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Abstract— Artificial potential fields and optimal controllers 

are two common methods for path planning of autonomous 

vehicles. An artificial potential field method is capable of 

assigning different potential functions to different types of 

obstacles and road structures, and plans the path based on these 

potential functions. It does not however, include the vehicle 

dynamics in the path planning process. On the other hand, an 

optimal path planning controller integrated with vehicle 

dynamics plans an optimal feasible path that guarantees vehicle 

stability in following the path. In this method, the obstacles and 

road boundaries are usually included in the optimal control 

problem as constraints, and not with any arbitrary function. A 

model predictive path planning controller is introduced in this 

paper such that its objective includes potential functions along 

with the vehicle dynamics terms. Therefore, the path planning 

system is capable of treating different obstacles and road 

structures distinctly while planning the optimal path utilizing 

vehicle dynamics. The path planning controller is modeled and 

simulated on a CarSim vehicle model for some complicated test 

scenarios. The results show that, with this path planning 

controller, the vehicle avoids the obstacles and observes road 

regulations with appropriate vehicle dynamics. Moreover, since 

the obstacles and road regulations can be defined with different 

functions, the path planning system plans paths corresponding to 

their importance and priorities. 

Index Terms— Path Planning, Autonomous Vehicles, Road 

Vehicles, Model Predictive Control, Artificial Potential Field, 

Vehicle Dynamics and Control.  

I. INTRODUCTION

 large percentage of car accidents is caused by driver 

errors [1]. A fully autonomous driving could reduce such 

accidents significantly. Besides, it increases the comfort 

of traveling by obviating the need for a driver. However, if it 

is intended to replace a driver, an autonomous system should 

be intelligent enough to handle different driving scenarios for 

various obstacles and road regulations. Planning the vehicle’s 

path based on road regulations and obstacles is performed in 

the path planning module of an autonomous vehicle. 
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Developing such a module so that it is able to plan an 

appropriate path for any combination of obstacles and road 

structures is an ongoing research subject. 

Path planning has been widely studied in robotics for 

obstacle avoidance [2-4]. For autonomous road vehicles, road 

structures and regulations should also be considered in the 

path planning in addition to obstacles. Moreover, considering 

the vehicle dynamics and tires’ and actuators’ limitations at 

the path planning level makes the planned path more feasible 

to be tracked by the vehicle. The main advanced path planning 

methods developed for autonomous road vehicles are artificial 

potential field methods, random search methods, and optimal 

control methods. 

Artificial potential field method generates a potential field 

based on Potential Functions (PFs) of obstacles, road 

structures, and goal. It plans the path by moving in the descent 

direction of the field. Then, a path tracking module calculates 

the vehicle inputs required to track the path [5,6]. The main 

advantage of this method over the other path planning 

methods is its low calculation cost even with complex PFs for 

obstacles and road structures. Considering vehicle dynamics in 

the path tracking module improves the ability of the vehicle in 

tracking the path. Jie et al. [7] introduces a model predictive 

path tracking controller to consider the vehicle dynamics and 

actuators’ limitations in its path tracking. However, it is 

possible that the planned path is not feasible to be tracked by 

the vehicle since the vehicle dynamics and its limitations are 

not considered in path generation [8]. Noto et al. [9] considers 

the vehicle dynamics in generating the reference path. To plan 

the path, it calculates steering angle commands that move the 

vehicle in the potential field descent direction and satisfy the 

vehicle’s dynamics constraints. It then, uses a path tracking 

controller to follow the planned path. Although it finds a path 

satisfying the vehicle dynamics, the path is not the optimal 

path in terms of vehicle dynamics. 

Optimal controllers are also used for path planning on 

structured roads. The approach for considering obstacles in a 

two dimensional space for obstacle avoidance is a challenge 

for this path planning method. Shildbach et al. [10] designs a 

scenario-based model predictive controller with two levels. 

The higher level module determines the reference lane and 

speed by calculating a time-to-lane-change. At the lower level, 

the model predictive controller tracks the reference lane and 

speed and keeps the vehicle at the safe distance from the 

obstacles by staying in the safe interval of the reference lane. 

Carvalho et al. [11] calculates the Signed Distance (SD) 

between the vehicle and an obstacle and generates an 

approximate linear constraint based on this distance for 
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obstacle avoidance. The predicted obstacles and their 

corresponding constraints are probabilistic. The road structure 

is also considered as constraints on the vehicle position. A 

chance-constrained model predictive controller is used to 

solve the problem in two dimensions. Carvalho et al. [12] 

considers different vehicle models, driver models, and 

environment models to simulate different optimal control path 

planning methods in [10] and [11]. It also simulates a tube-

based model predictive controller introduced in [13] for 

obstacle avoidance in an unstructured path. The method 

considers the obstacles as ellipse-shaped constraints and keeps 

the vehicle robustly far from the obstacle while following a 

desired path by solving a nonconvex optimal control problem. 

Gao et al. [14] includes obstacle avoidance costs in the cost 

function of a model predictive path planning controller. The 

obstacle avoidance cost is calculated for each obstacle as a 

function of the longitudinal distance from the vehicle to the 

obstacle and whether the obstacle is in the sight of the vehicle. 

The model predictive controller is nonlinear to solve the two-

dimensional obstacle avoidance problem with this obstacle 

avoidance cost. Moreover, the optimal control problem 

considers all the obstacles with the same function and does not 

include road regulations. 

In this paper, a model predictive controller is developed for 

path planning of autonomous vehicles which avoids obstacles 

and observes road regulations by including obstacles’ and 

road’s PFs in the objective function of the optimal controller. 

It has the merits of both potential field and optimal control 

path planning techniques.  In another word, it is able to 

consider any PF for obstacles and road structures while 

calculating the optimal path based on the obstacles, road 

structures, and vehicle dynamics.  Other optimal control path 

planning systems usually consider the obstacles and road 

boundaries as constraints [10-13] or consider one cost function 

for all of them [14], and therefore, treat all of them in the same 

way despite their different characteristics. However, the 

proposed method allows considering different types for 

obstacles and road structures in the optimal control problem 

and treating them according to their characteristics. For 

instance, the presented autonomous vehicle passes a speed 

bump on its side when possible and cross it otherwise, while it 

stops behind a high profile stone if passing it on its side is not 

possible. Besides, the presented optimal control problem 

solves the two-dimensional obstacle avoidance problem 

through a quadratic model predictive controller, for which 

there are efficient algorithms solving the problem with lower 

computational cost than the existing algorithms for nonlinear 

model predictive controllers used in [13,14].   

This paper is organized as follows. In Section II, the 

structure of an autonomous vehicle system and its different 

modules are presented, and the relationship between the path 

planning module and the other modules are explained. In 

Section III, the path planning problem, the vehicle dynamics 

model, and the PFs for different types of obstacles and road 

structure are defined, and the path planning optimal control 

problem is formulated. In Section IV, the path planning 

system is evaluated with a high fidelity CarSim simulation 

under several complicated scenarios, and the results are 

presented and discussed. Section V concludes the paper.  

II. OVERALL VEHICLE SYSTEM 

Even though this paper focuses on the path planning module 

in an autonomous vehicle system, there are more necessary 

modules, as shown in Fig. 1. In this paper, it is assumed that 

the path planning module receives the reference vehicle speed 

and the reference lane from the mission planning module. The 

mission planning module may generate these reference signals 

according to road regulations, planned vehicle route, and 

flows of the lanes [15-17]. The path planning module also 

receives the shape, position, and velocity of the obstacles, the 

road structure, and the regulations from the perception module 

[18-20], and the vehicle states from the estimation module 

[21-23]. The goal of the path planning module is to plan a path 

following the commands of the mission planning module 

while meeting the road regulations, avoiding the obstacles, 

and having a stable vehicle dynamics. The path planning 

module generates the front steering angle and the total 

longitudinal force commands. These choices of commands 

correspond to the driver commands, which include steering 

wheel angle and the gas/brake pedal positions, so that for a 

semi-autonomous vehicle, switching between the autonomous 

system and the driver can be performed simply. The path 

planning system is explained in the following section. 

