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Abstract. Effective therapies are limited for pancreatic 

cancer, particularly for those with distant tumour metastases. 

Therefore, more individualised drug screening is urgently 

required. Next-generation sequencing (NGS) is a powerful 

tool to investigate the genomic landscape of patients and the 

mechanism of drug response, which may provide a broader 

vision for potential clinical drug screening. Patient-derived 

xenograft (PDX) models may have a significant advantage in 
predicting clinical treatment response. In our previous study, 

a PDX of pancreatic cancer bone metastasis was established, 

and NGS was conducted to investigate the molecular infor-

mation. In the present study, these data were further analysed 

and fibroblast growth factor receptor 1 (FGFR1) amplifica-

tion was identified in a panel of 416 cancer‑associated genes. 
Thus, AZD4547, an inhibitor against FGFR, was selected as 
a potential therapy, and was evaluated using the PDX model. 

AZD4547 was shown to exhibit antitumor activity by reducing 

the expression of FGFR1 and its targets. The present study also 
demonstrated the high potential of the novel NGS/PDX-based 

drug screening platform to improve individualised cancer 

treatment.

Introduction

The efficacy of traditional chemoradiotherapies remains 

limited for pancreatic cancer (1-3), which is expected to be 

the second most lethal malignancy in the USA by 2020 (4,5). 
Distant tumour metastases, frequently in the liver or peritoneum 

and rarely in the bone, indicate a poor prognosis (6,7). Thus, 
effective targeted therapies are urgently warranted. Therefore, 

individualised drug screening is urgently required for the 

clinical treatment of pancreatic cancer patients, particularly 

those in advanced or metastatic disease stages (8-11).

Accumulating evidence indicates that patient-derived 

xenografts (PDXs) are reliable cancer research tools for 

personalised drug screening, and they have been increas-

ingly used in various types of translational cancer research in 

recent years (12). These so-called Avatar models mimic the 

morphological and molecular characteristics of the tumour 

and predict clinical treatment response (13), as they are formed 

when tissue from a patient's tumour is grafted onto a mouse or 

other animal (14).
Adequate understanding of the genomic landscape of pancre-

atic cancer can be beneficial for drug screening (10,15‑17), 
and the precise molecular profile of the tumour assists in 

predicting drug responses (18). Next-generation sequencing 

(NGS) is a powerful tool to investigate the genomic landscape 

of patient tumours and the mechanism of drug response, 

which may provide a broader vision for potential clinical drug 

screening (19-21). Therefore, NGS technologies are being used 

by pharmaceutical companies throughout the drug discovery 

process (22).

In our previous study, a PDX model was established 

from pancreatic cancer bone metastasis tumour tissue, and 

a 416‑gene exon panel was sequenced to investigate the 
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molecular characteristics of the tumour (23). In the present 

study, the NGS high-throughput information was further 

analysed to search for individualised therapy targets for 

pancreatic cancer patients with bone metastasis. Based on 

the sequencing results and associated literature, AZD4547, a 
potent inhibitor of fibroblast growth factor receptor (FGFR), 
was selected for evaluation in the pancreatic cancer PDX 

model and was examined as a potential therapy (24).

Materials and methods

Reagents and drugs. AZD4547 (cat. no. S2801) and 
capecitabine (cat. no. S1156) were purchased from Selleck 
Chemicals (Shanghai, China). The antibodies against FGFR1 
(cat. no. ab63601), phosphorylated protein kinase B (p‑Akt; 
phospho S473, cat. no. ab227748) and Ki‑67 (OTI5D7; cat. 
no. ab156956) were purchased from Abcam (Shanghai, China).

Establishment of a PDX model and NGS. Pancreatic cancer 

bone metastasis (diagnosed as adenocarcinoma) tissues were 

used to establish a PDX model subsequent to being obtained 

at surgery from a 67‑year‑old female patient. Written consent 
was provided by the patient and ethical approval was obtained 

from the Ethics Committee of The First Affiliated Hospital, 
Zhejiang University School of Medicine (Hangzhou, China). 

In total, 50 (range, 4‑6 weeks) female BALB/c nude mice 
(12‑16 g) were purchased from Shanghai Laboratory Animal 
Center (Shanghai, China) for establishing PDX models. 

