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A potential energy and mutual 
information based link prediction 
approach for bipartite networks
Purushottam Kumar & Dolly Sharma*

Link prediction in networks has applications in computer science, graph theory, biology, economics, 
etc. Link prediction is a very well studied problem. Out of all the different versions, link prediction for 
unipartite graphs has attracted most attention. In this work we focus on link prediction for bipartite 
graphs that is based on two very important concepts—potential energy and mutual information. In 
the three step approach; first the bipartite graph is converted into a unipartite graph with the help 
of a weighted projection, next the potential energy and mutual information between each node 
pair in the projected graph is computed. Finally, we present Potential Energy-Mutual Information 
based similarity metric which helps in prediction of potential links. To evaluate the performance 
of the proposed algorithm four similarity metrics, namely AUC, Precision, Prediction-power and 
Precision@K were calculated and compared with eleven baseline algorithms. The Experimental results 
show that the proposed method outperforms the baseline algorithms.

�e applications of link prediction in real-world networks has been attracting the attention of researchers from 
various domains. �e real world networks can be represented with the help of graphs, where nodes represent 
entities that are connected by edges. �e edges represent associations or interactions between nodes. �ese net-
works are dynamic in nature, where new nodes and edges can be observed at future timestamps. Link prediction 
task aims to identify the most probable links that may appear in the near future. Some of the popular real-world 
applications of link prediction are: Prediction of hidden relationships between terrorists, e-commerce recom-
mendation system, prediction of drug side e�ects, protein-protein interaction prediction, �nding missing reac-
tions in metabolic networks, predicting co-authorship. Link prediction problem takes as input a snapshot of the 
network and computes the likelihood of a connection between two unconnected  vertices1–3. �e algorithms not 
only predicts the addition of new edges, it also predicts the connections that may disappear from the network 
in future. Most of the link prediction algorithms have been designed for unipartite networks. �e structure and 
properties of bipartite networks are di�erent from unipartite ones. For this reason the algorithms that perform 
well for unipartite networks may not work well for bipartite networks. Link prediction on Bipartite networks 
have applications in Recommendation systems. Li et al.4 used applied link prediction to build recommender 
systems based on the concept of graph kernels. �ey generated random walks starting from a focal user-item 
pair in the graph kernel. Due to the fact that de�ning features in the complex graph is challenging, authors used a 
kernel-based machine learning framework that works on kernel function and this function de�nes the similarity 
between data instances. �e authors performed testing on three real-world datasets and the it was observed that 
the proposed method outperformed the baseline algorithms. Kurt et al.5 also proposed a graph-based recom-
mender system (SIMLP) that computed similarity between two nodes in a bipartite network. �ey assigned 
complex numbers as the weight of an edge connecting a node pair. SIMLP algorithm was tested on two datasets 
and the results show that it algorithm performed better than the complex number-based baseline algorithms.

We have used the terms graphs and networks interchangeably throughout the paper. �e Link Prediction 
problem can formally be de�ned as follows.

Problem statement Given a bipartite graph G(U, V, E), where U and V are two disjoint and independent sets 
of vertices and E is set of edges at timestamp T1 . �e link prediction algorithm aims to predict new links among 
nodes that can be observed at timestamp T2 , such that T2 > T1 . �ese links may be due to one of the two reasons; 
either due to the formation of a new connection, or due to revival of an existing missing connection.

In this work, the authors make the following contributions in order to propose new algorithm for the above 
mentioned problem: 
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1. Two parameters have been introduced with respect to link prediction: potential energy and mutual informa-
tion.

2. Potential Energy and Mutual Information based similarity metric (PMIS) proposed to compute the weight 
of the patterns.

3. �e proposed algorithm works on each disconnected node pair in the network instead of the only candidate 
node pair.

4. �e proposed algorithm evaluates on ten real world datasets and demonstrates superior performance of the 
proposed algorithm compared to baseline link prediction techniques.