 

 
Fig. 1. Block diagram of the autonomous system. 

III. PATH PLANNING 

This section presents a path planning system for 

autonomous road vehicles. First, a vehicle dynamics model is 

presented. Next, PFs for obstacles and road lane markers are 

defined. Then, the model predictive path planning problem is 

generated based on the vehicle model and PFs. 

A. Vehicle Dynamics Model 

A bicycle model is used to model the vehicle dynamics. The 

notation used in the vehicle model is shown in Fig. 2. The 

equations of motion of the bicycle model are: 

 𝑚𝑚(�̇�𝑢 − 𝑣𝑣𝑣𝑣) = 𝐹𝐹𝑥𝑥𝑇𝑇 , (1) 𝑚𝑚(�̇�𝑣 + 𝑢𝑢𝑣𝑣) = 𝐹𝐹𝑦𝑦𝑓𝑓 + 𝐹𝐹𝑦𝑦𝑟𝑟 , (2) 𝐼𝐼𝑧𝑧�̇�𝑣 = 𝑙𝑙𝑓𝑓𝐹𝐹𝑦𝑦𝑓𝑓 − 𝑙𝑙𝑟𝑟𝐹𝐹𝑦𝑦𝑟𝑟 , (3) �̇�𝜃 = 𝑣𝑣, (4) �̇�𝑋 = 𝑢𝑢 cos 𝜃𝜃 − 𝑣𝑣 sin𝜃𝜃, (5) �̇�𝑌 = 𝑣𝑣 cos 𝜃𝜃 + 𝑢𝑢 sin𝜃𝜃, (6) 
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where 𝑢𝑢, 𝑣𝑣 and 𝑣𝑣 denote the longitudinal velocity, lateral 

velocity, and yaw rate of the vehicle at its center of gravity, 𝑋𝑋, 𝑌𝑌 and 𝜃𝜃 are the longitudinal and lateral position and heading 

angle of the vehicle in the global coordinate, 𝐹𝐹𝑦𝑦𝑓𝑓 and 𝐹𝐹𝑦𝑦𝑟𝑟 are 

the total lateral forces of the front and rear tires, 𝐹𝐹𝑥𝑥𝑇𝑇 is the total 

longitudinal force of tires, 𝑚𝑚 is the vehicle’s mass, and 𝐼𝐼𝑧𝑧 is 

the vehicle’s momentum of inertia around its vertical axis. 

The vehicle is assumed to have a front steering system. A 

linear tire model is used for the lateral tire forces [13]: 

 𝐹𝐹𝑦𝑦𝑓𝑓 = 𝐶𝐶𝑓𝑓𝛼𝛼𝑓𝑓 = 𝐶𝐶𝑓𝑓 �𝛿𝛿 − 𝑣𝑣 + 𝑙𝑙𝑓𝑓𝑣𝑣𝑢𝑢 �, (7) 𝐹𝐹𝑦𝑦𝑟𝑟 = 𝐶𝐶𝑟𝑟𝛼𝛼𝑟𝑟 = 𝐶𝐶𝑟𝑟 �− 𝑣𝑣 − 𝑙𝑙𝑟𝑟𝑣𝑣𝑢𝑢 �, (8) 

 

in which 𝛼𝛼𝑓𝑓 and 𝛼𝛼𝑟𝑟 are the sideslip angles of the front and rear 

tires, and 𝛿𝛿 is the steering angle. Moreover, 𝐶𝐶𝑓𝑓 and 𝐶𝐶𝑟𝑟 denote 

the cornering stiffness values of the front and rear tires, 

respectively, which are obtained similar to [13].  

 

 
Fig.2. Vehicle bicycle model. 

The vehicle linear dynamics can then be obtained by 

linearizing (1) - (8) around the vehicle’s operating point: 

 �̇�𝒙 = 𝑨𝑨𝒙𝒙+ 𝑩𝑩𝒖𝒖𝒄𝒄, (9) 𝒙𝒙 = [𝑋𝑋 𝑢𝑢 𝑌𝑌 𝑣𝑣 𝜃𝜃 𝑣𝑣]𝑇𝑇 , (10) 𝒖𝒖𝒄𝒄 = [𝐹𝐹𝑥𝑥𝑇𝑇 𝛿𝛿]𝑇𝑇 , (11) 

 

where 𝒙𝒙 is the state vector, 𝒖𝒖𝒄𝒄 is the input vector, 𝑨𝑨 is the state 

matrix, and 𝑩𝑩 is the input matrix. The model is discretized by 

zero order hold method to be utilized as the model of the 

model predictive path planning controller. 

B. Potential Field 

A potential field is a field generated by obstacle and goal 

PFs to lead the vehicle toward the goal while keeping it away 

from the obstacles. A goal PF has a minimum at the goal so 

that the goal attracts the vehicle, and an obstacle PF has a 

maximum at the obstacle position so that the obstacle repulses 

the vehicle. In this paper, the task of leading the vehicle 

towards its goal is performed by the tracking terms in the 

objective function of the path planning controller. Therefore, 

the potential field generated here is repulsive only, and is 

constructed of obstacle PFs. A PF is defined for the lane 

markers to prevent the vehicle from going out of its lane and 

the road (𝑈𝑈𝑅𝑅𝑞𝑞). Two PFs are also defined for two categories of 

obstacles: obstacles that cannot be crossed like a vehicle 

(𝑈𝑈𝑁𝑁𝐶𝐶𝑖𝑖), and the one that can be crossed like a bump (𝑈𝑈𝐶𝐶𝑗𝑗). The 

potential field is the sum of the PFs: 

 𝑈𝑈 = �𝑈𝑈𝑁𝑁𝐶𝐶𝑖𝑖𝑖𝑖 + �𝑈𝑈𝐶𝐶𝑗𝑗𝑗𝑗 + �𝑈𝑈𝑅𝑅𝑞𝑞𝑞𝑞 , (12) 

 

where indices 𝑖𝑖, 𝑗𝑗, and 𝑞𝑞 denote the i
th

 non-crossable obstacle, 

the j
th

 crossable obstacle, and the q
th

 lane marker, respectively. 

The presented functions below are some sample functions; 

other functions can be used for modeling other road 

regulations and obstacles. The presented method can handle 

any PF that is twice differentiable. 

1) Non-crossable obstacles  

Some obstacles should not be crossed since they are either 

important themselves like a pedestrian or can cause a damage 

to the vehicle, like a vehicle obstacle or a high profile object. 

A hyperbolic function of the distance between the vehicle and 

the obstacle is used to generate the potential field caused by 

this kind of obstacle. The rate of change of the function 

strictly increases as the distance to the obstacle position 

decreases, and it approaches to infinity, which prevents the 

vehicle from crossing the obstacle. Schulman et al. [24] uses 

the SD between the vehicle shape and the obstacle shape for 

collision avoidance. The SD is the minimum distance of the 

shapes if there is no contact between the shapes, or the 

negative of the penetration distance if there are contact points. 

More information on the signed distance can be found in [25]. 