The mice were kept at 26‑28˚C, with 40‑60% humidity at a 
10 h/14 h light/dark cycle. Mice were kept in a SPF environ-

ment. Tumour tissues were harvested from PDX models for 

NGS investigation in a 416‑gene exon panel, as conducted by 
Geneseeq Technology, Inc (Nanjing, China). The protocol for 

establishment of the PDX model and NGS was as previously 

described (23).

Treatment protocol. From the 3rd mouse generation, PDX 
tumours were permitted to grow to a volume of 150‑200 mm3, 

and then mice were randomised (6 mice with tumors were 
set per group and housed in per rearing cage). AZD4547 
and capecitabine were administered daily for 4 weeks at the 
following doses: 50 mg/kg oral AZD4547, 1.0 mM/kg oral 
capecitabine (1 ml saline administered orally for control 

group). Mice were weighed for signs of toxicity and tumour 

size was evaluated once per week. Animals were monitored 

periodically for their weight with an electronic balance and 

tumour growth was measured with a Vernier caliper once per 

week. Tumour volume was calculated according to the formula 

V=LD x (SD)2/2, where V represents the tumour volume, and 

LD and SD are the longest and shortest tumour diameters, 

respectively. Relative tumour growth inhibition (TGI) (%) was 
calculated using the formula (1-T/C), where T represents the 

relative tumour volume of the treated mice and C represents 

the relative tumour volume of the control mice. Euthanasia 

was conducted on the mice prior to the single tumour volume 

reaching 1,500 mm3. The usage of experimental animals was 

according to the Principles of Laboratory Animal Care (NIH 

no. 85‑23, 1985 version). All animal studies were according to 
the Institutional Animal Care and Use Committee of Zhejiang 

University and the approval ID was SYXK(ZHE)2005‑0072.

Fluorescence immunohistochemistry. Mice with similar 

tumour sizes were anaesthetised with chloral hydrate 

(4%) at 300 mg/kg by intraperitoneal injection. The vascula-

ture was perfused with 4% paraformaldehyde in 0.1 mol/l PBS 
by inserting an 18-gauge cannula into the left ventricle aorta. 

Next, the xenograft tumour was removed and stored in 4% 
paraformaldehyde in 0.1 mol/l PBS for 2 h at 4˚C. Subsequent 
to a rinse in PBS, tumour tissues were incubated in 30% 
sucrose overnight at 4˚C and frozen with liquid nitrogen for 
1 min for cryostat sectioning (8-10 µm) after being embedded 

in optimal cutting temperature compound. Cryostat sections 

were fixed in acetone for ~10 min. The slides were allowed 
to air dry for 30 min and were washed 3 times for 5 min each 
in PBS. Samples were subsequently incubated in 5% bovine 
serum albumin (Beijing Solarbio Science & Technology Co., 

Ltd., Beijing, China) in PBS for 30 min at room temperature 

to block non‑specific antibody binding. Following blocking 
with a non-specific antibody, the slides were incubated in 

two primary antibodies [FGFR1 (dilution, 1:100) and p‑Akt 
(dilution, 1:25)] overnight at room temperature. The slides 
were then incubated for 1 h at 37˚C with fluorescent (Cy3‑ or 
FITC‑conjuncted) secondary antibodies (goat anti‑rat; dilution, 
1:50; cat. no. E670005; Sangon Biotech Co., Ltd., Shanghai, 
China). All slides were counterstained with DAPI (Invitrogen; 

Table I. Gene amplification identified by next‑generation 
sequencing.

Gene Fold‑change

FGFR1 3.1
MYC 2.3

PIK3CA 2.2

RECQL4 3.0
SOX2 2.7

FGFR1, fibroblast growth factor receptor 1; MYC, MYC proto‑ 
oncogene; PIK3CA, phosphatidylinositol‑4,5‑bisphosphate 3‑kinase 
catalytic subunit α; RECQL4, RecQ‑like helicase 4; SOX2, 
SRY-box 2.

