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infinite linear programming; potential reduction algorithm.  not deal with the issue of convergence of the iterates produced
by the limiting algorithm. In particular, he shows that a poten-
tial reduction method introduced by Ye [9] has a sensible gen-
Abstract eralization to the semi-infinite case 60, 1]. In the papers
by Ferris and Philpott [3, 4] and Powell [6] the affine scaling

We consider a semi-infinite linear programming problem gjgorithm, and Karmarkar’s algorithm respectively are gener-
where the variables may belong to an infinite-dimensional gjized to the semi-infinite setting.

Hilbert space. We generalize a potential reduction method
introduced by Ye so that it can be used to solve this problem.
Furthermore, convergence of the iterates produced by this al
gorithm to the optimal solution is proven. As an example,

we show how this algorithm can be used to solve continuous
linear programming (CLP) problems.

In this paper we combine features of [1, 2] and [3, 4, 6, 8]
by studying semi-infinite LP where the variable can belong to
an arbitrary infinite-dimensional Hilbert space (as opposed to
a space of continuous functionals). We generalize a potential
reduction method introduced by Ye [9]. Furthermore, conver-
gence of the iterates produced by this algorithm to the optimal
solution is proven. As an example, we show how this algo-
1 Introduction rithm can be used to solve continuous linear programming
(CLP) problems [7].

Many optimization problems are naturally cast as semi-

infinite problems; for instance, continuous time, optimal con-

trol problems subject to all time state constraints. In this pa-

per, we consider a semi-infinite linear programming problem 2  Semi-infinite LP and the Potential
where the variables may belong to an infinite-dimensional .

Hilbert space. We generalize a potential reduction method Function.

introduced by Ye [9] so that it can be used to solve this prob-
lem.

Although much of the research on interior point methods
(IPM’s) has focused on finite-dimensional problems, interest
in infinite-dimensional problems has begun to attract more at-
tention, especially of late. In recent papers by Faybusovich
and Moore [1, 2] the logarithmic barrier method is extended
so as to be amendable to infinite-dimensional quadraticopti- X = span{a;(n) :i=1,...,mandyn € [0, 1]}
mization problems subject to finitely many linear or quadratic
constraints. On the other hand, Ferris and Philpott [3, 4]
Powell [6] and Todd [8] study a class of semi-infinite linear
programming problems. Todd considers a family of semi-
infinite LP problems on the space of continuous functionals
and shows that a concept which he catlgarianceis funda- (¢, x) = min
mental to whether a given IPM can be generalized to solve .
the limiting semi-infinﬁe problem o]0, 1?. He determines (P)q Aaslm),z) < bi(n), i=1,--m, €0, 1]
which IPM'’s converge to a sensible limiting algorithm as the re X

Let (H,{-,-)) be a Hilbert Space andl a closed subspace of
H.Fori=1,---,mandy € [0,1]leta;(n) € H,b;(n) € R
andc € X be given. Assume that;(n) andb;(n) depend
continuously om € [0, 1]. Furthermore, assume that

"We consider the semi-infinite linear programming problem
which has a primal form



The problem dual t¢P) is Let X(n) = [X1(n), -, Xmm(n)] whereX;(n) € C[0,1].
Define|| - ||2 and|| - ||« as follows:

Z 1f0 Z dn—)max N
(D) ¢+ it 1fo ai(n)?i(n)dn = 0 Xl = [Z/ IXi(n)Izdn]
w(n)EBV[O,u =
bi(n) >0 IX(Mlle = sup  sup [Xi(n)]

1<i<m ne0,1]

We make the following assumptions: _ _ _ ) X
Given primal feasible solutions’, ! € H, let

Assumption 2.1 There exists an optimal solutierf € X for

(P) such thatc, z*) > —oo <%’ 21 x0>
a(n) 1 —

Assumption 2.2 There exists: € X such thata;(n), x) < <W’ = $0> = :

bi(n)fori=1,--- ,mandny € [0, 1]. < a(m(nD)) xl—x0>
s1(n,z°)’

Assumption 2.3 There is0 < M < oo such that|z|| < M Note that

for every primal feasible € X.

- ; : . . %7(77) 1_ 0 C10,1]
It is well known that ifv;(n) € BV[0, 1] is dual feasible (ie. s;(n, 20)’ r -z € 5

feasible for(D)) then
The following is an infinite dimensional generalization of a

=t . i result from [9], a proof of which appears in [5].
-3 [ wam s <) @ %) 2p ppears in [3

Proposition 3.1 Letz°, #* € X be primal feasible and® <

wherez* is the optimal cost fofP) and (D). Let z < z*. 2" where:” satisfies (1). If

Suppose that € H is primal feasible. The primal potential H<
3
s(n, %)’ >H

function for (P) is

m a1
oo 2) = phafler) ==Y [ws@aydy @ hen
i=1 0

wheres; () = b;(n) — {(a;(n), x). For every primal feasible
z? € X, it follows from Assumption 2.3 that there exists H<s @ 0)’1’ >H 4
0 < K(2%) < oo such that : (n) )
- [Ga -
s(n,x o
L. _ (g0
K(z%) > exp [fO si(w, n)dn — [y si(x ,U)dﬁl where
P
P

for every primal feasible € X. Moreover Vo(r,z) = (ez)—z ¢ + ;/osz'(ﬁ )
Proposition 2.1 Lete > 0 be given. Ifz, 2° € X are primal ) ] ] ]
feasible and. 2° are lower bounds of*. then Given a primal feasible solution” € X, we can use (4) to

’ determine another primal feasible solutish € X which

0,0 ] ¢ minimizes the upper bound on the difference
¢(z,2) < o2, 2") + pln K (z°) - ({c, 2°) — 29)
o(xt, 2"2) — (a°, 2°) 5)

implies that(c, z) — z < e.
in the following way: we choose a primal feasibié ¢ I