Link prediction  algorithms6–10 usually follow one of the following four approaches: Node Based link predic-
tion, Neighbor-based link prediction, Path-based and Social �eory-based link prediction. Liben-Nowell et al.1 
analysed various proximity measures and suggested proximity measures for best prediction results among node 
neighborhoods approach, path-based approach and Higher-level (meta) approaches. Common neighbors, Jac-
card coe�cient, Adamic/Adar coe�cient are common neighbor based approaches. Triangle-closing model states 
that node-pairs with a high number of common neighbors try to form a triangle in the graph. Such node-pairs 
have a high probability of forming connections in the future. �is concept does not apply to bipartite networks 
because of their distinct topological structure. �us common neighbor based approaches can not apply directly 
on bipartite networks. Hasan et al.11,12 further extended the work of Liben-Nowell et al.1. Link prediction for 
bipartite networks has been addressed by many  researchers4,13–19. Cannistraci et al.20 proposed an algorithm to 
target not only common neighbors and neighbor’s common neighbors but also to their connections structure. 
�is was the �rst attempt of bipartite formulations of the Common Neighbor index. Further, the authors  in21 used 
the concept of local community paradigm (LCP-theory) for link prediction and states that the cohort of CNs and 
their cross interactions form a local-community edge. �e cross interactions between common neighbors are 
called local community edges or links. �e LCP-based method presented  in21 improves topological prediction 
in bipartite complex  networks13 used the concept of projection and supervised learning for link prediction. �ey 
introduced three link prediction metrics for bipartite graphs and implemented these metrics on DBLP dataset.
Baltakiene et al.  in22 presented the concept of entropy and used the Bipartite Con�guration Model (BiCM)23 
as a score function for predicting links. As used in Statistical Mechanics, probability per graph can be derived 
by maximizing the Shannon entropy under the constraint of the degree sequence. So by using the concept of 
maximal entropy they signi�cantly improved the performance of link prediction. Gao et al. used the concept of 
projection and CNP(candidate node pairs) for link prediction in the bipartite  networks24. �e authors �rst con-
verted the bipartite graph into unipartite graph and then computed the CCNP (Connectivity of candidate node 
pairs) with the help of pattern weights for link prediction. �ey evaluated the performance of the algorithm on 
three datasets and experienced better results than baseline predictor(CN, Katz,  ILP18) on AUC. Shakibian et al. 
proposed another similarity measure based on mutual information and meta-path in heterogeneous  networks25. 
�ey presented a framework in which link entropy is characterized as a semantic measure for link prediction. 
To measure the e�ectiveness of the algorithm, authors compared it with di�erent classes of link prediction algo-
rithms namely, mainstream meta-path based link predictors, e�ective path-based homogeneous link predictor, 
and LCP-based link indicators. �e authors analysed the performance of algorithm on DBLP network. In 2019 
Serpil et al. used strengthened projection technique for link prediction in evolving bipartite  graph26. �ey tried 
to predict link in large scale bipartite networks. Authors did link prediction in mainly two steps. In the �rst steps, 
they extracted potential link set and in the second step, they computed the prediction score of each potential link. 
For this purpose authors proposed a time aware proximity measure based on network evolution. For the result 
analysis, they used AUC and precision metrics. In the experiment, the authors compared his method with four 
baseline algorithms (AA, CN, JA, PA). And they found that his algorithm outperforms the baseline algorithm. It is 
o�en observed that the complete information about real-world complex networks is not available. Some examples 
of such networks are �nancial networks, social networks and biological networks. Cimini et al.27 presented an 
exhaustive review on statistical physics based approaches to predict statistically signi�cant patterns in complex 
networks. �ey also addressed the reconstruction of network structure in the absence of complete information. 
Boguna et al.28 presented a review on network based approaches that very e�ectively identify both physical 
properties and mathematical properties that are fundamental to networks. �ey discussed three approaches and 
proposed interesting future directions. In the review they presented that in case of heterogeneous networks, the 
models based on hyperbolic space could be better than Euclidean space. In addition the hyperbolic space could 
be used for link prediction.

Preliminaries
Projection of bipartite graph. Projection of bipartite graphs can be used to convert it into unipartite 
graphs. For a given bipartite graph G = (U ,V ,E) , its U-projected graph can be represented as a unipartite 
graph Gu = (U ,Eu) in which (A,B) ∈ Eu if A and B have at least one neighbor common in G. �is means, 
N(A) ∩ N(B) �= φ and Eu can be described as follows:

Here two projections of the graph can be taken, one for U and another for V. V-projection can be de�ned for the 
graph similar to its U-projection. For a graph G, it’s V-projected graph will be Gv = (V ,Ev) . For example Fig. 1a 
denotes the graph G where values of U and V are {A,B,C,D,E} and {h, i, j, k, l} respectively, Fig. 1b denotes their 
U-projection and Fig. 1c denotes the V-projection.

