2(Q) ≤ (A+ δ)‖(b+ δ)1/2∆φ‖2
L2(Q) ≤ A+δ

2 ‖∇ρ‖2
L2(Ω),

where we have used that b ≤ A. This completes the proof.

Corollary 2.1. The following L2
tH

2
x a priori bounds are valid :∫ T

0

|ψ|2H2(Ω) ≤ 1
4δ ‖χ‖

2
L2(Q),

∫ T

0

|φ|2H2(Ω) ≤ 1
2δ‖∇ρ‖

2
L2(Ω).(2.8)

Proof. It suffices to invoke the well-known estimate [5], [9] for convex Ω

|η|H2(Ω) ≤ ‖∆η‖L2(Ω) ∀ η ∈ H1
0 (Ω) ∩H2(Ω),

in conjunction with (2.6) and (2.7).

The above dual problems will be instrumental in this paper. To see why, we
point out that taking ζ = ψ in (2.2) yields an estimate for ‖β(u) − β(U)‖L2(Q),
whereas taking ζ = φ in (2.2) gives rise to an estimate for ‖u − U‖L∞(0,T ;H−1(Ω));
see §3. We will use such an idea in §5 and present two rigorous a posteriori error
estimates for problem (2.1) in these natural energy norms (Approaches I and II).

In contrast to the heat equation, problems (2.3) and (2.4) do not exhibit any
regularizing effect; in fact as δ → 0 the information on second derivatives is lost
(e.g., if b = 0 in Q then, in the limit as δ → 0, φ(·, t) = ρ(·) ∈ H1

0 (Ω) for all 0 ≤ t ≤
T ). Since the regularity of the dual problem dictates the weights (powers of meshsize
and time step) of the a posteriori error estimators, this is an early indication of the
striking difference between degenerate and strictly parabolic problems.
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A simple calculation shows, however, that b ≥ aσ := aσ/(L+ σ) in the open set

Qσ := {(x, t) ∈ Q : |U(x, t)− L
2 | >

L
2 + σ},

for any σ > 0. The proofs of Lemma 2.1, with splitting 2|b1/2χ∆ψ| ≤ b|∆ψ|2 + |χ|2,
and Lemma 2.2 yield∫

Qσ

|∆ψ|2 ≤ 1
aσ
‖χ‖2

L2(Q),

∫
Qσ

|∆φ|2 ≤ 1
2aσ

‖∇ρ‖2
L2(Ω).(2.9)

Then L2
tH

2
x seminorms of ψ and φ in any compact subset Q∗σ of Qσ depend on the

inverse of the parabolic distance between the parabolic boundaries of Q∗σ and Qσ.
This lack of uniform regularity in L2

tH
2
x prevents the construction of rigorous error

indicators based on the heat equation away from discrete interfaces. However, in
§§5 and 6 we present an empirical estimator (Approach III), which utilizes heat
estimators in Q∗0, and compare its performance with Approaches I and II in §7.

3. Error representation formulas

The purpose of this derivation is to obtain formulas for the errors

eβ(u) := β(u)− β(U), eu := u− U,

where u is the true solution and U ∈ L2(Q) is any other function. We do not
assume that U is any specific approximation of u, and so the resulting formulas are
quite general. In particular we do not require stability of U and β(U) in the energy
norms L∞t L

2
x and L2

tH
1
x, respectively. As a by-product we rederive the usual O(

√
ε)

rate of convergence for a vanishing viscosity approximation U of u.
For any function ζ ∈ C0([0, T ];H−1(Ω)), we denote ζt(·) := ζ(·, t) for all t ∈

[0, T ]. We multiply the PDE operator J (ζ) in (2.5) by eu(·, t), which is in L2(Ω)
for a.e. t ∈ (0, T ), and use the property beu = eβ(u) to write∫

Q

euJ (ζ) =
∫

Q

(
u∂tζ + β(u)∆ζ

)
−

∫
Q

(
U∂tζ + β(U)∆ζ

)
+ δ

∫
Q

eu∆ζ.

Let U0, UT ∈ H−1(Ω) be given, and set e0u := u0−U0 and eT
u := uT −UT . At this

stage, both U0 and UT are arbitrary, but they will later be the initial value U(·, 0)
and final value U(·, T ) of U , which make no sense in the present context. We then
integrate by parts in space and time the first term on the right-hand side, employ
(2.1), and add and subtract 〈U0, ζ0〉 − 〈UT , ζT 〉, to arrive at

〈eT
u , ζ

T 〉 −
∫

Q

euJ (ζ) = 〈e0u, ζ0〉+R(ζ) − δ

∫
Q

eu∆ζ,(3.1)

where R(ζ), the parabolic residual, is the distribution

R(ζ) := 〈U0, ζ0〉 − 〈UT , ζT 〉+
∫

Q

(
fζ + U∂tζ + β(U)∆ζ

)
.(3.2)

Together with the initial error 〈e0u, ζ0〉, R(ζ) is a measure of the amount by which
U misses being a solution of (2.1) and must be evaluated in negative norms.

We show first an L2
tL

2
x error estimate for β(u). To this end, let ζ = ψ be the

solution of the dual problem (2.3), and note that ψT = 0 and

|eu|b1/2 = (eueβ(u))1/2 ≥ 1
A1/2 |eβ(u)|.
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From (3.1) and (3.2), we easily get

‖eβ(u)‖L2(Q) = sup
χ∈L2(Q)

∫
Q eβ(u)χ

‖χ‖L2(Q)
≤ A1/2 sup

χ∈L2(Q)

∫
Q eub

1/2χ

‖χ‖L2(Q)

≤ A1/2 sup
χ∈L2(Q)

‖e0u‖H−1(Ω)‖∇ψ(·, 0)‖L2(Ω)

‖χ‖L2(Q)

+A1/2 sup
χ∈L2(Q)

|R(ψ)|
‖χ‖L2(Q)

+ δ1/2A1/2 sup
χ∈L2(Q)

‖eu‖L2(Q)‖δ1/2∆ψ‖L2(Q)

‖χ‖L2(Q)
.

(3.3)

It is thus apparent from (2.6) with δ → 0 that the representation formula (3.3)
hinges on a negative norm of the residual R(ψ) involving first derivatives of ψ,

Ψ−1 := sup
χ∈L2(Q)

|R(ψ)|
‖∇ψ‖L∞(0,T ;L2(Ω))

,

and leads to the following a posteriori error estimates for β(u).

Lemma 3.1. Let ψ be the solution of (2.3) with arbitrary χ ∈ L2(Q). Then

‖eβ(u)‖L2(Q) ≤ (A
2 )1/2

(
‖e0u‖H−1(Ω) + Ψ−1

)
.

Proof. It remains to deal with the last term in (3.3). Since

|eu| ≤ L+ 1
a |eβ(u)|,

combining (2.6) with (3.3) implies(
1− A1/2

2a δ1/2
)
‖eβ(u)‖L2(Q) ≤ (A

2 )1/2
(
‖e0u‖H−1(Ω) + Ψ−1 + 1√

2
L|Q|1/2δ1/2

)
.(3.4)

The assertion then follows upon taking δ → 0.