The PF is generated as a function of the SD, 𝑠𝑠𝑖𝑖: 
 𝑈𝑈𝑁𝑁𝐶𝐶𝑖𝑖(𝑋𝑋,𝑌𝑌) =

𝑎𝑎𝑖𝑖𝑠𝑠𝑖𝑖 � 𝑋𝑋𝑋𝑋𝑠𝑠𝑖𝑖 ,
𝑌𝑌𝑌𝑌𝑠𝑠𝑖𝑖�𝑏𝑏𝑖𝑖  , (13) 

 

where 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 are intensity and shape parameters of the PF, 

respectively. In addition, the vehicle needs to have a larger 

distance to the obstacle in the longitudinal direction than the 

lateral direction. Therefore, the SD is normalized by the safe 

longitudinal and lateral distances from the obstacle, 𝑋𝑋𝑠𝑠𝑖𝑖  and 𝑌𝑌𝑠𝑠𝑖𝑖, which are defined as: 

 𝑋𝑋𝑠𝑠𝑖𝑖 = 𝑋𝑋0 + 𝑢𝑢𝑇𝑇0 +
𝛥𝛥𝑢𝑢𝑎𝑎𝑖𝑖2
2𝑎𝑎𝑛𝑛 , (14) 

𝑌𝑌𝑠𝑠𝑖𝑖 = 𝑌𝑌0 + �𝑢𝑢 sin 𝜃𝜃𝑒𝑒 + 𝑢𝑢𝑜𝑜𝑖𝑖 sin 𝜃𝜃𝑒𝑒�𝑇𝑇0 +
𝛥𝛥𝑣𝑣𝑎𝑎𝑖𝑖2
2𝑎𝑎𝑛𝑛 . (15) 

 

The safe longitudinal distance includes the minimum 

longitudinal distance, 𝑋𝑋0, the distance spanned by the vehicle 

during the safe time gap, 𝑇𝑇0, and the distance due to the 

longitudinal velocity difference between the vehicle and the 

obstacle [26]. The safe lateral distance includes the minimum 

lateral distance, 𝑌𝑌0, and the lateral distance spanned by the 

vehicle and the obstacle during the safe time gap if they have 

the constant heading angles of 𝜃𝜃𝑒𝑒 toward each other, and the 

distance due to the lateral velocity difference between the 

vehicle and the obstacle. The safe time gap compensates for 

the vehicle response time, and its value is assigned 
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accordingly. Besides, 𝑢𝑢𝑜𝑜𝑖𝑖  is the longitudinal velocity of the i
th

 

obstacle, 𝑎𝑎𝑛𝑛 is the comfortable acceleration, and Δ𝑢𝑢𝑎𝑎𝑖𝑖 and Δ𝑣𝑣𝑎𝑎𝑖𝑖 are the approaching velocities in the longitudinal and 

lateral directions. In each direction, the approaching velocity 

is set to the velocity difference between the vehicle and the 

obstacle if they are approaching and to zero otherwise.  

Moreover, zero SD results in an infinite PF. In addition, 

with this PF, the vehicle would have no longitudinal response 

to the obstacle approaches from the side, if the longitudinal 

component of the SD is zero, while a driver would brake in 

this situation. These issues are resolved with a modification in 

the calculation of the SD; if the longitudinal distance between 

the vehicle and the obstacle is less than a threshold, 𝛥𝛥𝑋𝑋0, it is 

set to 𝛥𝛥𝑋𝑋0 with the obstacle being ahead. 

If the vehicle and the obstacle are approaching each other, 

there is a region around the obstacle where the vehicle cannot 

avoid a collision. The longitudinal and lateral collision 

distances, 𝑋𝑋𝑐𝑐𝑖𝑖  and 𝑌𝑌𝑐𝑐𝑖𝑖 , are defined as the maximum distances 

from the obstacle in the longitudinal and lateral directions at 

which the collision cannot be avoided. In each direction, the 

collision distance is the distance required to change the 

approaching velocity to zero by modifying the vehicle velocity 

with the maximum acceleration, 𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥: 

 𝑋𝑋𝑐𝑐𝑖𝑖 =
𝛥𝛥𝑢𝑢𝑎𝑎𝑖𝑖2

2𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥 , (16) 

𝑌𝑌𝑐𝑐𝑖𝑖 =
𝛥𝛥𝑣𝑣𝑎𝑎𝑖𝑖2

2𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥 . (17) 

 

 The intensity and shape parameters of (13) are calculated by 

assigning the safe potential parameter, 𝑈𝑈𝑠𝑠𝑎𝑎𝑓𝑓, and the accident 

potential parameter, 𝑈𝑈𝑎𝑎𝑐𝑐𝑐𝑐 , to the PF at the safe distance and the 

collision distance, respectively: 

  𝑈𝑈𝑁𝑁𝐶𝐶𝑖𝑖 = �𝑈𝑈𝑠𝑠𝑎𝑎𝑓𝑓 𝑠𝑠𝑖𝑖 = 1𝑈𝑈𝑎𝑎𝑐𝑐𝑐𝑐 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑐𝑐  . (18) 

 

It is notable that for being at the safe distance from the 

obstacle, the vehicle just needs to be at the safe distance in 

either lateral or longitudinal direction. The same expression 

holds for the collision distance. Therefore, the collision SD, 𝑠𝑠𝑐𝑐 , is the maximum of the corresponding SD of the 

longitudinal collision distance and the corresponding SD of 

lateral collision distance. The potential field of an obstacle 

vehicle located at �𝑋𝑋𝑜𝑜𝑖𝑖 ,𝑌𝑌𝑜𝑜𝑖𝑖�=(20,3.5)m and moving at the 

same speed as the vehicle at 80Km/h is shown in Fig. 3.   

2) Crossable obstacle 

Some obstacles can be crossed without any damage, but it is 

preferred not to cross them, if possible, like a low profile 

object or a bump on the road. The PF of such an obstacle is 

defined with an exponential function: 

 𝑈𝑈𝐶𝐶𝑗𝑗(𝑋𝑋,𝑌𝑌) = 𝑎𝑎𝑗𝑗𝑒𝑒−𝑏𝑏𝑗𝑗𝑠𝑠𝑗𝑗(
𝑋𝑋𝑋𝑋𝑠𝑠𝑗𝑗 , 𝑌𝑌𝑌𝑌𝑠𝑠𝑗𝑗)

, (19) 

 

where 𝑠𝑠𝑗𝑗 is the normalized SD between the vehicle and the 

obstacle calculated similar to (13)-(15). 𝑎𝑎𝑗𝑗 and 𝑏𝑏𝑗𝑗 are also the 

intensity and shape parameters, which are calculated similar to 

(14)-(18) except that the uncomfortable potential parameter, 𝑈𝑈𝑢𝑢𝑛𝑛𝑐𝑐, is assigned to the PF at the collision distance. 

The exponential function repulses the vehicle from the 

obstacle everywhere because of its positive gradient. But, at 

positions close to the obstacle, the gradient decreases as the 

distance to the obstacle decreases, which allows the vehicle to 

cross the obstacle. Figure 4 shows the potential field generated 

by this function for a similar situation to that of Fig. 3. 

 

 
Fig. 3. Non-crossable obstacle potential field. 

 
Fig.  4. Crossable obstacle potential field. 

3) Road lane boundaries 

In a structured road, the vehicle should not cross the road 

lane markers unless a lane change is desired. To avoid 

undesirable lane marker crossings, PFs are defined for lane 

markers: 

 𝑈𝑈𝑅𝑅𝑞𝑞(𝑋𝑋,𝑌𝑌) = �𝑎𝑎𝑞𝑞 �𝑠𝑠𝑅𝑅𝑞𝑞(𝑋𝑋,𝑌𝑌) − 𝐷𝐷𝑎𝑎�2 𝑠𝑠𝑅𝑅𝑞𝑞(𝑋𝑋,𝑌𝑌) < 𝐷𝐷𝑎𝑎
0                                     𝑠𝑠𝑅𝑅𝑞𝑞(𝑋𝑋,𝑌𝑌) > 𝐷𝐷𝑎𝑎 , (20) 

 

where 𝑠𝑠𝑅𝑅𝑞𝑞 is the SD of the vehicle from the lane marker, 𝐷𝐷𝑎𝑎 is 

the allowed distance from the lane marker, index 𝑞𝑞 = 𝑣𝑣, 𝑙𝑙 
denotes the right or left lane marker, and 𝑎𝑎𝑞𝑞 , is the intensity 

parameter calculated by assigning the lane marker potential 

parameter, 𝑈𝑈𝑙𝑙𝑚𝑚𝑎𝑎 , to the PF at zero SD. 

If a lane keeping is intended, the right and left lane markers 

are the ones on which the PFs are implemented. If a lane 

change is intended, the PF is not implemented on the lane 

marker that can be crossed for the lane change. It is 

implemented on the next lane marker instead.  

The lane marker PFs are defined with quadratic functions, 

and their gradients increase linearly as the SD decreases. 

Therefore, the vehicle can cross the lane markers to any 
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extent, but the farther the vehicle goes from the middle of the 

lane the harder the PF pushes it toward there. Figure 5 shows 

the road PF for a lane change maneuver on a two lane road.  