Eu = {(A,B) | A,B ∈ U , ∃x ∈ V , x ∈ N(A) ∩ N(B)}
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Pattern and pattern covered by a Node pair. Pattern Suppose A and B are two nodes in a bipartite 
graph G(U, V, E) and {A,B} ∈ U . �en (A, B) forms a pattern if they have at least one common neighbor in V24. 
�erefore a link (A, B) will be available in the projected graph. We can also say that each link (A,B) ∈ Eu in the 
projected graph represents a pattern in bipartite graph G.

Pattern covered by a Node pair Suppose (A, i) be a node pair in bipartite graph G and Gu be the projected 
graph of G. For each node C ∈ Nu(A) ∩ N(i) , we call {A, C} a pattern covered by node pair(A, i)24. A node pair 
may cover one or more patterns in the projected graph. Pattern covered by a node pair simply says that a similar 
edge has already existed in bipartite graph G. �e more patterns a node pair covers, more are the chances that 
this node pair will be connected in the future. In this manner, the number of patterns secured by a node pair 
can be utilized to measure the likelihood of its edge presence.

Mutual information for link prediction. Our proposed algorithm uses the concept of mutual informa-
tion and potential energy for link prediction in the bipartite graph.

Self-information: “Let X be a random variable and x be an outcome of X with probability p(x). �en, the 
self-information of x quanti�es the uncertainty of the outcome x and is de�ned as follows”29:

Mutual information: “Let X and Y be two random variables and x and y be their outcomes, respectively. �e 
mutual information of X and Y measures the amount of reduction in uncertainty of the outcome x when the 
outcome y is known, or vice versa, and is de�ned as follows”30:

Let x, y represent the two nodes in a graph and Ŵ(x),Ŵ(y) represent their set of neighbors. Also, common 
neighbors of x, y is represented by Oxy . So we can say that Oxy = Ŵ(x) ∩ Ŵ(y) . Now for given node pair(x, y) and 
common neighbors Oxy ; �e likelihood score of node pair(x, y) can be computed by the following  equation31.

Here I(L1xy | Oxy) is the conditional self-information of the existence of an edge between node pair (x, y) when 
they have common neighbors Oxy . On analysis of self-information of the node-pair, it is found that the smaller 
I(L1xy | Oxy) is, the higher the probability of the existence of an edge. According to Eq. (2), we can derive the 
value of I(L1xy | Oxy) as follows:

where I(L1xy) represents the self-information of that node pair (x,y) that are already connected. I(L1xy;Oxy) 
represents the mutual information between node pair (x,y) that has one link between them and the node pair’s 
common neighbors are known. Now let’s consider that the elements of Oxy are independent of each other, then 
we can �nd the value of I(L1xy;Oxy) as follows:

Now I(L1xy; z) can be calculated by I(L1; z) . I(L1; z) is de�ned as the mean mutual information over all node 
pairs connected to node z.

(1)I(x) = log
1

p(x)
= − log p(x)

(2)I(x; y) = log
p(x | y)

p(x)
= − log p(x) − (−p(x | y)) = I(x) − I(x | y)

(3)SMI
xy = −I(L1xy | Oxy)

(4)I(L1xy | Oxy) = I(L1xy) − I(L1xy;Oxy)

(5)
I(L1xy;Oxy) =

∑

z∈Oxy

I(L1xy; z) =

∑
I(L1xy; z)

Figure 1.  Projection of bipartite graph G.
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Now we can �nd the value of I(L1mn; z) with the help of Eq. (2).

Here I(L1mn) indicates the self-information of node pair (m, n) is connected. I(L1mn | z) is simply the conditional 
information of that connected node pair (m, n) when node z is one of their common neighbors.

Now I(L1mn | z) can be calculated by the clustering coe�cient of node z and the clustering coe�cient of z can 
be calculated as follows:

where Cz represents the clustering coe�cient of z. tz represents the number of triangles passing through node z 
and dz represents the degree of node z. Since we have value of p(L1mn | z) we can easily �nd the value of I(L1mn | z).

p(L1mn) can be computed with the help of p(L0mn) . L
0
mn represents the event that there is no edge that exists 

between node m and node n. It is considered here that no degree correlation exists. �e value of p(L0mn) can be 
calculated with the help of path entropy.

Here dm and dn are the degree of node m and n, respectively. Tl is the total no of edges in the graph. �is formula 
is symmetric. �us

So now p(L1mn) and p(L1nm) can be calculated as follows.