To derive an L∞t H
−1
x error estimate for u, let ζ = φ be the solution of the dual

problem (2.4). Therefore, according to (3.1) and (3.2), since euJ (φ) = 0 we get

‖eT
u‖H−1(Ω) = sup

ρ∈H1
0 (Ω)

∫
Ω
eT

uρ

‖∇ρ‖L2(Ω)

≤ sup
ρ∈H1

0 (Ω)

‖e0u‖H−1(Ω)‖∇φ(·, 0)‖L2(Ω)

‖∇ρ‖L2(Ω)

+ sup
ρ∈H1

0 (Ω)

|R(φ)|
‖∇ρ‖L2(Ω)

+ δ1/2 sup
ρ∈H1

0 (Ω)

‖eu‖L2(Q)‖δ1/2∆φ‖L2(Q)

‖∇ρ‖L2(Ω)
.

(3.5)

Again, in view of (2.7) with δ → 0, this representation formula hinges on a negative
norm of the residual R(φ) involving first derivatives of φ; that is,

Φ−1 := sup
ρ∈H1

0 (Ω)

|R(φ)|
‖∇φ‖L∞(0,T ;L2(Ω))

.

Lemma 3.2. Let φ be the solution of (2.4) with an arbitrary ρ ∈ H1
0 (Ω). Then

‖eu(·, T )‖H−1(Ω) ≤ ‖e0u‖H−1(Ω) + Φ−1.
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Proof. We make use of (2.7) and argue as in Lemma 3.1 to derive from (3.5)

‖eT
u ‖H−1(Ω) ≤ ‖e0u‖H−1(Ω) + Φ−1 + 1√

2a
δ1/2‖eβ(u)‖L2(Q) + 1√

2
L|Q|1/2δ1/2.(3.6)

The assertion then follows upon taking δ → 0.

Lemmas 3.1 and 3.2 lead to Approach I below, and are pessimistic in that they
deal with the worst scenario in terms of regularity of ψ and φ, namely one space
derivative. An alternative and fruitful avenue consists of keeping δ > 0, thereby
allowing H2 space regularity of ψ and φ, and optimizing δ later without sending it
to 0; this yields Approach II below and works best. To this end, we set

δ0 :=
R−2

C0aL|Q|1/2
, C0 := 1

a

(
A1/2 + 1√

2

)
,

where R−2 := A1/2Ψ−2 + Φ−2/
√

2 involves the following negative norms of the
residuals R(ψ) and R(φ) with two space derivatives of ψ and φ:

Ψ−2 := sup
χ∈L2(Q)

|R(ψ)|
‖∆ψ‖L2(Q)

, Φ−2 := sup
ρ∈H1

0 (Ω)

|R(φ)|
‖∆φ‖L2(Q)

.

We expect δ0 to be small because it involves R(ψ) and R(φ). However this cannot
be guaranteed a priori and is reflected in the statement of our next result.

Lemma 3.3. Let ψ be the solution of (2.3) with an arbitrary χ ∈ L2(Q) and let φ
be the solution of (2.4) with an arbitrary ρ ∈ H1

0 (Ω). Then

‖eβ(u)‖L2(Q) + ‖eu(·, T )‖H−1(Ω) ≤
√

2C0a‖e0u‖H−1(Ω)

+

{
2
(
C0aL|Q|1/2R−2

)1/2 if δ0 ≤ 1
C2

0
,

2C0R−2 if δ0 > 1
C2

0
.

Proof. We add twice (3.3) to (3.5), and argue as with (3.4) and (3.6). Since

|R(ψ)|
‖χ‖L2(Q)

≤ 1
2δ1/2

|R(ψ)|
‖∆ψ‖L2(Q)

,
|R(φ)|

‖∇ρ‖L2(Ω)
≤ 1√

2δ1/2

|R(φ)|
‖∆φ‖L2(Q)

,

we readily get(
2− C0δ

1/2
)
‖eβ(u)‖L2(Q) + ‖eu(·, T )‖H−1(Ω) ≤

√
2C0a‖e0u‖H−1(Ω) + q(δ),(3.7)

where q(δ) := q−δ
−1/2 + q+δ

1/2 with q− := R−2 and q+ := C0aL|Q|1/2. We now
observe that δ = δ0 minimizes q(δ). If C0δ

1/2
0 ≤ 1, then the first assertion follows

trivially from q(δ0) = 2(q−q+)1/2. Otherwise, if C0δ
1/2
0 > 1, then q+ < C2

0q− and
q(1/C2

0) < 2C0q−. This concludes the argument.

If U is a finite element solution, then the last term in Lemmas 3.1–3.3 (parabolic
residual) can be further evaluated via Galerkin orthogonality; this is accomplished
in §5. We stress that U need not be a discrete solution, as the following application
of Lemma 3.3 illustrates. Let U be the solution of (2.1) with βε(s) := β(s) + εs
in place of β(s); namely, U is the usual vanishing viscosity approximation of u.
The proof below is different from the original one in [10], easily extends to other
perturbations of β such as that in [10], and is valid under minimal regularity of
both u0 and f , which precludes compactness.
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8 R. H. NOCHETTO, A. SCHMIDT, AND C. VERDI

Corollary 3.1. The following perturbation estimate is valid for ε small :

‖eβ(u)‖L2(Q) + ‖eu‖L∞(0,T ;H−1(Ω)) ≤ Cε1/2,

where the constant C depends on ‖u0‖H−1(Ω), |Ω|, T, L, a, A, and ‖f‖L1(0,T ;H−1(Ω)).

Proof. Since R(ζ) = −ε
∫
Q U∆ζ, the assertion results from Lemma 3.3 upon realiz-

ing that R−2 ≤ aC0ε‖U‖L2(Q) ≤ Cε. To derive a bound on ‖U‖L2(Q) under minimal
regularity, we consider (2.1) with βε instead of β and strong data U0 ∈ L2(Ω) and
f ∈ L2(0, T ;H−1(Ω)). We take η = GU(·, t) ∈ H1

0 (Ω), where the Green’s operator
G is the inverse of −∆ in H1

0 (Ω), and obtain
1
2dt〈GU,U〉+ 〈βε(U), U〉 = 〈Gf,U〉.(3.8)

We then integrate (3.8) in time for 0 ≤ t ≤ s ≤ T , the maximum of ‖U(·, t)‖H−1(Ω)

being attained at t = s. We easily deduce that

1
2‖U(·, s)‖2

H−1(Ω) + 1
A

∫ s

0

‖βε(U)(·, t)‖2
L2(Ω)dt

≤ 1
2‖U

0‖2
H−1(Ω) + ‖U(·, s)‖H−1(Ω)

∫ s

0

‖Gf(·, t)‖H1
0 (Ω)dt,

(3.9)

which yields a bound for ‖U(·, s)‖H−1(Ω) without use of Gronwall’s inequality. We
insert this bound in (3.9), now for arbitrary s, and use that β′ε(s) ≥ β′(s) ≥ a > 0
for s /∈ [0, L] and Ω is bounded to arrive at the desired estimate for ‖U‖L2(Q)

for strong data. We finally observe that the mapping (U0, f) → (U, βε(U)) from
H−1(Ω) × L1(0, T ;H−1(Ω)) → L∞(0, T ;H−1(Ω)) × L2(Q) is Lipschitz, which is
easily seen with the technique leading to (3.9). This allows us to regularize the
weak data U0 ∈ H−1(Ω) and f ∈ L1(0, T ;H−1(Ω)) via U0

σ ∈ L2(Ω) and fσ ∈
L2(0, T ;H−1(Ω)), and eventually pass to the limit in the regularization parameter
σ.