 

 

Fig.  5. Lane changing road potential field. 

C. Path planning 

In this section, a model predictive path planning controller 

is developed with the presented vehicle dynamics model. The 

presented potential field for obstacles and road regulations is 

added to the controller objective to include the general 

obstacle avoidance and road regulation observation to the 

model predictive path planning system. With this objective, 

the path planning system has the vehicle dynamics 

consideration of an optimal control path planning method and 

the generality of a potential field method in considering 

different functions for the obstacles and road structures.  

The model predictive controller predicts the response of the 

vehicle up to a horizon, and optimizes the vehicle dynamics, 

command following, obstacle avoidance, and road regulations 

observation up to that horizon based on the predicted values. 

For this optimal control problem, it is assumed that the desired 

lane and speed are predefined. Therefore, the desired lateral 

position, which is the center of the desired lane, and the 

desired longitudinal velocity are the outputs to be tracked: 

 𝒚𝒚 = [𝑌𝑌 𝑢𝑢]𝑇𝑇 , (21) 𝒚𝒚𝒅𝒅𝒅𝒅𝒅𝒅 = [𝑌𝑌𝑑𝑑𝑒𝑒𝑠𝑠 𝑢𝑢𝑑𝑑𝑒𝑒𝑠𝑠]𝑇𝑇 , (22) 𝑌𝑌𝑑𝑑𝑒𝑒𝑠𝑠 = �𝑙𝑙𝑑𝑑𝑒𝑒𝑠𝑠 − 1

2
� 𝐿𝐿𝑤𝑤 + 𝛥𝛥𝑌𝑌𝑅𝑅 , (23) 

 

where 𝒚𝒚 is the output matrix tracking the desired output 

matrix, 𝒚𝒚𝒅𝒅𝒅𝒅𝒅𝒅, 𝑌𝑌𝑑𝑑𝑒𝑒𝑠𝑠 is the desired lateral position, 𝑢𝑢𝑑𝑑𝑒𝑒𝑠𝑠 is the 

desired vehicle speed, 𝐿𝐿𝑤𝑤 is the lane width, 𝛥𝛥𝑌𝑌𝑅𝑅 is the lateral 

offset of the road compared to a straight road, and 𝑙𝑙𝑑𝑑𝑒𝑒𝑠𝑠 is the 

index number of the desired lane counted from the right.  

There are some road regulations on the minimum and 

maximum speed limits that the vehicle should not violate. 

Moreover, since the tire longitudinal and lateral forces cannot 

exceed the friction ellipse, the model predictive controller 

should consider this limitation in its prediction to have an 

accurate prediction. Therefore, constraints are applied on the 

vehicle speed and tire forces to restrict their changes: 

 𝑢𝑢𝑚𝑚𝑖𝑖𝑛𝑛 < 𝑢𝑢 < 𝑢𝑢𝑚𝑚𝑎𝑎𝑥𝑥 , (24) � 𝐹𝐹𝑥𝑥𝑇𝑇𝐹𝐹𝑥𝑥𝑇𝑇−𝑚𝑚𝑎𝑎𝑥𝑥�2 + � 𝐹𝐹𝑦𝑦∗𝐹𝐹𝑦𝑦∗−𝑚𝑚𝑎𝑎𝑥𝑥�2 < 1, ∗= 𝑓𝑓, 𝑣𝑣, (25) 

where 𝐹𝐹𝑥𝑥𝑇𝑇−𝑚𝑚𝑎𝑎𝑥𝑥 is the maximum total longitudinal tire force, 𝐹𝐹𝑦𝑦∗−𝑚𝑚𝑎𝑎𝑥𝑥, for ∗= 𝑓𝑓, 𝑣𝑣, is the maximum front or rear lateral tire 

force, and 𝑢𝑢𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑢𝑢𝑚𝑚𝑎𝑎𝑥𝑥 are the minimum and maximum 

speed limits. In most cases, there is no minimum speed limit, 

so it is set to zero, and the desired speed is assigned to the 

maximum speed limit. It is notable that the constraints on the 

tire forces limit the sideslip angles to remain in intervals in 

which the tires’ lateral forces behave almost linearly [13].  

The constraints of (24) and (25) are applied in the optimal 

control problem as soft constraints. A soft constraint can be 

violated, but its violation is penalized. A slack variable is 

added to the constraint equation to allow some violation and 

constructs a penalty term in the objective function of the 

optimal control problem to penalize the violation. It is notable 

that although surpassing the tire ellipses is physically 

impossible, the constraints on the tire forces are considered 

soft to avoid possible feasibility issues due to errors in 

estimated vehicle states. Moreover, these constraints are 

quadratic and cannot be used in a quadratic optimal control 

problem. Each of the elliptical constraints is approximated by 

affine constraints through approximating the ellipse by an 

octagon inscribed in it.  

The optimal control problem of the path planning is: 

 

min𝒖𝒖𝒄𝒄,𝜺𝜺 �𝑈𝑈𝑡𝑡+𝑘𝑘,𝑡𝑡 + �𝒚𝒚𝑡𝑡+𝑘𝑘,𝑡𝑡 − 𝒚𝒚𝒅𝒅𝒅𝒅𝒅𝒅𝑡𝑡+𝑘𝑘,𝑡𝑡�𝑸𝑸2 + �𝒖𝒖𝒄𝒄𝑡𝑡+𝑘𝑘−1,𝑡𝑡�𝑹𝑹2𝑁𝑁𝑝𝑝
𝑘𝑘=1

+ �𝒖𝒖𝒄𝒄𝑡𝑡+𝑘𝑘−1,𝑡𝑡 − 𝒖𝒖𝒄𝒄𝑡𝑡+𝑘𝑘−2,𝑡𝑡�𝑺𝑺2 + ‖𝜺𝜺𝑘𝑘‖𝑷𝑷2 , 

(26) 

s.t. (𝑘𝑘 = 1, … ,𝑁𝑁𝑝𝑝)  𝒙𝒙𝑡𝑡+𝑘𝑘,𝑡𝑡 = 𝑨𝑨𝒅𝒅𝒙𝒙𝑡𝑡+𝑘𝑘−1,𝑡𝑡 + 𝑩𝑩𝒅𝒅𝒖𝒖𝒄𝒄𝑡𝑡+𝑘𝑘−1,𝑡𝑡 , (27) 𝒚𝒚𝑡𝑡+𝑘𝑘,𝑡𝑡 = 𝑪𝑪𝒙𝒙𝑡𝑡+𝑘𝑘,𝑡𝑡 + 𝑫𝑫𝒖𝒖𝒄𝒄𝑡𝑡+𝑘𝑘,𝑡𝑡 , (28) 𝒚𝒚𝒅𝒅𝑡𝑡+𝑘𝑘,𝑡𝑡 = 𝑪𝑪𝒅𝒅𝒙𝒙𝑡𝑡+𝑘𝑘,𝑡𝑡 + 𝑫𝑫𝒅𝒅𝒖𝒖𝒄𝒄𝑡𝑡+𝑘𝑘,𝑡𝑡 , (29) 𝒚𝒚𝒅𝒅𝑡𝑡+𝑘𝑘,𝑡𝑡 ≤ 𝒚𝒚𝒅𝒅−𝒎𝒎𝒎𝒎𝒙𝒙 +  𝜺𝜺𝑘𝑘 , (30) 𝜺𝜺𝑘𝑘 ≥ 0, (31) 𝜺𝜺𝑘𝑘+1 = 𝜺𝜺𝑘𝑘 , 𝑘𝑘 ≠ 𝑐𝑐1𝑁𝑁𝑟𝑟𝑠𝑠 + 1 ,      𝑐𝑐1 = 1, … ,𝑁𝑁𝑝𝑝/𝑁𝑁𝑟𝑟𝑠𝑠, (32) 𝒖𝒖𝒄𝒄−𝒎𝒎𝒎𝒎𝒎𝒎 < 𝒖𝒖𝒄𝒄𝑡𝑡+𝑘𝑘−1,𝑡𝑡 < 𝒖𝒖𝒄𝒄−𝒎𝒎𝒎𝒎𝒙𝒙, (33) 𝜟𝜟𝒖𝒖𝒄𝒄−𝒎𝒎𝒎𝒎𝒎𝒎 < 𝒖𝒖𝒄𝒄𝑡𝑡+𝑘𝑘−1,𝑡𝑡 − 𝒖𝒖𝒄𝒄𝑡𝑡+𝑘𝑘−2,𝑡𝑡 < 𝜟𝜟𝒖𝒖𝒄𝒄−𝒎𝒎𝒎𝒎𝒙𝒙, (34) 𝒖𝒖𝒄𝒄𝑡𝑡+𝑘𝑘,𝑡𝑡 = 𝒖𝒖𝒄𝒄𝑡𝑡+𝑘𝑘−1,𝑡𝑡 , 𝑘𝑘 > 𝑁𝑁𝑐𝑐 ,     𝑘𝑘 ≠ 𝑐𝑐2𝑁𝑁𝑟𝑟𝑐𝑐 +𝑁𝑁𝑐𝑐  , 𝑐𝑐2 = 1, … , �𝑁𝑁𝑝𝑝 − 𝑁𝑁𝑐𝑐�/𝑁𝑁𝑟𝑟𝑐𝑐 , 
(35) 𝒖𝒖𝒄𝒄𝑡𝑡−1,𝑡𝑡 = 𝒖𝒖𝒄𝒄(𝑡𝑡 − 1), (36) 𝒙𝒙𝑡𝑡,𝑡𝑡 = 𝒙𝒙(𝑡𝑡), (37) 