With the help of Eq. (1) we can �nd the value of I(L1mn) and I(L1nm) . Collecting these results, we can get the fol-
lowing things.

So with the help of the previous derivation, we have

Here chances of the existence of an edge between node pair(x, y) are directly proportional to SMI
xy  . It simply means 

higher the SMI
xy  , the more likely the nodes will be connected.

Methods
In this section, we are presenting a novel algorithm for link prediction in the bipartite networks based on poten-
tial energy and mutual information. �e proposed algorithm majorly works on the four concepts projection, 
potential energy mutual information and PMIS. Figure 2 brie�y describes the process for PMIS score calculation.

In this work we de�ne Potential Energy in the context of graphs. We assumed that a pair of nodes act as an 
object and that the product of the degree of nodes of the graph can represent mass. �e gravitational accelera-
tion g can be represented by the sum of the clustering coe�cient of common neighbor between two nodes. For 
a given pair of nodes, sum of the clustering coe�cient of common neighbor will be constant, but for a di�erent 

(6)
I(L1; z) =

1

| Ŵ(z) | (| Ŵ(z) | −1)

∑

m �= n

m, n ∈ Ŵ(z)

I(L1mn; z)

(7)I(L1mn; z) = I(L1mn) − I(L1mn | z)

(8)p(L1mn | z) = Cz =
2 ∗ tz

dz(dz − 1)

(9)p(L0mn) =

dn∏

i=1

(Tl − dm) − i + 1

Tl − i + 1
=

dnCTl−dm
dnCTl

(10)p(L0mn) = p(L0nm)

(11)p(L1nm) = p(L1mn) = 1 −

dnCTl−dm
dnCTl

(12)
I(L1xy; z) ≈ I(L1; z) =

1

| Ŵ(z) | (| Ŵ(z) | −1)

∑

m �= n
m, n ∈ Ŵ(z)

I(L1mn) − I(L1mn | z)

(13)
=

1

| Ŵ(z) | (| Ŵ(z) | −1)

∑

m �= n
m, n ∈ Ŵ(z)

(− log p(L1mn) − (− log p(L1mn | z)))

(14)
=

1

| Ŵ(z) | (| Ŵ(z) | −1)

∑

m �= n

m, n ∈ Ŵ(z)

log
dnCTl

dnCTl
− dnCTl−dm

+ log
2 ∗ tz

dz(dz − 1)

(15)
SMI
xy = −I(L1xy | Oxy) =

∑

z∈Oxy

I(L1xy; z) − I(L1xy)
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pair of nodes the value of the sum of the clustering coe�cient of common neighbors will be di�erent. Also, we 
replaced distance (h) by inverse of the shortest distance (sd) between the pair of nodes.

Potential energy PE(A, B) represents the potential energy between nodes A and B. In the context of a graph, 
this can be de�ned as the product of three terms; the product of the degree of nodes, the sum of the clustering 
coe�cient of common neighbors and the shortest distance between nodes.

where dA , dB are degree of nodes A and B. clz is clustering coe�cient of z ∀z �= φ . sd(A, B) represents the shortest 
distance between node A and B. When z = φ ; that is no common neighbor between node pair(A, B), and is such 
cases the value of clz will be .1(constant).

To simplify the understanding of PE, we illustrate it with an example. In Fig. 3, the values of PE between node 
pairs(B, E), (C, E) and (E, G) are .25, .166, and .04 respectively. We used Eq. (16) for PE calculation and Eq. (8) for 
calculation of the clustering coe�cient of the node. Here PE of node pair(B, E) is greater than (C, E). So it shows 
that Node pair(B, E) is more likely to be connected than node pair(C, E). PE can distinguish node pairs even if 
they have no common neighbour. For example, PE of node pair(E, F) and (E, G) are .1 and .04 respectively. So 

(16)PE(A,B) = (dAdB)















�

z ∈ Ŵ(A) ∩ Ŵ(B)

clz















�

1

sd(A,B)

�

Figure 2.  Link prediction process.

Figure 3.  Graph G2.
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this shows that node pair(E, F) is more likely to be connected than node pair(E, G). �e value of the clustering 
coe�cient, product of the degree of nodes and the shortest distance of illustrative examples are given in Table 1.