4. Finite element discretization

We now introduce the fully discrete problem, which combines continuous piece-
wise linear finite elements in space with backward differences in time.

We denote by τn the time step at the n-th step and set tn :=
∑n

i=1 τi. Let
N be the total number of time steps, that is, tN = T . For any function ζ ∈
C0((tn−1, tn];H−1(Ω)), we denote ζn(·) := ζ(·, tn).

We denote by Mn a uniformly regular partition of Ω into simplices [3]. Mesh
Mn is obtained from Mn−1 by refining/coarsening, and thus Mn and Mn−1 are
compatible. Given a triangle S ∈ Mn, hS stands for its diameter and ρS for
its sphericity, and they satisfy hS ≤ 2ρS/ sin(αS/2), where αS is the minimum
angle of S. Uniform regularity of the family of triangulations is equivalent to
αS ≥ α > 0, with α independent of n. We also denote by Bn the collection of
interior interelement boundaries e of Mn in Ω; he stands for the size of e ∈ Bn.

Let Vn ⊂ H1
0 (Ω) indicate the usual space of piecewise linear finite elements

over Mn. Let {xn
k}Kn

k=1 denote the interior nodes of Mn. Let In : C0
0 (Ω̄) → Vn

be the usual Lagrange interpolation operator; namely, (Inη)(xn
k ) = η(xn

k ) for all
1 ≤ k ≤ Kn. Finally, let the discrete inner product 〈·, ·〉n be defined by

〈ϕ, η〉n :=
∫

Ω

In(ϕη)dx = 1
d+1

∑
S∈Mn

|S|
∑

xn
k∈S

ϕ(xn
k )η(xn

k ) ∀ ϕ, η ∈ Vn.
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This corresponds to the vertex quadrature rule, which can be easily evaluated
element by element and leads to mass lumping [3].

We observe the validity of the local estimates

‖ϕη − In(ϕη)‖L∞(S) ≤ 1
8h

2
S |∇ϕ||∇η| ∀ ϕ, η ∈ Vn,

‖∇ϕ‖L2(S) ≤ 1
3ρ
−1
S ‖ϕ‖L2(S) ∀ ϕ ∈ Vn.

(4.1)

Consequently, the element inner product 〈ϕ, η〉nS :=
∫

S I
n(ϕη) satisfies [15]

‖ϕ‖L2(S) ≤ (〈ϕ, ϕ〉nS)1/2 =: ‖ϕ‖n
S ≤ C‖ϕ‖L2(S) ∀ ϕ ∈ Vn,

and the discrepancy between 〈ϕ, η〉S :=
∫

S
ϕη and 〈ϕ, η〉nS can be bounded by

|〈ϕ, η〉S − 〈ϕ, η〉nS | ≤ 1
8h

2
S‖∇ϕ‖L2(S)‖∇η‖L2(S)

≤ 1
24h

2
Sρ

−1
S ‖ϕ‖L2(S)‖∇η‖L2(S) ∀ ϕ, η ∈ Vn.

(4.2)

The discrete initial enthalpy U0 ∈ V0 is defined at nodes x0
k of M0 = M1 to be

U0(x0
k) := u0(x0

k) ∀ x0
k ∈ Ω\F0, U0(x0

k) := 0 ∀ x0
k ∈ F0.(4.3)

Hence, U0 is easy to evaluate in practice. Then we set Θ0 := I0β(U0).

Discrete problem. Given Un−1,Θn−1 ∈ Vn−1, then Mn−1 and τn−1 are modi-
fied as described below to get Mn and τn and thereafter Un,Θn ∈ Vn computed
according to Θn = Inβ(Un) and

1
τn
〈Un − InUn−1, ϕ〉n + 〈∇Θn,∇ϕ〉 = 〈Infn, ϕ〉n ∀ ϕ ∈ Vn.(4.4)

In view of the constitutive relation Θn = Inβ(Un) being enforced only at the
nodes, and the use of mass lumping, (4.4) is easy to implement and yields a mono-
tone operator in RKn

. This problem is solved below via an optimized nonlinear
SOR [12]. However, these computational tricks introduce further consistency errors
that are apparent from (3.2). Whether these devices preserve optimal accuracy is
still to be explored.

We introduce some more notation. The following sets will be used later:

Fn :=
⋃
{S ∈Mn : Θn(x) = 0 for some x ∈ S} discrete free boundary,

T n :=
⋃
{S ∈Mn : Θn(x)Θn−1(x) ≤ 0 for some x ∈ S} transition region,

Cn :=
⋃
{S ∈Mn : S is coarsened from Mn−1} coarsening set.

We point out that the compatibility of Mn and Mn−1 yields InUn−1 6= Un−1 only
in Cn; in fact (Vn−1 ∩ Vn)|S = Vn−1

|S except for elements S in Cn.
Let the jump Jn

e of ∇Θn across e ∈ Bn be

Jn
e := [[∇Θn]]e · νe = (∇Θn

|S1
−∇Θn

|S2
) · νe.

If the unit normal vector νe to e always points from S2 to S1, then Jn
e is well

defined. For any element S ∈Mn, Jn
S stands for the jumps of ∇Θn across ∂S\∂Ω.

Let U be the piecewise constant extension of {Un} defined by U(·, 0) = U0(·)
and U(·, t) := Un(·) for all tn−1 < t ≤ tn with n ≥ 1. Let

Ut(·, t) :=
Un(·)− InUn−1(·)

τn
∀ tn−1 < t ≤ tn, n ≥ 1,(4.5)

and let the interior residual Rn be

Rn := Infn − Ut(·, tn).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



10 R. H. NOCHETTO, A. SCHMIDT, AND C. VERDI

5. A posteriori error analysis

We now state and prove two rigorous a posteriori error estimates. Theorem 5.1
is based on Lemmas 3.1 and 3.2, that is, on H1 regularity of the solutions ψ and
φ of the dual problems (2.3) and (2.4), and leads to Approach I. Exploiting H2

space regularity of ψ and φ in the spirit of Lemma 3.3 yields Theorem 5.2 and the
corresponding Approach II. The derivation below parallels, and in fact extends,
that in §3, but exploits Galerkin orthogonality to express negative norms of the
residuals R(ψ) and R(φ) in terms of computable quantities.

Theorem 5.1 (Approach I). There exist constants Ci > 0, depending on the min-
imum angle of Mn and the space dimension d, and C∗ := A1/2/

√
2 + 1 and

C] := A1/2C0a, such that the following a posteriori error estimate holds:

‖eβ(u)‖L2(Q) + ‖eu(·, T )‖H−1(Ω) ≤ EI(u0, f, T,Ω;U, h, τ) := C∗
∑
i6=4

Ei + C]E4,

where the error indicators Ei = EI
i for 0 ≤ i ≤ 8 rare given by

E0 := ‖u0 − U0‖H−1(Ω), initial error,

E I
1 := C1

N∑
n=1

τn

( ∑
e∈Bn

he‖Jn
e ‖2

L2(e)

)1/2

, jump residual,

E I
2 := C2

N∑
n=1

τn

( ∑
S∈Mn

h2
S‖Rn‖2

L2(S)

)1/2

, interior residual,

E I
3 :=

N∑
n=1

τn‖∇β(Un)−∇Inβ(Un)‖L2(Ω), constitutive relation,

E4 :=
( N∑

n=1

τn‖Un − InUn−1‖2
L2(Ω)

)1/2

, time residual,

E5 :=
N∑

n=1

‖InUn−1 − Un−1‖H−1(Ω), coarsening,

E6 := C6

N∑
n=1

τn

( ∑
S∈Mn

h4
S‖∇Rn‖2

L2(S)

)1/2

, quadrature,

E7 :=
N∑

n=1

τn‖fn − Infn‖H−1(Ω), interpolation,

E8 :=
N∑

n=1

∫ tn

tn−1
‖f − fn‖H−1(Ω), time discretization.