Figure 1. AZD4547 inhibits tumour growth in a patient‑derived xenograft 
model of pancreatic cancer bone metastasis. *P<0.05 and **P<0.01. Error 

bars indicate the standard deviation. NS, saline; CAP, capecitabine; AZD, 

AZD4547.
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Thermo Fisher Scientific, Inc., Waltham, MA, USA) at room 
temperature for 20 min. Tissue sections were imaged using 

an Olympus BX51 fluorescence microscope (magnification, 
x200; Olympus Corporation, Tokyo, Japan).

Immunohistochemistry. Tumour specimens were fixed in 10% 
neutral formalin at 4˚C for 6 h, then embedded in paraffin, 
sectioned (5‑µm thick) and placed on slides for marker analysis. 
Sections were incubated with the primary antibody (Ki‑67, 
dilution, 1:150) overnight at 4˚C, after blocking for non‑specific 
antibody (goat anti‑rat, 1:50, Shanghai cat. no., C516337; 
Sangon Biotech Co., Ltd.) binding at 4˚C overnight. The 
streptavidin-biotin-peroxidase complex method (Lab Vision, 

Fremont, CA) was used for immunohistochemistry (25). 
Images of the slides were captured using an Olympus BX60 
(Olympus Corporation).

Statistical analysis. The results are presented as the 

mean ± standard deviation. Calculations and statistics were 

performed with Excel 2010 (Microsoft Corporation, Redmond, 

WA, USA) and GraphPad Prism 5 (GraphPad Software, Inc., 
La Jolla, CA, USA). One-way analysis of variance (ANOVA) 

was used to analyse the significance of differences among 
groups. Bonferroni's correction was the post hoc test used 

following one‑way ANOVA. P<0.05 was considered to indi-
cate a statistically significant difference.

Results

NGS of pancreatic cancer bone metastasis in a PDX model 

highlights FGFR1 as a potential therapeutic target. Based 

on a 416‑gene exon NGS panel, our previous study focused 

on gene polymorphisms/mutations, while the present study 

focused on gene amplification (Table I). FGFR1, MYC, 
PIK3CA, RECQL4 and SOX2 genes were found to be ampli-
fied, among which FGFR1 was amplified with the most 
significant fold‑change (3.1‑fold), while the fold change for 
the remaining were the following: RECQL4 3.0, SOX2 2.7, 
MYC 2.3, and PIK3CA 2.2. Therefore, AZD4547, a potent 
inhibitor of FGFR, was selected as a potential therapy to be 
evaluated in our PDX model.

Growth of pancreatic cancer bone metastasis in a PDX model 

is lower in AZD4547‑treated mice. To test whether the PDX 

model of pancreatic cancer bone metastasis was sensitive to 

FGFR inhibition, the ability of AZD4547 to inhibit tumour 
growth was evaluated. Capecitabine, a chemotherapy drug, was 

used as a positive control. When the tumour volume reached 

Figure 3. Immunohistochemical expression of Ki‑67 in a patient‑derived xenograft model of pancreatic cancer bone metastasis following AZD4547 treatment. 

*P<0.05. Error bars indicate the standard deviation. Ki‑67, marker of proliferation; NS, saline; CAP, capecitabine; AZD, AZD4547.

Figure 4. Fluorescence immunohistochemical expression of p‑Akt in a patient‑derived xenograft model of pancreatic cancer bone metastasis following 
AZD4547 treatment. *P<0.05. Error bars indicate the standard deviation. p‑Akt, phosphorylated protein kinase B; NS, saline; CAP, capecitabine; AZD, 
AZD4547.

Figure 2. Fluorescence immunohistochemical expression of FGFR1 in a patient‑derived xenograft model of pancreatic cancer bone metastasis following 
AZD4547 treatment. *P<0.05. Error bars indicate the standard deviation. FGFR1, phosphorylated fibroblast growth factor receptor 1; NS, saline; CAP, 
capecitabine; AZD, AZD4547.
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150‑200 mm3, saline, AZD4547 (50 mg/kg), capecitabine 
(1.0 mM/kg) or the two drugs together was administered orally 

once per day for 28 days. The mice were sacrificed and excised 
tumours were measured. Mice treated with AZD4547 alone 
exhibited increased tumour growth inhibition (TGI, 43.1%) 
compared with those treated with capecitabine alone (TGI, 

12.9%), while the combination of the two demonstrated a 
synergistic effect, with a TGI of 70.5% (Fig. 1).