 

where 𝑡𝑡 + 𝑘𝑘, 𝑡𝑡 index denotes the predicted value at 𝑘𝑘 steps 

ahead of the current time 𝑡𝑡, 𝑁𝑁𝑝𝑝 is the prediction horizon, and 𝜺𝜺𝑘𝑘 is the vector of slack variables at 𝑘𝑘 steps ahead of the 

current time. The objective function includes the predicted 

potential field, and quadratic terms of tracking, inputs,  

changes in inputs, and slack variables with weighting matrices 𝑸𝑸, 𝑹𝑹, 𝑺𝑺, and 𝑷𝑷, respectively. The states are predicted through 

(27), which is obtained by discretizing (9) to obtain 𝑨𝑨𝒅𝒅 and 𝑩𝑩𝒅𝒅 

as the discrete state and input matrices. Equation (28) 

calculates the tracking outputs, where 𝑪𝑪 and 𝑫𝑫 are the output 

and feedforward matrices. The speed constraint (24) and the 

constraints of the octagon approximation of (25) are presented 

in (30), where 𝒚𝒚𝒅𝒅 is the vector of soft constraint variables and 



T-ITS-16-03-0129 6 

is bounded by 𝒚𝒚𝒅𝒅−𝒎𝒎𝒎𝒎𝒙𝒙, the vector of constraint bounds, and the 

slack variable vector is included to allow violation of the 

bounds. The constraint variables are linearized around the 

operating point, to be written as a function of states and inputs 

in (29), where 𝑪𝑪𝒅𝒅 and 𝑫𝑫𝒅𝒅 are the output and feedforward 

matrices. The computation cost is reduced by reducing the 

number of slack variables and control inputs in (32) and (35). 

The slack variable vector changes every 𝑁𝑁𝑟𝑟𝑠𝑠 prediction steps, 

and also after the first 𝑁𝑁𝑐𝑐 prediction steps, the control inputs 

change every 𝑁𝑁𝑟𝑟𝑐𝑐 steps. The control inputs and their changes 

are also constrained in (33) and (34) to satisfy the actuator 

limitations, where 𝒖𝒖𝒄𝒄−𝒎𝒎𝒎𝒎𝒎𝒎 and 𝒖𝒖𝒄𝒄−𝒎𝒎𝒎𝒎𝒙𝒙 are the matrices of the 

lower and upper bounds of the control input, and 𝜟𝜟𝒖𝒖𝒄𝒄−𝒎𝒎𝒎𝒎𝒎𝒎 and 𝜟𝜟𝒖𝒖𝒄𝒄−𝒎𝒎𝒎𝒎𝒎𝒎 are the matrices of the lower and upper bounds of the 

control inputs changes. 

 The presented optimal control problem can be solved for 

any PF. However, because of the nonlinear nonconvex PFs, 

the problem is nonlinear and nonconvex, and its solution is 

expensive. Its approximated quadratic convex problem can be 

solved noticeably faster. Thus, to reduce the calculation time, 

the problem is converted into a quadratic convex problem. To 

do so, the PFs are first approximated by convex functions.  

The PFs are defined on (𝑋𝑋,𝑌𝑌). Olfati-Saber [27] defines the 

obstacle PF only in the SD’s direction to generate the repellant 

force. For each obstacle and at each prediction step, the PFs 

defined in this paper is transformed to a coordinate, (𝜉𝜉𝑖𝑖 , 𝜂𝜂𝑖𝑖), 

that has one axis (𝜉𝜉𝑖𝑖) in the direction of the SD: 

 �𝜉𝜉𝑖𝑖𝜂𝜂𝑖𝑖� = � cos 𝛾𝛾 sin 𝛾𝛾− sin 𝛾𝛾 cos 𝛾𝛾� �𝑠𝑠𝑋𝑋𝑖𝑖𝑠𝑠𝑌𝑌𝑖𝑖�. (38) 

 

Figure 6 illustrates the coordinate transformation. The black 

coordinate is the road coordinate and the red coordinate is the 

SD coordinate, which is normalized with the safe distances. 

The red rectangle is the vehicle in this coordinate and 𝑠𝑠𝑖𝑖 is the 

SD. The vehicle position at the prediction step 𝑘𝑘 is anticipated 

based on the vehicle speed and heading angle at time step 𝑡𝑡. 
The angle between the SD at this position and 𝑠𝑠𝑋𝑋𝑖𝑖-axis is 𝛾𝛾. 

The blue coordinate, (𝜉𝜉𝑖𝑖 , 𝜂𝜂𝑖𝑖), is obtained by rotating the SD 

coordinate by this angle. 

 

 
Fig.  6. Coordinate transformation. 

The PFs defined in Section III can all be written as a 

function of 𝑠𝑠𝑖𝑖 instead of (𝑋𝑋,𝑌𝑌). In other word, for a PF, 𝑔𝑔:ℝ2 → ℝ, there is a function, ℎ:ℝ → ℝ, that ℎ(𝑠𝑠𝑖𝑖) =𝑔𝑔(𝑋𝑋,𝑌𝑌). Moreover, the PF, 𝑔𝑔, can be transformed from (𝑋𝑋,𝑌𝑌) 

to (𝜉𝜉𝑖𝑖 , 𝜂𝜂𝑖𝑖) by (38) to obtain the transformed PF, 𝑔𝑔𝑇𝑇:ℝ2 → ℝ, 

where 𝑔𝑔𝑇𝑇(𝜉𝜉𝑖𝑖 , 𝜂𝜂𝑖𝑖) = 𝑔𝑔(𝑋𝑋,𝑌𝑌). Considering the definition of the 

SD, the gradient and Hessian of 𝑔𝑔𝑇𝑇 are:  

 

𝑠𝑠𝑖𝑖 = � (𝜉𝜉𝑖𝑖2 + 𝜂𝜂𝑖𝑖2)1/2 𝑛𝑛𝑛𝑛 𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑡𝑡−(𝜉𝜉𝑖𝑖2 + 𝜂𝜂𝑖𝑖2)1/2 𝑖𝑖𝑛𝑛 𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡𝑎𝑎𝑐𝑐𝑡𝑡 , (39) 

∇𝑔𝑔𝑇𝑇 = �ℎ′ 𝜉𝜉𝑖𝑖𝑠𝑠𝑖𝑖 ℎ′ 𝜂𝜂𝑖𝑖𝑠𝑠𝑖𝑖 �𝑇𝑇 , (40) 