�e potential energy of the network incorporates three di�erent properties in itself. One part of potential 
energy talks about the product of the degree of vertices. Higher the values of product, higher the PE. If we think 
from the social networks point of view, vertex having a higher degree has always high likelihood to connect with 
another vertex. For example, a new person joining Twitter has a higher likelihood to follow a celebrity than not 
so popular people. Because the degree of celebrities is usually higher. �e second part of PE is the clustering 
coe�cient. �e signi�cance of the clustering coe�cient in social networks is that a person tends to have friends 
who are also friends with each other. It is very closely related to triadic closure. Triadic closure plays a very 
important role in link prediction. So the clustering coe�cient has the inherent properties of the link prediction. 
And the third part of PE is the shortest distance between vertices. �is is another important feature of networks. 
Kleinberg found that most of the nodes in the social networks are connected with a very short  distance32. Distance 
between nodes has inverse e�ect on link prediction. �is is also related to the small world phenomenon. In real 
social networks if the distance between two people is smaller that means they have a higher chance of becoming 
friends in the future. Illustrative example and results also show the e�ectiveness of PE.

Algorithm framework. �e proposed algorithm initially takes a bipartite graph G(U, V, E) as input and 
using weighted projection transforms it into a unipartite graph Gu(U ,Eu) . In the unipartite graph Gu(U ,Eu) , the 
proposed algorithm computes PE and MI for each node pair using Eqs. (15) and (16) respectively. �en algo-
rithm calculates weight of edge(pattern) of unipartite graph using Eq. (17). A�er the calculation of the weight 
of the pattern, the proposed algorithm uses Eq. (18) and compute the PMIS score for each node pair of bipartite 
graph G(U, V, E).

�e proposed algorithm takes weighted projection instead of simple projection. �e main reason of taking 
weighted projection is that in simple projection we lose the topological information of the original bipartite 
graph. To keep such information we use weighted projection. For example, two bipartite graphs in Fig. 4a,b. 
are di�erent but their simple projection is the same. Figure 4c shows the simple projection of bipartite graph 
Fig. 4a,b. But if we take weighted projection then we get two di�erent projected graph Fig. 4d,e. In Fig. 4d edge 
weight is 1 because only one common neighbor is present in the bipartite graph. But in Fig. 4e edge weight is 2 
because there are 2 common neighbors in the bipartite graph. WP(A, B) represents the weight of the edge of the 
projected graph and we calculate it as follows.

Since we have a projected graph of the original bipartite graph, so by using Eq. (15) we can estimate the SMI
AB

 for 
each node pair of the projected graph. Or we can say in another way that for every pattern we have SMI

AB
.

�e weight of the edge in the projected graph plays a very important role in link prediction. �is weight is 
nothing but the weight of pattern, which we have already de�ned. So now we can say that for each pattern we 
have three values PE(A, B), WP(A, B) and SMI

AB
 . �ese values declare the importance of pattern.

De�nition 0.1 Total Weight of pattern, Wt(A,B) represents the sum of all types of weight of the pattern (edge 
A, B in projected graph) and is de�ned as follows:

WP(A,B) =| Ŵ(A) ∩ Ŵ(B) |, (A,B) ∈ U

Table 1.  Potential energy computation for some missing edges in Graph G2.

Edge (x, y) Product of the degree of nodes
�e sum of the clustering coe�cient 
of common neighbors

Inverse of the shortest distance 
between nodes. PE(x, y)

(B, E) 3 .1666 .50 .25

(C, E) 2 .1666 .50 .16

(E, G) 2 .1 .20 .04

(E, F) 3 .1 .33 .1

Figure 4.  Projection of bipartite graph.
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De�nition 0.2 Potential Energy-Mutual Information based similarity metrics(PMIS): PMIS is the sum of the 
weight of all pattern covered by a node pair.

If (A, i) is a node pair in bipartite graph G = (U ,V ,E) then PMIS can also be de�ned as

Here W(A, B) is the weight of the pattern {A,B} . And Ŵ(A, i) is the set of patterns covered by node pair (A, i). 
We can �nd the value of Ŵ(A, i) as follows:

So it is clear that every node pair in the bipartite graph cover some pattern. And each pattern has some weight. 
�erefore PMIS computes the sum of the weight of all pattern covered by a node pair. Here we are using PMIS 
value as the �nal link prediction score. Higher PMIS value indicates higher likelihood of the existence of an edge.