Expression of FGFR1 and downstream targets is reduced 

in pancreatic cancer bone metastasis in a PDX model in 

AZD4547‑treated mice. Prior to drug treatment, PDX tumour 

tissue was identified by fluorescence immunohistochemistry 
to exhibit high expression of FGFR1, which was significantly 
suppressed following AZD4547 treatment (Fig. 2). AKT pathway 
has been reported to be regulated by upstream FGFR1 (26). 
Using immunohistochemistry, it was found that Ki‑67, a cell 
proliferation marker, and p‑Akt were significantly reduced in the 
AZD4547‑treated groups (Figs. 3 and 4). Therefore, AZD4547 
may be effective at reducing tumour growth in this pancreatic 

cancer PDX model by inhibiting the function of FGFR1.

Discussion

Multiple clinical studies have shown that NGS and PDX may 

replace or compliment personalised medicine in identifying 

novel therapeutic targets and biomarkers (27). Our previous study 

described a PDX model of pancreatic cancer bone metastasis 

which was confirmed presenting with clinical patients stable tumor 
characteristics (23). Based on these previous sequencing results, 

the FGFR1 gene was found to be amplified by 3.1‑fold compared 
with RECQL4, SOX2, MYC, and PIK3CA. The FGFR family 
of receptor tyrosine kinases have been implicated in tumour 

progression and metastasis in human pancreatic cancer (28). In 

the present study, four other genes, including RECQL,4 were also 
revealed to be amplified; however, inhibitors for these proteins 
were not readily available. Therefore, AZD4547, a novel selective 
small‑molecule inhibitor of FGFR (29), was selected as a poten-

tial therapy to be evaluated in the PDX model.

Several clinical trials of AZD4547 in the treatment 
of bladder cancer, gliomas, myeloma and lung cancer 

have been recently registered in clinicaltr ials.gov, 

including NCT02546661, NCT02824133, NCT02465060, 
NCT02664935, NCT02965378 and NCT02154490 (updated 
to December 12, 2017). However, to the best of our knowl-

edge, there are no studies evaluating the effect of AZD4547 
in pancreatic cancer at a preclinical or clinical stage. In the 

present study, the antitumour efficacy of AZD4547 in a bone 
metastatic pancreatic cancer was demonstrated.

In the present study, the PDX model of pancreatic cancer 

bone metastasis was confirmed to exhibit high expression of 
FGFR1 prior to drug evaluation. It was demonstrated that 
AZD4547 exhibited higher efficacy in reducing growth than 
capecitabine, a chemotherapy drug. The combination of the two 

exhibited a significant synergistic effect, with a TGI of 70.5%. 
Furthermore, it was found that AZD4547 inhibited tumour cell 
proliferation and reduced the expression of FGFR1 targets, 
such as p‑Akt (29). As amplification of FGFR1 has been identi-
fied in 2.6% of pancreatic ductal adenocarcinoma patients (30), 
AZD4547 may provide targeted treatment in this subpopulation 

of pancreatic cancer patients. However, as western blot analysis 

of total and FGFR1 and Akt in PDX tumour tissues was not 
performed in the present study, further investigation is required 

to confirm the mechanism of action of AZD4547 and to clarify 
whether resistance to the drug develops over time. Future studies 
will focus on monitoring the changes of associated signalling 

pathways during drug resistance in order to find targets for 
reversing drug resistance.

In conclusion, in the present study, AZD4547, a FGFR 
inhibitor, was revealed to supress proliferation and reduce 

expression of FGFR1 targets in an FGFR1‑amplified pancre-

atic cancer PDX model. This inhibitor may prove to be an 

effective treatment in patients with FGFR1‑amplified pancre-

atic cancer. In addition, it was successfully demonstrated that 

PDX-NGS-based drug screening is a novel, promising tool for 

individualised drug screening to improve the clinical treatment 

of pancreatic cancer patients.
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