All indicators Ei can be evaluated explicitly in terms of the computed solution U ,
initial datum u0, and source term f . Indicators E0, E I

1, E I
2, E4, and E5 are essential,

and are also present for the heat equation but with different weights and cumulative
effect in time [5]. The error accumulation is measured here in L1 for E I

1, E I
2, E5 and

in L2 for E4, whereas it is in L∞ for the heat equation; the latter exhibits a weaker
dependence on T for T ≥ 1. The powers of meshsize in EI

1 and E I
2 are smaller than

those for the heat equation, namely h3
e and h4

S , respectively, thereby reflecting the
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degenerate nature of (1.1), or equivalently the lack of H2 space regularity of ψ and
φ.

The remaining indicators E I
3, E6, E7, E8 are not essential and could in principle be

removed at the expense of complicating the implementation of (4.4). In particular,
we note that β(Un) 6= Inβ(Un) only for S ⊂ Fn and Θn

|S 6= 0, provided β is
piecewise linear, and that E6 ≤ CE I

2, as results from (4.1).
The following theorem yields the same weights for E I

1 and E I
2 as the heat equation

but yet with a worse error accumulation in time. Note that this improvement comes
at the expense of a smaller outermost power, namely 1/4 instead of 1/2.

Theorem 5.2 (Approach II). Let

C† := (A+ 1/C2
0)1/2(2A1/2 + 1/

√
2), C‡ :=

√
2C0a,

δ1 :=
E II
1 + E II

2 + E II
3

L|Q|1/2
,

and

E II
1 := C1

( N∑
n=1

τn
∑

e∈Bn

h3
e‖Jn

e ‖2
L2(e)

)1/2

, jump residual,

E II
2 := C2

( N∑
n=1

τn
∑

S∈Mn

h4
S‖Rn‖2

L2(S)

)1/2

, interior residual,

E II
3 :=

( N∑
n=1

τn‖β(Un)− Inβ(Un)‖2
L2(Ω)

)1/2

, constitutive relation.

The following a posteriori error estimate holds:

‖eβ(u)‖L2(Q) + ‖eu(·, T )‖H−1(Ω) ≤ E II(u0, f, T,Ω;U, h, τ) := C‡

(
E0 +

8∑
i=5

Ei

)

+ C†E4 +
√

2C‡

{
L1/2|Q|1/4

(
E II
1 + E II

2 + E II
3

)1/2 if δ1 ≤ 1
C2

0
,

C0

(
E II
1 + E II

2 + E II
3

)
if δ1 > 1

C2
0
.

5.1. Residuals. We first express the residual R(ζ), for a generic function ζ ∈
H2,1(Q), in terms of computable quantities. We notice that, since U is piecewise
constant in time, summation by parts yields∫ T

0

〈U, ∂tζ〉 =
N∑

n=1

〈Un, ζn − ζn−1〉 = 〈UN , ζN 〉 − 〈U0, ζ0〉 −
N∑

n=1

〈Un − Un−1, ζn−1〉.

Moreover, in light of (4.5), the last term can be written equivalently as

N∑
n=1

〈Un − Un−1, ζn−1〉

=
∫ T

0

〈Ut, ζ〉+
N∑

n=1

∫ tn

tn−1
〈Ut, ζ

n−1 − ζ〉+
N∑

n=1

〈InUn−1 − Un−1, ζn−1〉.
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Rearranging terms, the residual R(ζ) becomes

R(ζ) =
N∑

n=1

∫ tn

tn−1

(
〈Rn, ζ〉 − 〈∇Inβ(Un),∇ζ〉

)
−

N∑
n=1

∫ tn

tn−1
〈Ut, ζ

n−1 − ζ〉 −
N∑

n=1

〈InUn−1 − Un−1, ζn−1〉

+
N∑

n=1

∫ tn

tn−1
〈∇Inβ(Un)−∇β(Un),∇ζ〉+

N∑
n=1

∫ tn

tn−1
〈f − Infn, ζ〉.

(5.1)

We next rewrite the discrete problem (4.4) as follows:

〈Rn, ϕ〉 − 〈∇Inβ(Un),∇ϕ〉 = 〈Rn, ϕ〉 − 〈Rn, ϕ〉n ∀ ϕ ∈ Vn,

and subtract this expression from the right hand side of the residual R(ζ) given by
(5.1). This crucial step is usually referred to as Galerkin orthogonality. We finally
decompose the integral 〈∇Θn,∇(ζ − ϕ)〉 over all elements S ∈ Mn and integrate
by parts to obtain the equivalent expression

−〈∇Inβ(Un),∇(ζ − ϕ)〉 =
∑

e∈Bn

〈〈Jn
e , ζ − ϕ〉〉e ∀ ϕ ∈ Vn,

where 〈〈·, ·〉〉e denotes the L2-scalar product on e ∈ Bn. Thus we easily arrive at

R(ζ) =
N∑

n=1

∫ tn

tn−1

∑
e∈Bn

〈〈Jn
e , ζ − ϕ〉〉e +

N∑
n=1

∫ tn

tn−1
〈Rn, ζ − ϕ〉

+
N∑

n=1

∫ tn

tn−1
〈∇Inβ(Un)−∇β(Un),∇ζ〉 −

N∑
n=1

∫ tn

tn−1
〈Ut, ζ

n−1 − ζ〉

−
N∑

n=1

〈InUn−1 − Un−1, ζn−1〉+
N∑

n=1

∫ tn

tn−1

(
〈Rn, ϕ〉 − 〈Rn, ϕ〉n

)
+

N∑
n=1

∫ tn

tn−1
〈f − Infn, ζ〉 =: I + · · ·+ VII.

Since we need to approximate ζ under minimal regularity assumptions, we re-
sort to the Clément interpolation operator Πn : L2(Ω) → Vn, which satisfies the
following local approximation properties [4], for all η ∈ Hk(Ω) and k = 1, 2:

‖η −Πnη‖L2(S) + hS‖∇(η −Πnη)‖L2(S) ≤ C̃hk
S |η|Hk(S̃),

‖η −Πnη‖L2(e) ≤ C̃hk−1/2
e |η|Hk(S̃),

(5.2)

where S̃ is the union of all elements surrounding S ∈Mn or e ∈ Bn. The constants
C̃ depend solely on the minimum angle of the mesh Mn. An important by-product
of uniform mesh regularity is that the number of simplices adjacent to a given
element is bounded by a constant M independent of n, meshsizes, and time steps.
Hence ∑

S∈Mn

‖η‖2
L2(S̃)

≤M‖η‖2
L2(Ω) ∀ η ∈ L2(Ω).(5.3)
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This, in conjunction with (5.2) for k = 1, yields

‖∇Πnη‖L2(Ω) ≤ (1 + C̃M1/2)‖∇η‖L2(Ω) ∀ η ∈ H1
0 (Ω).(5.4)

We now estimate each term I to VII separately to derive Theorems 5.1 and 5.2.
We argue with ζ = ψ, solution of (2.3) with χ ∈ L2(Q). Similar estimates are valid
for ζ = φ, solution of (2.4) with ρ ∈ H1

0 (Ω). We make extensive use of the a priori
estimates of Lemma 2.1 (and Lemma 2.2).