Complexity analysis �e time complexity of proposed algorithm for a given bipartite graph, G(U, V, E) with 
two vertex sets, U and V is O(|U |3) , where |V | < |U | . �e algorithm has three steps. Bipartite graph is converted 
into unipartite graph in the �rst step with time complexity O(|V |d2) . Here, d denotes the maximum vertex degree 
of given bipartite graph. Since d is constant, the complexity of �rst step can be rewritten as O(|V|). �e second 
step of the algorithm computes PE and MI and the complexity of this step is O(|V |3) . PMIS is computed in the 
last step with O(|V |d3) time complexity. �erefore, total time complexity of the algorithm is O(|V |3) . Moreover, 
the complexity improves to O(|V|) when algorithm focuses on candidate node pair instead of focusing on each 
node pair. �is complexity is better than O((|U | + |V |)3) time complexity of Katz algorithm.

Results and discussion
All experiments were conducted on a Linux server with an Intel XeonE5-2630 v3 2.40 GHz CPU and 64GB 
memory running CentOS 7.4-1708. We implemented PMIL and all other algorithms in Python 3.7.0. In all 
experiments majorly used networkx, pandas, sklearn, numpy, and matplotlib library.

Evaluation metrics. Two standard metrics are generally used to quantify the accuracy of any prediction 
algorithms, one is area under the receiver operating characteristic curve (AUC)33 and another is  Precision34. We 
have performed an extensive experiment and used four metrics to test the performance of the proposed algo-
rithm. Following are the names of four metrics used for the performance evaluation.

(17)Wt(A,B) = PE(A,B) + S
MI

AB + WP(A,B)

(18)
PMIS(A, i) =

∑

{A,B}∈Ŵ(A,i)

W(A,B)

Ŵ(A, i) = {(A,B) | B ∈ Nu(A) ∩ N(i)}
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AUC  AUC value can be de�ned as the probability that a randomly chosen missing link (i.e., a link in Ep ) is 
given a higher score than a randomly chosen nonexistent link (i.e., a link in U − E ). Here if suppose among N t 
independent comparisons, Nh, times the existing edge having a higher score and N s times they have the same 
score,then AUC score can be calculated by following equation.

In general, a larger AUC value indicates high performance. �e AUC value of the ideal result is 1.0.
Precision Precision is de�ned as the ratio of relevant items selected to the number of items selected. A�er 

sorting the scores, if there are Lr links belonging to the test set among top-L candidate links, then Precision is 
obtained by the following equation.

Prediction-Power (PP) �is metric is used to check the deviation from the mean random-predictor  performance20. 
PP is computed as follows:

where PrecisionRandom is the result of random-predictor. And we can compute it by L

|U ||V |−(E−L)
.

Precision@K It is the fraction of correct predictions in top k  predictions34. In our paper, we computed Preci-
sion@10, Precision@20 and Precision@50. Precision@10 means precision at the top 10 position in the ranking 
result. �e higher the values of the metrics are, the better the algorithm is.

To evaluate the performance of our model, we used the K-fold Cross-Validation. K-Fold CV is a technique 
in which a given data set is split into a K number of sections/folds. Each time one subset is chosen as a probe set 
and the rest K − 1 used as training set. Here we have taken the value of K is 10.

Datasets. Datasets We used ten real-world datasets to test the performance of the proposed algorithm. �ese 
ten datasets are the following:  (1) MovieLens (ML)35 dataset contains 100,000 ratings from 943 users on 1682 
movies. (2) Enzyme (EN)36 is a biological network of drugs and enzymes proteins. It contain 445 drugs nodes, 
664 proteins nodes and 2926 drug–target interactions. (3) Southern Women network dataset (SWN)37 rep-
resents 18 women who participated in 14 social events. (4) Corporate Leadership bipartite graph dataset 
(CL)38 contains the person’s name and company name. (5) Club membership dataset (CM)39 contains partici-
pation data of corporate o�cials in social associations. (6) Ionchannels (IC)36 is biological network of drug and 
ionchanel proteins. (7) Country-organization (C2O) is global network of country and various organization 
(8) Drug target (Drug)40 is a chemical network of drug target interaction. (9) G-protein coupled receptors 
(GPC)36 is biological network. (10) Malaria(mal)41 is a genetic network. Table 2 shows the topological features 
of all the datasets.