∇2𝑔𝑔𝑇𝑇 = ⎣⎢⎢
⎢⎡𝜉𝜉𝑖𝑖2𝑠𝑠𝑖𝑖2 ℎ′′ +

𝑠𝑠𝑖𝑖2 − 𝜉𝜉𝑖𝑖2𝑠𝑠𝑖𝑖3 ℎ′ 𝜉𝜉𝑖𝑖𝜂𝜂𝑖𝑖𝑠𝑠𝑖𝑖2 ℎ′′ − 𝜉𝜉𝑖𝑖𝜂𝜂𝑖𝑖𝑠𝑠𝑖𝑖3 ℎ′𝜉𝜉𝑖𝑖𝜂𝜂𝑖𝑖𝑠𝑠𝑖𝑖2 ℎ′′ − 𝜉𝜉𝑖𝑖𝜂𝜂𝑖𝑖𝑠𝑠𝑖𝑖3 ℎ′ 𝜂𝜂𝑖𝑖2𝑠𝑠𝑖𝑖2 ℎ′′ +
𝑠𝑠𝑖𝑖2 − 𝜂𝜂𝑖𝑖2𝑠𝑠𝑖𝑖3 ℎ′⎦⎥⎥

⎥⎤
, (41) 

 

where ℎ′ and ℎ′′ are the first and second derivatives of 

function ℎ with respect to 𝑠𝑠𝑖𝑖. From (40) it can be seen that, at 

the anticipated vehicle position, the gradient is in 𝜉𝜉𝑖𝑖 direction, 

i.e. the repellant force is only in the direction of the SD, as it is 

in [27]. Moreover, due to (41), the Hessian matrix is 

uncorrelated at the anticipated vehicle position in the new 

coordinate. Therefore, the function is convex at this position if 

both diagonal elements are non-negative. If any diagonal 

element is negative, the function is linearized at the 

corresponding direction of the element, using the first order 

Taylor series. The resulting function is a convex function 

convexified around the anticipated operating point. 

The convex function is then transformed to the original 

coordinate, (𝑋𝑋,𝑌𝑌). Since convexity holds for linear 

transformation, the transformed function is also a convex 

function. The whole process is equivalent to an eigenvalue 

decomposition process that only keeps the positive 

eigenvalues. Therefore, the Hessian of the resulted function is 

the closest positive definite matrix to the Hessian of the 

original function in terms of Frobenius norm [28].  

The resulted convex function is then approximated by a 

quadratic function through the second order Taylor series. The 

quadratic function is a close convex quadratic approximation 

of the original function around the nominal point; its gradient 

equals the original function’s gradient and its Hessian matrix 

is the closest positive definite matrix to the original function’s 

Hessian matrix in terms of Frobenius norm. The quadratic 

approximation adds a calculation time spent on 

transformations, first and second derivatives, and Taylor series 

approximations. However, the added time is negligible 

compared to the calculation time of the optimization problems.  

Using the resulted PFs, the optimal control problem is a 

convex quadratic optimization problem. The problem is 

similar to a corresponding nonlinear problem solved by 

Sequential Quadratic Programming (SQP) in one sequence. 

Boggs et al. [29] derives an upper bound for the optimization 

error of each sequence of SQP, where the optimization error is 

the difference between the result of the sequence and the local 

minimum of the nonlinear problem in the neighborhood of the 

problem’s initial value. Based on this upper bound, for the 

quadratic problem, the closer the problem’s initial value is to 

the minimum, which is equivalent to the anticipated vehicle 

point being closer to the vehicle position at the minimum, the 

smaller the optimization error. Moreover, the closer the 

calculated Hessian matrices of the PFs to their Hessian 

matrices at the minimum, the smaller the optimization error. 

Therefore, a PF with a smaller convex quadratic 

approximation error and a smaller variation of Hessian matrix 

in the neighborhood of the problem’s initial value result in a 
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smaller optimization error. In the next section, the 

performance and the calculation time of the nonlinear problem 

and the quadratic problem are compared for a scenario. The 

other scenarios are simulated only for the quadratic problem.   

IV. RESULTS 

A. Test scenarios 

Roads are dynamic environments with obstacles moving at 

different speeds in different lanes and positions. The roads 

themselves might be curved, and a lane might end or begin. 

Moreover, a vehicle might be required to change its lane or 

stay in the lane to take an exit or turn. For any combination of 

the obstacles, road, and intended lane, the undertaken 

maneuver might be different. In this paper, some test scenarios 

are defined to evaluate the performance of an autonomous 

driving system. Some normal scenarios for an autonomous 

driving system are:  

• Lane keeping on curved roads 

• Lane changing with no obstacle in the vicinity 

• Keeping a desired distance from the vehicle in front 

of the ego vehicle (adaptive cruise control) 

Other more complicated scenarios that an autonomous 

driving system should be able to perform include: 

• Lane changing while there are vehicles on the 

intended lane  

• Merging into a highway while there are vehicles on 

the right lane 

• A vehicle carelessly approaching the ego vehicle 

from the side 

• Non-crossable static obstacle on the lane 

• Crossable static obstacle on the lane 

The abovementioned complicated maneuvers are only some 

of the many cases that might happen when driving on a road. 

However, they can evaluate the performance of path planning 

systems in observing safety and road regulations. The first and 

second cases test the vehicle in observing safety and road 

regulations in a lane change. The vehicle should change the 

lane as soon as it is safe and keep its lane if it is not safe. In 

the second case, the current lane is ending and the vehicle may 

need to reduce its speed or even stop before the lane ends. The 

corresponding maneuvers of these situations include normal 

maneuvers such as lane changing and modifying speed to keep 

distance from the obstacles.  

The third case tests the path planning system in predicting 

the lateral movement of the obstacles and taking action in 

emergency situations while observing the road regulations. 

The vehicle should be able to predict the obstacle’s path and 

avoids the accident while keeping its lane, which is performed 

by keeping some space from the obstacle via accelerating or 

decelerating. It includes simple maneuvers such as lane 

keeping and keeping a safe distance from the obstacles.  

The fourth and fifth cases test the path planning system for 

observation of the road regulations. The vehicle should keep 

its lane; if there is enough lateral space on the lane, it should 

pass the obstacle on the side; otherwise, it should stop behind 

the obstacle or cross it. It also tests the path planning system 

for differentiating different obstacles. In the situation that 

there is not enough lateral space for passing the obstacle on 

the side, if the obstacle is not crossable, the vehicle should 

stop behind it, and if it is crossable, the vehicle should cross it.  

Altogether, these cases are appropriate for evaluating the 

performance of path planning systems in observing the safety 

and road regulations, obstacle avoidance, and longitudinal and 

lateral maneuverability. The following test scenarios are 

defined based on the above mentioned cases: 

Scenario 1: The vehicle is merging to a highway and its lane 

ends in 150m. It should change its lane from Lane 1 to Lane 2 

while there are three vehicles on Lane 2. There is not enough 

space between these vehicles for the ego vehicle to merge 

safely between them. 

Scenario 2: The vehicle starts on Lane 1 and is commanded to 

change its lane while there are three vehicles on Lane 2. There 

is enough space between these vehicles for the ego vehicle to 

go in between them. The road is curved with a radius of 300m 

for 𝑋𝑋=[200 250]m and a radius of -300m for 𝑋𝑋=[250 300]m.  

Scenario 3: The vehicle starts on Lane 1 and is commanded to 

stay on Lane 1. There is a vehicle on Lane 2 on the same 

longitudinal position and with the same speed as the ego 

vehicle. It moves laterally from the center of Lane 2 towards 

the center of Lane 1 with a constant lateral velocity in the time 

interval of 𝑡𝑡=[1 6]s. The ego vehicle should make enough 

space for it to avoid collision. 

Scenario 4: The vehicle starts on Lane 1 and is commanded to 

stay on Lane 1. There is a static non-crossable obstacle on 

Lane 1 located at 0.5m from the right boundary of the lane. 

The obstacle is assumed to be a square obstacle with 0.5m 

length, and there is enough lateral space on the lane for the 

vehicle to pass it. 
Scenario 5: The scenario is the same as Scenario 4 except that 

the obstacle is crossable.  