Selecting ϕ(·, t) = Πnψ(·, t) for tn−1 < t ≤ tn and using (2.6), (5.2), and (5.3),
we can bound terms I and II as follows:

|I| ≤ C1

N∑
n=1

∫ tn

tn−1

( ∑
e∈Bn

he‖Jn
e ‖2

L2(e)

)1/2

‖∇ψ(·, t)‖L2(Ω) ≤ 1√
2
E I
1‖χ‖L2(Q),

|II| ≤ C2

N∑
n=1

∫ tn

tn−1

( ∑
S∈Mn

h2
S‖Rn‖2

L2(S)

)1/2

‖∇ψ(·, t)‖L2(Ω) ≤ 1√
2
E I
2‖χ‖L2(Q).

Moreover, (2.6) also yields

|III| ≤
N∑

n=1

∫ tn

tn−1
‖∇β(Un)−∇Inβ(Un)‖L2(Ω)‖∇ψ(·, t)‖L2(Ω) ≤ 1√

2
E I
3‖χ‖L2(Q).

The estimators E I
1, E I

2, and E I
3 are those defined in Theorem 5.1; the constants C1

and C2 depend upon C̃ in (5.2) and M in (5.3). Alternatively, if E II
1 , E II

2 , and E II
3

are the estimators in Theorem 5.2, in light of (2.8) we can also write

|I| ≤ C1

N∑
n=1

∫ tn

tn−1

( ∑
e∈Bn

h3
e‖Jn

e ‖2
L2(e)

)1/2

|ψ(·, t)|H2(Ω) ≤ 1
2δ
−1/2E II

1 ‖χ‖L2(Q),

|II| ≤ C2

N∑
n=1

∫ tn

tn−1

( ∑
S∈Mn

h4
S‖Rn‖2

L2(S)

)1/2

|ψ(·, t)|H2(Ω) ≤ 1
2δ
−1/2E II

2 ‖χ‖L2(Q),

and, upon integration by parts,

|III| ≤
N∑

n=1

∫ tn

tn−1
‖β(Un)− Inβ(Un)‖L2(Ω)‖∆ψ(·, t)‖L2(Ω) ≤ 1

2δ
−1/2E II

3 ‖χ‖L2(Q).

With the aid of (2.6) and the fact that ψ − ψn−1 =
∫ t

tn−1 ∂sψ, we readily obtain

|IV| ≤
( N∑

n=1

τn‖Un − InUn−1‖2
L2(Ω)

)1/2( ∫ T

0

‖∂tψ‖2
L2(Ω)

)1/2

≤ (A+ δ)1/2E4‖χ‖L2(Q).

Using (2.6) again, now combined with (4.2) and (5.4), we easily deduce that

|VI| ≤ C6

N∑
n=1

∫ tn

tn−1

( ∑
S∈Mn

h4
S‖∇Rn‖2

L2(S)

)1/2

‖∇ψ(·, t)‖L2(Ω) ≤ 1√
2
E6‖χ‖L2(Q),
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where C6 depends on C̃ and M . The remaining bounds follow directly from (2.6):

|V| ≤
N∑

n=1

‖InUn−1 − Un−1‖H−1(Ω)‖∇ψn−1‖L2(Ω) ≤ 1√
2
E5‖χ‖L2(Q),

|VII| ≤
N∑

n=1

∫ tn

tn−1
‖f − Infn‖H−1(Ω)‖∇ψ(·, t)‖L2(Ω) ≤ 1√

2
(E7 + E8)‖χ‖L2(Q).

Collecting all the previous estimates, we get the following bound for R(ψ):

|R(ψ)|
‖χ‖L2(Q)

≤ 1√
2

8∑
i=5

Ei + (A+ δ)1/2E4 +

{
1√
2
(E I

1 + E I
2 + E I

3),
1
2δ
−1/2

(
E II
1 + E II

2 + E II
3

)
.

(5.5)

Similarly, using (2.7) we obtain

|R(φ)|
‖∇ρ‖L2(Ω)

≤
8∑

i=5

Ei + 1√
2

(
A+ δ)1/2E4 +

{
E I
1 + E I

2 + E I
3,

1√
2
δ−1/2

(
E II
1 + E II

2 + E II
3

)
.

(5.6)

5.2. Proofs of Theorems 5.1 and 5.2. Upon adding A1/2 times (5.5) to (5.6)
and taking δ → 0, Theorem 5.1 is an easy consequence of (3.3) and (3.5).

In order to prove Theorem 5.2 we proceed as in Lemma 3.3. We take δ ≤ 1/C2
0

and resort to (3.7), which in the present context becomes

‖eβ(u)‖L2(Q) + ‖eu(·, T )‖H−1(Ω) ≤ C‡
(
E0 +

8∑
i=5

Ei

)
+ C†E4 + 1√

2
C‡q(δ, T )(5.7)

with

q(δ, T ) := q−(T )δ−1/2 + q+(T )δ1/2,

q−(T ) := E II
1 + E II

2 + E II
3 , q+(T ) := L|Q|1/2.

We then realize that δ = δ1 optimizes q(δ, T ), and argue as in Lemma 3.3.
To derive the L∞(0, T ;H−1(Ω)) error bound of (1.5) we finally allow T to be

arbitrary and note that Ei(T ), as well as q−(T ) and q+(T ), are nondecreasing in T .
We thus obtain (1.5) with E(u0, f, T,Ω;U, h, τ) = 2E I or alternatively 2E II.

5.3. Approach III. The local treatment of terms I, II, and III above, in conjunc-
tion with (2.9), suggests removing the factor δ−1/2 away from discrete interfaces.
This idea, heuristic in the sense that L2

tH
2
x regularity of ψ and φ is not necessarily

uniform, yields a method somewhat in between Approaches I and II. We set the
estimators E III

1 , E III
2 , E III

3 equal to those of Approach I near discrete interfaces and
equal to those of Approach II (heat estimators), but with factor D/C∗ instead of
1, away from discrete interfaces, where D := a1/2C0, and obtain

‖eβ(u)‖L2(Q) + ‖eu(·, T )‖H−1(Ω) ≤ E III(u0, f, T,Ω;U, h, τ)

:= C∗
(
E0 +

8∑
i=5

Ei

)
+ C]E4 + C∗

(
E III
1 + E III

2 + E III
3

)
.