Results To test the strength of the PMIL algorithm, we performed extensive experiments on ten di�er-
ent real-world datasets and compared it with eleven baseline link prediction techniques. Since our proposed 
algorithm comes under the similarity-based technique, so for the comparison purpose we considered mainly 
similarity-based algorithm. �e baseline link prediction techniques include Common Neighbors (CN), Jaccard 
Coe�cient (JC), Preferential attachment (PA), Cannistraci–Alanis–Ravasi (CAR), Cannistraci–Jaccard (CJC), 
Cannistraci–Adamic–Adar (CAA), Cannistraci resource allocation (CRA), Nonnegative Matrix Factorization 
(NMF), Cosine (CS), Potential Link prediction (PLP) and Bipartite projection via Random-walk (BPR)10,21,42. Out 

(19)AUC =

(

N
h

+ .5N
s
)

N t

(20)Precision =

Lr

L

(21)PP = log10
PrecisionPredictionTechnique

PrecisionRandom

Table 2.  Statistics of the dataset, where ML(MovieLens), EN (Enzyme), SWN (Southern Women Network), 
CL (Corporate Leadership), CM (Club Membership), IC (Ion channels), C2O (Country-Organizations), Mal 
(Malaria), GPC (G-protein coupled receptors) and Drug (Drug Target) are the names of the datasets and Data 
Types represent the domain of the datasets.

Name of dataset Number of nodes Number of edges Average degree Dataset types

ML 2625 85,250 32.48 Entertainment

EN 1109 2926 5.2 Biological

SWN 32 89 5.5 Social network

CL 64 99 4.5 Management

CM 65 95 4.7 Social network

IC 414 1476 3.5 Biological

C2O 295 12,170 41.2 Global network

Mal 1103 2965 2.6 Genetic network

GPC 318 635 2 Biological

Drug 350 454 1.3 Chemical network
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of these 11 baseline algorithms, three works on node neighbourhood mechanism, four works on LCP mechanism, 
three works on projection mechanism and one works on latent feature mechanism.

�e AUC and Precision values of the proposed algorithm and other baseline algorithms are listed in Tables 3 
and 4 respectively. In these tables, each row represents the method used in the experiment and each column 
represents the datasets. �e largest value in each column is represented in bold text. In each of these 10 datasets, 
the test set contains 10% edges and training set contains 90% edges. Table 3 shows the proposed PMIL algorithm 
outperforms the ten baseline link prediction algorithms on seven datasets for AUC values. But on the CL and IC 
dataset winner is CAA and PLP respectively. Interestingly, the value of AUC for CAA and CRA are same on C2O 
dataset. Since the AUC value of the PMIL algorithm is better so if we draw ROC curve by plotting true-positive 
rates (TPR) versus false-positive rates (FPR) for varying L values then the total area under the ROC-curve (AUC) 
will be more. �us it indicates the better prediction result quality, where L is the list of top links as predicted links. 
�e results in Table 4 demonstrate that PMIL algorithm gives best precision values on six datasets (ML, EN, SWN, 
CM, Mal, GPC). However, CAA and PLP are winners for CL and IC datasets respectively; and performance of 
BPR algorithm is best on both C2O and Drug dataset based on the Precision value. Figure 5 shows the e�ects of 
the size of the training set on AUC for Drug dataset. We experimented by changing the size of the training set 
from 40% to 90%. It can be observed from Fig. 5 that on increasing the size of the training set to 0.9, all baseline 
algorithms as well as PMIL gives better AUC scores.

Figures 6, 7 and 8 describes the precision@K for di�erent values of K. To keep the image clear, we presented 
the result of twelve algorithms on four datasets. In Fig. 6 we presented the value of precision@10 for the Mal, IC, 
GPC and Drug datasets. For the IC dataset, CJC and PLP have better performance than PMIL. But our proposed 
algorithm shows a better result than all eleven baseline algorithms on the Mal and GPC dataset. �is improve-
ment is very useful in the recommender system. Especially in E-commerce, where we are interested to show only 
the top 10 or top 20 or top K results among the best results to the customer.

Figures 7 and 8 show the precision@20 and precision@50 values respectively. �e proposed algorithm shows 
the highest value of Precision@20 for Mal and GPC dataset. �e proposed algorithm gives the best result for 

Table 3.  AUC comparison results on ten datasets (ML, EN, SWN, CL, CM, IC, C2O, Mal, GPC and Drug). 
Each dataset is divided into training set (90%) and test set (10%) and results are computed by averaging over 
1000 runs.