Scenario 6: The scenario is the same as Scenario 4 except that 

the obstacle is located at 1.5m from the right boundary of 

Lane 1, and therefore, there is not enough lateral space on the 

lane for the vehicle to pass the obstacle. 

Scenario 7: The scenario is the same as Scenario 6 except that 

the obstacle is crossable.  

The initial vehicle speed, 𝑢𝑢0, the desired vehicle speed. 𝑢𝑢𝑑𝑑𝑒𝑒𝑠𝑠, the speed of obstacle(s), 𝑢𝑢𝑜𝑜𝑖𝑖, and initial position of the 

obstacle(s) relative to the vehicle, 𝑋𝑋𝑜𝑜0𝑖𝑖, are listed in Table 1.  

 
TABLE 1 

TEST SCENARIO PARAMETERS 

 𝑢𝑢0 

(𝐾𝐾𝑚𝑚/ℎ) 
𝑢𝑢𝑑𝑑𝑒𝑒𝑠𝑠 

(𝐾𝐾𝑚𝑚/ℎ) 
𝑉𝑉𝑜𝑜1 

(𝐾𝐾𝑚𝑚/ℎ) 
𝑉𝑉𝑜𝑜2 

(𝐾𝐾𝑚𝑚/ℎ) 
𝑉𝑉𝑜𝑜3 

(𝐾𝐾𝑚𝑚/ℎ) 
𝑋𝑋𝑜𝑜01 

(𝑚𝑚) 
𝑋𝑋𝑜𝑜02 

(𝑚𝑚) 
𝑋𝑋𝑜𝑜03 

(𝑚𝑚) 
Scen. 1 100 100 100 100 100 -40 0 40 
Scen. 2 80 100 100 100 100 -25 0 25 
Scen. 3 80 80 80 - - 0 - - 
Scen. 4-7 80 80 0 - - 80 - - 

 

B. Simulation  

The proposed path planning controller is simulated on a 

vehicle system to evaluate the performance of the controller. 

The vehicle system used in the simulation is a model of a 

Chevrolet Equinox in CarSim software. The vehicle 

parameters used in the path planning controller are extracted 

from this vehicle model. The controller parameters are shown 

in Table 2 for a dry road. The vehicle is an electric vehicle 

with four wheel electric motors. It is notable that, the 
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longitudinal tire force calculated by the path planning 

controller is applied through the wheel motors and the brakes. 

The motor torque and brake torque that generates a quarter of 

the force are calculated and applied to each wheel. The upper 

and lower bounds on the longitudinal force in the table are 

based on the tires’ forces and motors’ and brakes’ torques 

capacities at the vehicle speed of 80Km/h. In this section, the 

controller is simulated for the scenarios presented in the 

previous section so that its performance in observing the road 

regulations, obstacle avoidance, and maneuverability is 

evaluated. The controller time step is 50ms. 

Scenarios 1 is a merging maneuver when there are moving 

obstacles on the other lane and the current lane is ending. The 

scenario is simulated for the nonlinear and quadratic path 

planning problems, and the simulation results are shown in 

Fig. 7. The paths of the ego vehicle and obstacles are shown in 

Fig. 7(a). In this figure, at some sample times, markers are 

used to demonstrate the position of the vehicle and obstacles; 

each shape represents a sample time, and each color represents 

each of the vehicle or obstacles. As it is shown, the vehicle 

waits for all the obstacles to pass; the potential fields of the 

obstacles keep the vehicle away from Lane 2 when there are 

obstacles occupying it. Moreover, a potential field of a static 

obstacle located at the end of Lane 1 is added to the existing 

potential field to keep the vehicle from passing the end of the 

lane. Due to this potential field, the vehicle reduces its speed 

and avoids passing the end of the lane. After all the obstacles 

pass, the vehicle changes its lane safely. At the end of the lane 

change, the potential field of the left lane boundary keeps the 

vehicle from going out of the road.  

TABLE 2 

CONTROLLER PARAMETERS 

Parameter Value Unit Parameter Value Unit 𝑚𝑚 2271 𝐾𝐾𝑔𝑔 𝐷𝐷𝑎𝑎 0.5 𝑚𝑚 𝐼𝐼𝑧𝑧 4600 𝐾𝐾𝑔𝑔 𝑚𝑚2 𝐹𝐹𝑥𝑥𝑇𝑇−𝑚𝑚𝑎𝑎𝑥𝑥 24800 𝑁𝑁 𝑙𝑙𝑓𝑓 1.421 𝑚𝑚 𝐹𝐹𝑦𝑦𝑓𝑓−𝑚𝑚𝑎𝑎𝑥𝑥 10400 𝑁𝑁 𝑙𝑙𝑟𝑟  1.434 𝑚𝑚 𝐹𝐹𝑦𝑦𝑟𝑟−𝑚𝑚𝑎𝑎𝑥𝑥 10600 𝑁𝑁 𝐶𝐶𝑓𝑓 132000 𝑁𝑁 𝑁𝑁𝑝𝑝 20 - 𝐶𝐶𝑟𝑟 136000 𝑁𝑁 𝑁𝑁𝑐𝑐  5 - 𝛥𝛥𝑋𝑋0 1 𝑚𝑚 𝑁𝑁𝑟𝑟𝑐𝑐  5 - 𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥 9 𝑚𝑚/𝑠𝑠2 𝑁𝑁𝑟𝑟𝑠𝑠 10 - 𝑎𝑎𝑛𝑛 1 𝑚𝑚/𝑠𝑠2 𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎 −[24800 0.2] - 𝑇𝑇0 0.25 𝑠𝑠 𝒖𝒖𝒎𝒎𝒎𝒎𝒙𝒙  [13000 0.2] - 𝜇𝜇 0.9  - 𝚫𝚫𝒖𝒖𝒎𝒎𝒎𝒎𝒎𝒎 −[1600 0.02] - 𝐿𝐿𝑤𝑤 3.5  𝑚𝑚 𝚫𝚫𝒖𝒖𝒎𝒎𝒎𝒎𝒙𝒙  [1600 0.02] - 𝑈𝑈𝑠𝑠𝑎𝑎𝑓𝑓 1 - 𝑸𝑸 [0.2 0.01] - 𝑈𝑈𝑎𝑎𝑐𝑐𝑐𝑐 10 - 𝑹𝑹 [2𝑒𝑒 − 9 100] - 𝑈𝑈𝑢𝑢𝑛𝑛𝑐𝑐 2 - 𝑺𝑺 [5𝑒𝑒 − 8 500] - 𝑈𝑈𝑙𝑙𝑚𝑚𝑎𝑎 2 -    

 

The scenario is simulated for the nonlinear and quadratic 

problems. As it can be seen, the quadratic path planning 

system imitates the behavior of the nonlinear path planning 

system. The difference between the simulation results is only 

noticed closer to the end of the lane. At this location, the 

required large deceleration causes an error in the anticipated 

longitudinal vehicle position. Moreover, since the anticipated 

vehicle position is too close to the end of the lane, the error in 

approximating the hyperbolic PF of the end of the lane by a 

quadratic convex function becomes more noticeable. These 

two sources cause the differences in the results of the 

quadratic problem. Despite the differences, the performance of 

 

 
(a) 

  
(b) (c) 

  
(d) (e) 

Fig.  7. Scenario 1 for nonlinear and quadratic problem , (a) Paths of vehicle and obstacles, blue: Vehicle for nonlinear problem, green: Vehicle for quadratic 

problem, red: Obstacle 1, purple: Obstacle 2, white: Obstacle 3, (b) Longitudinal force command and vehicle speed for nonlinear problem, (c) steering angle 

command and lateral acceleration for nonlinear problem, (d) Longitudinal force command and vehicle speed for quadratic problem, (e) steering angle command 

and lateral acceleration for quadratic problem. 
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the quadratic problem is comparable to that of the nonlinear 

problem. On the other hand, the average calculation time of 

the nonlinear problem for a time step of this simulation is 

21.03s while that of the quadratic problem is 0.0094s. It is 

notable that since the step time is 0.05s, the quadratic problem 

can be solved in real time. The other scenarios are simulated 

for the quadratic problem.  