To this end, we add A1/2 times (5.5) to (5.6), let δ → 0, replace ‖D2ζ‖L2(Q0) by
‖∆ζ‖L2(Q0) for ζ = ψ, φ and use (2.9), and ultimately pretend that the lower bound
of b is a instead of a0 = 0. If ψ and φ were computable, we could keep these H2

x

norms and evaluate them locally, in which case they could be viewed as weights.
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6. Adaptive algorithm

The error estimators E(u0, f, T,Ω;U, h, τ) of §5 entail an L1 or L2 norm in time,
which is impractical in that the entire evolution history would be needed to control
E . We resort here to an L∞ norm in time, and explain our error equidistribu-
tion strategy, which is based upon minimizing the spatial degrees of freedom for
a uniform error distribution in time. A similar strategy is derived in [1] for a lin-
ear elliptic problem. We then fully discuss element error indicators, and all tests
necessary for mesh and time step admissibility.

6.1. Mesh design. Let M(t) be a time-dependent mesh with variable meshsize
h(x, t) and let τ(t) be the underlying variable time-step. Since hdτ is proportional
to the volume of a generic space-time finite element, then the computational com-
plexity of (4.4) can be accounted for by the total number of degrees of freedom

M∗ :=
∫

Q

h(x, t)−dτ(t)−1σ(x, t) dxdt =
∫ T

0

τ(t)−1M(t) dt,(6.1)

where 0 < σ− ≤ σ(x, t) ≤ σ+ is a local measure of element shape regularity and

M(t) :=
∫

Ω

h(x, t)−dσ(x, t) dx(6.2)

stands for the cardinality of M(t). Let E be a generic a priori error of the form

E =
∫ T

0

E(t)dt =
∫

Q

(
h(x, t)α + τ(t)β

)
E(x, t) dxdt.(6.3)

Given an error tolerance ε, we then pose the following question: optimize h and τ
for an error distribution

E = ε.(6.4)

We have to minimize (6.1) subject to the constraint (6.4). This constrained
optimization problem is equivalent to seeking a saddle point of the functional

L(h, τ, λ) :=
∫

Q

h−dτ−1σ − λ
(
ε−

∫
Q

(hα + τβ)E
)
,

with Lagrange multiplier λ. Differentiation with respect to h and τ yields

0 =
∫

Q

ζ ∂hL(h, τ, λ) =
∫ T

0

∫
Ω

(−σdh−(d+1)τ−1 + λαhα−1E)ζ,

0 =
∫

Q

η ∂τL(h, τ, λ) =
∫ T

0

η

∫
Ω

(−σh−dτ−2 + λβτβ−1E),

where ζ = ζ(x, t) and η = η(t) are smooth functions. Hence

hαE =
d

λα
h−dτ−1σ, τβ

∫
Ω

E =
1
λβ

τ−1M(t).(6.5)

These relations, in conjunction with (6.1) and (6.3), yield

ε =
d

λα

∫
Q

h−dτ−1σ +
1
λβ

∫ T

0

τ−1M(t) =
dβ + α

λαβ
M∗.

We thus deduce the following expression for the Lagrange multiplier:

λ =
dβ + α

αβ

M∗

ε
.
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16 R. H. NOCHETTO, A. SCHMIDT, AND C. VERDI

We conclude from (6.5) that the optimization procedure consists of equidistributing
the local space-time errors according to the recipes

M∗σ−1hd+ατE =
dβ

α+ dβ
ε,

M∗

M(t)
τβ+1

∫
Ω

E =
α

α+ dβ
ε.(6.6)

A serious difficulty of (6.6) is that M∗ is never available for all times so as to make
the optimization feasible.

A different and more stringent objective would be to equidistribute pointwise
discretization errors in (6.3). This leads to the local requirements

T |Ω|hαE = 1
2ε, T τβ

∫
Ω

E = 1
2ε,(6.7)

which corresponds to having a constant integrand in (6.3), and yields (6.4). This
method does not require M∗, and can thus be implemented. If we further require
τ = T/N to be constant, we end up with the method chosen in [11] for a priori
mesh design.

Upon combining (6.6) and (6.7), we get a third strategy that can still be imple-
mented: we optimize the spatial degrees of freedom for a uniform error distribution
E(t) in time. Minimizing (6.2) for each 0 < t ≤ T , subject to the constraints

T

∫
Ω

h(x, t)αE(x, t) dx = 1
2ε, T τ(t)β

∫
Ω

E(x, t) dx = 1
2ε,(6.8)

results in the following restrictions on h and τ , which are intermediate between
(6.6) and (6.7):

TM(t)σ(x, t)−1h(x, t)d+αE(x, t) = 1
2ε, T τ(t)β

∫
Ω

E(x, t) dx = 1
2ε.(6.9)

We adopt such a viewpoint here, and discuss its implementation next. Note first
that E would depend on the discrete solution, and so implicitly on h and τ , if E in
(6.3) were an a posteriori error estimator. So the above analysis is a priori.

6.2. Equidistribution strategy. The equidistribution strategy (ES) is an itera-
tive procedure that in the kth step improves upon a mesh density hk(x, t) by means
of the following two opposite operations, based on the first constraint in (6.9). Let
0 < Λ < 1 be a refinement factor, and take Mk =

∫
Ω h

−d
k σ from (6.2) with h = hk.

(a) Refinement. Set hk+1 = Λhk for all elements satisfying

ρk := 2TMkσ
−1hd+α

k E > ε.(6.10)

(b) Coarsening. Set hk+1 = Λ−1hk for all elements verifying

ρk < Λ2d+αε.(6.11)

In practice, more elements will be refined and fewer will be coarsened, to preserve
mesh conformity. In fact, every local mesh modification involves also adjacent
elements. Since

Mk+1 =
∫

Ω

h−d
k+1σ ≤ Λ−d

∫
Ω

h−d
k σ = Λ−dMk,

we see that ρk+1 ≤ Λαρk for refined elements whereas ρk+1 ≤ Λ−2d−αρk < ε for
coarsened elements. We conclude that coarsened elements will not be candidates
for refinement in the (k+1)th step, because ρk+1 < ε and so test (a) fails, and that

ρk+1 ≤ min
(
ε,Λαρk

)
.
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The latter guarantees convergence of ES in a finite number of steps.

6.3. Element indicators. We now introduce error indicators of the form (6.8)
with density E(x, t) computable element by element and denoted by En(S) for
S ∈ Mn and t = tn. We first replace the global norm H−1(Ω) in E0, E5, E7, E8 by
the L2(Ω) norm scaled with the smallest diameter dΩ of Ω, which is the Poincaré
constant. We next show how to determine computable global indicators E0 (initial
error), Eτ,1, Eτ,2 (temporal errors) and Eh,1, E

k
h,2 (spatial errors) satisfying

E0 ≤ E0,

E4 ≤ Eτ,1, E8 ≤ Eτ,2,

E5 + E6 + E7 ≤ Eh,1, Ek
1 + Ek

2 + Ek
3 ≤ Ek

h,2,

(6.12)

where k = I, II stands for the approach. Each of these errors Ep is obtained from
element indicators En

p (S) via

Ep = max
1≤n≤N

( ∑
S∈Mn

En
p (S)

)1/2

,

where the max is superfluous for p = 0. The element indicators are given by

E0(S) := d2
Ω|S|‖u0 − U0‖2

L∞(S), local initial error,

En
τ,1(S) := T ‖Un − InUn−1‖2

L2(S), local time residual,

En
τ,2(S) := T 2d2

Ω‖f − fn‖2
L∞(tn−1,tn;L2(S)), local time discretization,

En
h,1(S) := 3T 2

(
d2
Ωτ

−2
n ‖InUn−1 − Un−1‖2

L2(S) local coarsening

+ C2
6h

4
S‖∇Rn‖2

L2(S) local quadrature

+ d2
Ω‖fn − Infn‖2

L2(S)

)
, local interpolation,

EI,n
h,2(S) := 3T 2

(
1
2C

2
1hS‖Jn

S‖2
L2(∂S) local jump residual I

+ C2
2h

2
S‖Rn‖2

L2(S) local interior residual I

+ ‖∇β(Un)−∇Inβ(Un)‖2
L2(S)

)
, local constitutive relation I,

EII,n
h,2 (S) := 3T

(
1
2C

2
1h

3
S‖Jn

S‖2
L2(∂S) local jump residual II

+ C2
2h

4
S‖Rn‖2

L2(S) local interior residual II

+ ‖β(Un)− Inβ(Un)‖2
L2(S)

)
, local constitutive relation II.