Dataset ML EN SWN CL CM IC C2O Mal GPC Drug

PA .881 .788 .648 .773 .764 .823 .901 .591 .720 .880

CN .871 .851 .730 .811 .801 .910 .990 .901 .812 .920

JC .791 .880 .663 .821 .798 .850 .950 .901 .821 .910

CAR .912 .867 .726 .940 .906 .916 .990 .910 .811 .901

CJC .882 .867 .762 .960 .940 .925 .990 .910 .831 .910

CAA .910 .851 .760 .968 .950 .942 1.00 .920 .831 .910

CRA .921 .890 .772 .945 .955 .931 1.00 .910 .821 .930

BPR .911 .891 .742 .943 .959 .920 .990 .901 .840 .920

CS .831 .836 .761 .775 .882 .835 .960 .821 .801 .871

PLP .930 .889 .936 .905 .960 .945 .965 .906 .849 .938

NMF .891 .761 .692 .854 .846 .850 .990 .861 .702 .890

PMIL  .945 .901 .945 .940 .982 .938 .971 .921  .867 .945

Table 4.  Precision comparison results on ten datasets averaged over 1000 runs.

Dataset ML EN SWN CL CM IC C2O Mal GPC Drug

PA .153 .023 .122 .110 .157 .036 .871 .022 .081 .313

CN .141 .370 .141 .210 .202 .230 .871 .192 .310 .610

JC .001 .031 .021 .042 .036 .021 .601 .250 .012 .383

CAR .177 .507 .188 .189 .202 .432 .871 .191 .332 .601

CJC .184 .496 .188 .217 .231 .494 .871 .232 .361 .191

CAA .181 .502 .122  .662 .621 .531 .870 .191 .320 .591

CRA .181 .651 .210 .612 .631 .560 .880 .251 .373 .631

BPR .181 .501 .162 .620 .641 .442  .931 .253 .271 .680

CS .120 .330 .163 .165 .455 .349 .661 .142 .201 .491

PLP .191 .491 .410 .210 .620 .612 .631 .221 .283 .301

NMF .001 .001 .031 .022 .031 .011 .001 .001 .012 .021

PMIL .210  .661  .441 .205  .651 .581 .601 .261  .401 .310
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precision@50 on Mal, IC, GPC and Drug dataset. Interestingly, all the algorithms based on LCP-theory (CAR, 
CJC, CAA, CRA) and our proposed algorithm show almost similar results for drug dataset.

Figure 9 describes the prediction-power of all twelve algorithms over the four datasets. For the IC and GPC 
datasets, PMIL secured the �rst position. And for Mal datasets, JC and CRA both are at �rst position, whereas in 
case of the Drug dataset winner is BPR. PP metric is very useful when we are interested to �nd which algorithms 

Figure 5.  AUC values for baseline algorithms where the size of the training set varies from 0.4 to 0.9 tested on 
Drug dataset.

Figure 6.  Comparison of precision@10 on the four datasets.
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have a minimum or maximum deviation from the mean random-predictor. So basically it characterises the 
deviation of the algorithm from the randomness.

Conclusion
In this paper, we introduced a novel approach for link prediction in bipartite networks which is based on the 
concepts of potential energy and mutual information. �e performance of the proposed algorithm is evaluated 
on ten datasets under di�erent classes and compared with eleven baseline predictors on the basis of AUC, Pre-
cision, Prediction-Power and Precision@K. We used AUC for evaluation of PMIL, in which we assume that all 
the links in the networks are independent of each other. However in the real-world networks, links may or may 
not be independent of each other. PMIL algorithm showed best performance on seven out of the ten datasets 
used based on AUC score and was reasonably close for the three remaining datasets. �ere is a possibility that 
the structural properties of non-social network graphs e�ect the performance; thus it be interesting to study the 
structural properties, such as the community structure, of di�erent datasets and compare any signi�cant dif-
ferences between social networks and other datasets. In social networks a connection implies that there was an 
interaction in the past, but the complete information about the connections may be missing. �e other datasets 
may be noisy and an example could be biological datasets, where the connections are identi�ed with the help 
of experiments that are not always accurate. �us, expanding PMIL such that it is capable of link prediction in 
weighted bipartite graphs is another future direction of research, where weight could be the probability of the 
occurrence of edge. �ere are many applications of link prediction, such as recommender systems, community 
detection, �nding hidden relationships, etc. �us, it would be interesting to explore the future directions and 
design more e�cient algorithms for link prediction in bipartite networks.

Figure 7.  Comparison of precision@20 on the four datasets.
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Figure 8.  Comparison of precision@50 on the four datasets.

Figure 9.  Comparison of prediction-power on the four datasets.
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