Scenario 2 is a lane change while there are moving 

obstacles on the intended lane. Figure 8 shows the simulation 

results for this scenario. Since there is a moving obstacle on 

the vehicle’s side, the vehicle cannot proceed with the lane 

change immediately; the potential fields of the obstacles keep 

the vehicle away from Lane 2. The vehicle slightly reduces its 

speed, and waits for the obstacle on its side to pass. When 

there is enough distance to the obstacles in front and behind of 

the vehicle, it moves to the other lane while keeping its 

distance from the both obstacles by adjusting its speed. The 

lateral movements of the vehicle and its speed changes are 

according to the PFs keeping the vehicle away from the 

obstacles. It can also be seen that the path planning system can 

handle the maneuvers on a curved road. 

In this scenario, the vehicle merges in between the obstacles 

since there is enough space. In Scenario 1, there was less 

space between the obstacles and also the vehicle’s speed was 

largely different from obstacles’ speeds. Therefore, going in 

between the obstacles was not safe enough and the potential 

fields of the obstacles kept the vehicle in Lane 1 until all the 

obstacles passed the vehicle and the lane change was safe. 

The third scenario is when a moving obstacle beside the 

vehicle carelessly changes its lane to the vehicle’s current 

lane. The simulation results for Scenario 3 are shown in Fig. 9. 

Due to the potential field of the obstacle, the vehicle reduces 

its speed to make some space for the obstacle, and moves to 

the right to keep its lateral distance from the obstacle and 

avoid collision. The potential field of the right boundary lane, 

on the other hand, leads the vehicle towards the middle of the 

lane and keeps the vehicle in the lane. By the time the obstacle 

is on the middle lane marker, the vehicle has made around 

10m longitudinal space to make a safe distance with the 

obstacle. The vehicle goes back towards the center of the lane, 

 
(a) 

  
(b) (c) 

Fig.  8. Scenario 2, (a) Paths of vehicle and obstacles, blue: Vehicle, red: Obstacle 1, purple: Obstacle 2, white: Obstacle 3, (b) Longitudinal force command and 

vehicle speed, (c) steering angle command and lateral acceleration.  
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(a) 

  
(b) (c) 

Fig.  9. Scenario 3, (a) Paths of vehicle and obstacle, blue: Vehicle, red: Obstacle (b) Longitudinal force command and vehicle speed, (c) steering angle 
command and lateral acceleration. 
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due to the right lane boundary PF, after making enough 

longitudinal space for obstacle avoidance. 

Scenarios 4-7 are designed to show different responses of 

the path planning system to different kinds of obstacles. Two 

kinds of obstacles are considered: crossable obstacles and non-

crossable obstacles. Scenarios 4 and 5 are when there is a 

crossable or non-crossable obstacle on the current lane of the 

vehicle, but there is enough lateral space to pass the obstacle 

on the side. The simulation results for these scenarios are 

shown in Fig. 10. The PFs of the obstacles lead the vehicle to 

the left of the lane, and the road potential field leads the 

vehicle to the right.  As a result, the vehicle moves slightly to 

the left to pass the obstacle while it stays on the lane. At the 

time that the vehicle passes the obstacle, the lateral distance 

between the boundary of the obstacle and that of the vehicle is 

around 0.6m for both Scenarios 4 and 5. After the vehicle 

passes the obstacle, the road potential field leads the vehicle 

back to the lane center. Moreover, the vehicle speed does not 

change noticeably in any of the cases, as expected. It is 

notable that the obstacle of Scenario 4 is static, and therefore, 

its potential field is sharper, which lets the vehicle passes it on 

the side with a smaller margin. 

Scenarios 6 and 7 are where there is a crossable or non-

crossable obstacle on the current lane of the vehicle, and there 

is not enough lateral space to pass the obstacle on the side. 

The simulation results of these scenarios are shown in Fig. 11. 

As the results show, the potential field of the non-crossable 

obstacle leads the vehicle to stop behind the obstacle. The 

crossable obstacle, however, is crossed while the vehicle does 

not change its speed considerably, showing the appropriate 

choice of the crossable obstacle PF. Moreover, for both cases, 

the vehicle does not move noticeably in the lateral direction.  

V. CONCLUSION 

In this paper, a model predictive path planning controller 

was introduced utilizing potential field concept for its obstacle 

avoidance. Model predictive path planning controllers predict 

the vehicle dynamics and generate the optimal path based on 

the vehicle dynamics. They usually consider obstacles and 

road regulations as constraints, which although guarantees an 

obstacle avoidance, limits their capability in considering 

different kinds of obstacles and road structures. Potential field 

path planning methods, on the other hand, can consider 

different PFs for different obstacles and road structures, but 

they do not consider vehicle dynamics in path planning. The 

combination of these two methods is used in this paper, which 

can have the advantage of both considering different PFs for 

different obstacles and road structures and having feasible 

maneuverability due to predicting vehicle dynamics. In 

addition, appropriate choice of parameters of a PF can provide 

enough potential force to avoid an obstacle. Therefore, even 

for the obstacles that must be avoided, a PF is advantageous 

over an obstacle avoidance constraint; it not only avoids the 

obstacle, but also keeps the vehicle at an appropriate distance 

from the obstacle. The conditions guaranteeing obstacle 

avoidance of a PF can be studies in future works. 

Different PFs were presented for crossable and non-

crossable obstacles, and road lane markers. A model 

predictive path planning controller with a vehicle dynamics 

model was considered to follow the mission planning 

commands including the desired speed and commanded lane. 

 

 
(a) 

  
(b) (c) 

  
(d) (e) 

Fig.  10. Scenario 4 and 5, (a) Vehicle’s path and obstacles’ position, blue: Vehicle of Scenario 4, purple: Vehicle of Scenario 5, red: Obstacle (b) Longitudinal 

force command and vehicle speed in Scenario 4, (c) Steering angle command and lateral acceleration in Scenario 4, (d) Longitudinal force command and vehicle 
speed in Scenario 5, (e) Steering angle command and lateral acceleration in Scenario 5. 
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The potential field was included in the controller’s objective 

for obstacle avoidance and observing road regulations.  

The optimal control problem is nonlinear and to reduce the 

computational time, the problem was approximated by a 

quadratic convex problem. The calculation time and the 

performance of the nonlinear and quadratic problems were 

compared by simulation. The results showed that although the 

approximation can cause errors in the result of the quadratic 

problem, the performance of the quadratic problem was 

acceptable with a fraction of time needed to solve the 

nonlinear problem. Further investigations should be performed 

on the range of validity of the approximation. 

Some complex test scenarios were defined to evaluate the 

performance of the proposed path planning controller. The 

simulations were using high fidelity vehicle models in 

CarSim, although the vehicle model of the path planning 

controller was a linear bicycle model. The results showed the 

capability of the introduced path planning method in 

preforming appropriate maneuvers in complicated scenarios. 

When a lane change is commanded from the mission planning 

module, the vehicle does not change its lane unless it is safe to 

do so. The vehicle merges in between two vehicles if there is 

enough space between them and it is safe to merge. If the 

current lane is ending, and a lane change is not safe, the 

vehicle reduces its speed or even stops before the lane ends, 

and changes its lane only when it is safe to do so. If a vehicle 

is approaching the vehicle from the side carelessly, the vehicle 

makes space for it as much as possible while staying on the 

road. Moreover, an advantage of the proposed method is 

treating different kinds of obstacles differently. If an obstacle 

is not crossable and there is not enough space on the side to 

pass, the vehicle stops behinds it. On the other hand, if an 

obstacle is crossable and there is not enough space on the side 

to pass, the vehicle crosses the obstacle. For both kinds of 

obstacles, the vehicle passes them on the side, if possible. For 

all these different complicated scenarios, potential fields keep 

the vehicle away from the obstacles and road boundaries, and 

the tracking terms of the objective functions guide the vehicle 

toward their desired speed and lane.  

The proposed path planning method is capable of including 

different obstacles and road structures in the optimal control 

problem with different PFs to include importance and 

priorities. Moreover, since the vehicle dynamics is used as the 

prediction model, the planned path is the optimal path in terms 

of vehicle dynamics.  
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