Since u0 ∈W 1,∞(Ω\F0), interpolation gives ‖u0−U0‖L∞(S) ≤ ChS‖∇u0‖L∞(S) =
O(hS) away from F0. If S intersects F0, instead, then u0 has a jump of size L , which
yields ‖u0−U0‖L∞(S) = O(L). In both instances, the ensuing orders match that of
the local jump residual I, which indicates that M0 will not be drastically modified.
If in addition u0 ∈W 2,∞(Ω\F0), then ‖u0−U0‖L∞(S) ≤ Ch2

S‖D2u0‖L∞(S) = O(h2
S)

away from F0, which yields the order O(h4+d
S ) of the local jump residual II.
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18 R. H. NOCHETTO, A. SCHMIDT, AND C. VERDI

According to §5.3, we introduce the local indicators for heuristic Approach III,
which is based on combining EI,n

h,2(S) and EII,n
h,2 (S). With D = a1/2C0 we set

EIII,n
h,2 (S) :=

{
EI,n

h,2(S) if S ⊂ T n,
D2

C2∗
EII,n

h,2 (S) if S 6⊂ T n.

A simple but tedious calculation shows that (6.12) is fulfilled, and the following
inequality is valid for Approaches k = I and III (heuristic for Approach III):

Ek(u0, f, T,Ω;U, h, τ) ≤ Ek := C∗(E0 + Eτ,2 + Eh,1 + Ek
h,2) + C]Eτ,1.(6.13)

On the other hand, if δ ≤ 1/C2
0 and q(δ) := EII

h,2δ
−1/2 +LT 1/2|Ω|1/2δ1/2, then (5.7)

and (6.12) lead to

E II(u0, f, T,Ω;U, h, τ)

≤ EII := C‡(E0 + Eτ,2 + Eh,1) + C†Eτ,1 + 1√
2
C‡q(δ).

(6.14)

6.4. Adaptive strategy. Given an error tolerance ε, the objective is to adaptively
select time steps τ and mesh densities h so that the spatial degrees of freedom are
optimized for a uniform error distribution in time and

Ek(u0, f, T,Ω;U, h, τ) ≤ ε.(6.15)

To this end we equidistribute the local estimators of §6.3 according to (6.9) via ES,
and use bisection to perform refinement/coarsening operations (6.10) and (6.11).
Bisection creates compatible consecutive meshes, extends naturally from 2D to 3D,
and is handy for combined refinement/coarsening operations; we refer to [2].

Given refinement parameters Γ > 0 and coarsening parameters γ > 0 satisfying

Γ0 + Γτ + Γh ≤ 1, γτ < Γτ , γh < Γh,

the time steps and mesh densities for Approaches k = I and III are reduced until

C∗E0 ≤ Γ0 ε,

1
2γτ ε ≤ C]Eτ,1, C∗Eτ,2 ≤ 1

2Γτ ε,

1
2γh ε ≤ C∗Eh,1, C∗E

k
h,2 ≤ 1

2Γh ε.

(6.16)

In fact, from (6.13) we readily obtain (6.15). Achieving (6.15) for Approach II is
more problematic in that the optimal choice of δ in (6.14) turns out to be

δ2 :=
EII

h,2

LT 1/2|Ω|1/2
,

which is not a computable quantity as it involves a maximum over all time steps.
To overcome this difficulty we restrict the meshsize and time step as follows:

C‡E0 ≤ Γ0 ε,

1
2γτ ε ≤ C†Eτ,1, C‡Eτ,2 ≤ 1

2Γτ ε,

1
2γh ε ≤ C‡Eh,1 ≤ 1

2Γh ε,

1
4Gγh ε ≤ C2

0aE
II
h,2 ≤ 1

4GΓh ε,

(6.17)

with

G := min
(
1,

Γh ε

4aLT 1/2|Ω|1/2

)
.
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We claim this yields (6.15). In fact, if G < 1 then

δ2 =
EII

h,2

LT 1/2|Ω|1/2
≤ Γ2

h ε
2

16C2
0a

2L2T |Ω| = G2

C2
0
< 1

C2
0
,

whence
1√
2
C‡q(δ2) = 2C0aL

1/2T 1/4|Ω|1/4(EII
h,2)

1/2 ≤ 1
2Γh ε.

On the other hand, if G = 1, then with δ = 1/C2
0 in (6.14) we deduce that

1√
2
C‡q

(
1

C2
0

)
= C2

0aE
II
h,2 + aLT 1/2|Ω|1/2 ≤ 1

4Γh ε+ 1
4Γh ε = 1

2Γh ε.

We now describe an algorithm based on (6.16) for Approach I (and III). The
implementation of Approach II is similar, but based on (6.17) instead. Let Mn

denote the cardinality of Mn at any step of ES.

6.4.1. Initial mesh. Given a coarse mesh, ES bisects all S ∈M0 such that

C2
∗E0(S) >

Γ2
0 ε

2

M0
,

as suggested by (6.10) without T . We interpolate u0 by means of (4.3) to find U0

(and Θ0) and estimate E0(S) as E0(S) ≈ h2
S |S|‖∇U0‖2

L∞(S).

6.4.2. Time step selection. Starting with τn = τn−1, the algorithm checks whether

En
τ := 4 max

(
C2

]

∑
S∈Mn

En
τ,1(S), C2

∗
∑

S∈Mn

En
τ,2(S)

)
> Γ2

τ ε
2, En

τ < γ2
τ ε

2.

In the first case τn is reduced, whereas in the second one (corresponding to τn being
too small) τn is accepted but the initial guess for the next time step size is enlarged.

6.4.3. Mesh size selection. Starting from Mn = Mn−1, ES checks whether

EI,n
h (S) := 4C2

∗ max
(
En

h,1(S), EI,n
h,2(S)

)
>

Γ2
h ε

2

Mn
, EI,n

h (S) <
γ2

h ε
2

Mn
,

as suggested by (6.10) and (6.11). Then refinement and coarsening operations are
performed accordingly, with the precaution of choosing γh � Γh properly to prevent
ES from alternating such operations over the same elements.

6.4.4. Flow chart. We summarize Approach I in the following flow diagram:
start with M1 = M0, τ1, U0

for n ≥ 1, while tn−1 < T
(1) set tn = tn−1 + τn

solve for Un, Θn

compute error estimators En
τ and EI,n

h (S) for S ∈Mn

if En
τ > Γ2

τ ε
2, reduce τn and goto (1)

(2) for every S ∈Mn

if EI,n
h (S) > Γ2

hε
2/Mn, refine S

if EI,n
h (S) < γ2

hε
2/Mn, coarsen S if possible

if the mesh was changed
solve again for Un, Θn

compute error estimators
if En

τ > Γ2
τ ε

2, reduce τn and goto (1)
if EI,n

h > Γ2
hε

2, goto (2)
accept Un, Θn and Mn, τn
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20 R. H. NOCHETTO, A. SCHMIDT, AND C. VERDI

set Mn+1 = Mn, τn+1 = τn

if En
τ < γ2

τε
2, enlarge τn+1

After each iteration of ES, both Un and Θn are recalculated on the new mesh using
the new time step size. To minimize the overall computational cost, a compromise
is reached between the minimization of the number of mesh elements (degrees of
freedom) and iterations of ES. ES stops iterating as soon as

EI,n
h :=

∑
S∈Mn

EI,n
h (S) ≤ Γ2

h ε
2

is fulfilled, thereby allowing some elements to violate the local error tolerance.
Consequently, discretization errors might not be equidistributed. As implemented,
and shown in the flow diagram, at least one mesh modification per time step is
performed in order to permit elements near the moving interface to be refined,
even if the global error bound is already fulfilled by the old mesh.

6.5. Convergence. We elaborate here on convergence of the algorithm of §6.4; a
more comprehensive study is given elsewhere [13]. For all 1 ≤ n ≤ N , we assume
the following discrete a priori estimates, which are slightly stronger than the natural
bounds:

‖∇Θn‖L2(Ω) = O(1), |Fn\Zn| = o(1),

‖Un − InUn−1‖2
L2(Ω) + τ−1

n ‖Θn − InΘn−1‖2
L2(Ω) +

∑
S⊂Ω\Fn

hS‖Jn
S‖2

L2(∂S) = o(1),

where Zn :=
⋃
{S ∈ Mn : Θn

|S = 0} is the numerical mush. We now examine a few
relevant terms, using the hyperbolic and parabolic relations:

rn
H := max

S⊂T n

h2
S

τ2
n

≤ CH , rn
P := max

S⊂Ω\T n

h2
S

τn
≤ CP .(6.18)

We consider first the jump residual, for which it suffices to estimate the contribution
of Fn\Zn, namely∑

e⊂Fn\Zn

he‖Jn
e ‖2

L2(e) ≤ C‖∇Θn‖2
L2(Fn\Zn) = o(1).

The same calculation applies to the constitutive relation. For the interior resid-
ual, we decompose the integral over T n and the complement, where we use Un −
InUn−1 = Θn − InΘn−1, to deduce that∑

S∈Mn

h2
S

τ2
n

‖Un − InUn−1‖2
L2(S)

≤ rn
H‖Un − InUn−1‖2

L2(Ω) +
rn
P

τn
‖Θn − InΘn−1‖2

L2(Ω) = o(1).

Finally, ‖Un − InUn−1‖L2(Ω) = o(1) also controls the time residual. This demon-
strates that the a posteriori estimators of §6.4 tend to 0 as both meshsize and
time-step approach 0. Therefore the goal (6.15) is achievable. On the other hand,
(6.18) reflects the hyperbolic structure of the interface as well as the parabolic
structure of the problem elsewhere. We refer to [11] for a similar observation.
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7. Simulations

We present results of the adaptive method for the model problem from [12] with
known exact solution

u(x, y, t) :=

{
0.75

(
6r2 − 1

6

)
if r < 1

6 ,

1 +
(
1.5− α′(t)y−α(t)

r

)
(r − 1

6 ) if r ≥ 1
6 ,

(7.1)

where r :=
(
(x− 1

3 )2 + (y − α(t))2
)1/2. The interface is a circle of constant radius

r = 1
6 centered at (1

3 , α(t)) with α(t) := 0.5 + 0.1 sin(12.5t), and thus oscillates in
the vertical direction with highly varying normal velocity. Initial datum, boundary
values, and heat source f are directly computed from (7.1). The domain is Ω =
(0.1, 0.7)× (0.2, 0.8), and the final time is T = 1.

Note that f is discontinuous across the true interface. Therefore a simple minded
use of Inf leads to large errors which dominate the local indicators. However a dis-
continuous f is not realistic in practice, being just the cost of having a simple exact
solution. To examine the essense of the proposed methodology, a special quadrature
is used for those triangles crossed by the exact free boundary: their intersection is
determined first and then separate quadrature used in the resulting quadrilateral
and triangle. The nonhomogeneous Dirichlet boundary condition is handled in the
standard fashion since the interface does not touch the fixed boundary.

Several simulations were carried out with error tolerances ε = 20, 14, 10, 7, 5.
The following parameters were used for partitioning the total error into initial,
temporal, and spatial components:

Γ0 = Γτ = 0.2, Γh = 0.6, γτ = 0.155, γh = 0.2683 (I), 0.1897 (II, III).

Since the expected local coarsening error is proportional to the power of meshsize,
and such a power is smaller for Approach I than for II and III, more coarsening
(larger γh) is allowed for Approach I. The results are summarized in Figures 7.1 to
7.4.

Figure 7.1 shows the meshes at time t = 0.3 produced by Approaches I with
ε = 14 (10), and II and III with ε = 10 (7). Meshes from left to right correspond to
Approaches I, II, and III. The true errors for all three pictures on top and bottom
are similar. Approach I leads to more triangles than II and III because of the lower
power of meshsize in the estimators. Approaches II and III are comparable.

Figure 7.2 shows three meshes generated by Approach II for quite different in-
terface velocities. In the left and middle pictures the velocity is highest, and the
interface is moving upwards (t = 0.5) and downwards (t = 0.765) as reflected in
the isotherms (the interface is enhanced with a bold line). The rightmost picture
corresponds to vanishing velocity and so to circular isotherms (t = 0.876). Higher
interface velocities lead to higher refinement near the free boundary, because veloc-
ity is proportional to the temperature gradient jump. Higher velocities yield also
larger temperature gradients in the liquid phase and corresponding additional mesh
refinement. The triangle counts are 1670, 1734, and 1366, respectively.

Figure 7.3 illustrates the effect of γh for Approach I with the interface moving
downwards. The ratio Γh/γh cannot be close to 1 nor too small. The former situ-
ation leads to mesh oscillations due to repeated coarsening/refinement operations
over the same elements. A small ratio instead leads to meshes with unnecessary
triangles, which thereby reflect the evolution history. This is an undesirable event.
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Figure 7.1. Approaches I with ε = 14(10) and II and III with
ε = 10(7). Triangle count: I, 1016 (2747); II, 700 (1592); III, 786
(2129).

Figure 7.2. Meshes and isotherms for Approach II with ε = 7
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Figure 7.3. Effect of coarsening for Approach I and ε = 10,
γh/Γh =

√
0.2(

√
0.1).
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Figure 7.4. Total element count vs true error for Approaches I,
II, and III.

In Figure 7.4 we provide a quantitative comparison: a plot of the total element
count (added over all time steps), which is proportional to the total amount of
work, as a function of the true error. Approach II performs slightly better in the
range tested.
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1. I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations,
SIAM J. Numer. Anal. 15 (1978), 736–754. MR 58:3400
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