Proof: - The interested reader should consult [5]. ®  which minimizes the right hand side of (4). Noting that

Therefore, by making(z, z) sufficiently negative, the dual- .

ity gap can be made sufficiently small. H< ?7(720)’ 1_ x0> _ <Q(x0) (et — &%), 2t - x0>
) 2
3 Algorithm where
We now develop an interior point algorithm which can be Q") = i/l ai(n) ® ai(ﬁ)d (6)
used to reduce(z, z). —Jo si(n2")?



we obtain from (4) the following problem over the interested reader should consult [5] for a derivation. Let

m € X be given by
Q(z")~" - V(2" 2"

<V(/>(x0, 2%, 2 — l‘0> — min

1 T = ; (20)
Q") - (x -2, e -2 < 5" <1 () (Q(z0)=1 - V(2 20), V(a0 20)) 2
z—z'eX Suppose that < 3* < 1 satisfies the inequality
Note that the inequality (4) holds only if (3) is satisfied. On . ai(n) 1
the other hand, unless = 0 the inequality in (7) being true si(n, %) <1l 1= S mi € [0,1]
will not guarantee that (3) is true either. That is, a solutibn
of (7), for0 < #* < 1 will generally not give rise to a min- It can then be shown that
imal upper bound on the difference (5) as suggested by the B B
inequality (4). For the moment, we assume that there exists ¢(z"—3" 7, 2°)—¢(2",2°) < - (Qx") -, 7T>=—7
0 < #* < 1 such that the optimal solution of (7) gives rise to (11)

a solutionz! which satisfies the inequality (3) and hence (4).
We defer the issue of calculatimtj until later and for the mo-
ment, assume that has been found. Sin€g(+°) : X — X

is a strictly positive operator, oX for eachz® € X, it fol-
lowsthat(-,-) o : X x X = R, (-,"),0 = (Q(z°)-, ) defines
an inner product oiX' and hence, a Riemannian metric &n
The gradient ofj(x, z) with respect to this Riemannian met-
ric is given as follows.

Unlike the finite dimensional case, a reductionsf’, z) by

at least a fixed constant after each iteration is not guaranteed

becauses* depends onr:®. Thus, (11) on its own does not

guarantee that(x, z) can be made arbitrarily negative. Also,

for this reason the theoretically attractive upper bound poly-

nomial complexity on the number of iterates does not hold.
We now consider the issue of updating a lower botfhdf

z*. Letz® € X be a primal feasible solution. It can be shown

Lemma 3.1 Let@Q(z") : X — X be given by (6). The gradi- thatv(n) € BV[0, 1] satisfying

ent ofg(z?, 2°) with respect to the Riemannian metric defined

by the inner product-, -), is vi(n) = 2% n)
Veoo(2%2°) = Q)" V(2?20 (8) where
Proof:  The functional(Vg(2°,2°),) : X — Ris a )

]

fila®, %) = fert) =2
bounded linear functional on the Hilbert (sub)spageso by teT
the Riesz theorem for functionals on a Hilbert space, there <

A

~—

ai(n

si(n, z%)*

is dual feasible. The lower bound can be increased td >

exists a uniqué’,.¢(z°, 2°) € X such that

@) veas)| a2)

je)

(Vo2 y) = (QG") - Veos(x", "), y)

forall y € X. Therefore

Vé(z?, 2%) — Q(2°) - Vaoo(2°,2°) € X+
The result follows from the fact that

Vo(x?, 2%) —Q(2°) - Vyoo(2°,2%) € X

From Proposition 2.1, it follows that the optimal solutieh
of (7)is

2% so long as
fi(xoa Zla 77)

Hence,z!' can be obtained by solving:

1

Z7 = argmaxz
z > 20

If 21 can be made arbitrarily large, th¢®) has no solution.

Note also that foso > 2zt > 2°
Q%)™ - Ve(a?, 20
(Q(x0)=1 -V (20, 20), Vo (a0, 20))

We return now to the question of choosift. Recall that in

(9) (/)(xo,zl) < qs(xO’ZO)

Algorithm (P):
x’ € X, <Cll'(7]),l‘0> S bl(n) ne [Oa 1]’i: 1a SRR LN

general,0 < g* < 1 will not guarantee that (3) holds and 20 < 2%

hence, will not guarantee the reductiongifw, z) which (4) k=0;

suggests. However, jf* is calculated as follows, a reduction  while (c, 2*) — z* > ¢ do
in the potential function is guaranteed. The following is an begin

infinite dimensional generalization of a result from [9] and solve(Z P) and obtain**!;



computer(z* 2*+1) according to (10); Under Assumption 4.1, we have the following strong conver-

it = b g% (k) A gence for the sequenes, .
with 3* = : k_ k’ k+1 :
k= kﬁ+ 1 argmingzo ¢(a" —fm(at, 2177) Proposition 4.2 Let «* be the optimal solution fofP) and
end z% € Xn be the optimal solution fofPx ). Under Assump-
end tion4.1,z3, — z* asN — oo.
4 Convergence results Let 23 be the optimal cost fofPy) and(Dy ). For primal

feasiblex and dual feasible. we have
We consider now the convergence of the iteriés »*) pro-

m 2N
duced by Algorithm(P). Consider the following discretiza- 1
tion of (P): let I C [0, 1] be a finite subset of the form Z_: Z_: ) <2 S ey o) (13)
Iy = {LN =1 QN} The potential function fof Py) wherez < z3 is
2 bl bl -
m 2V

which partitions [0,1] into 2V subintervals. ~ Clearly 4. (4 -)=pI 1 14

! . . ’ =pInicN, T Z HSZ T 77 ( )
INClIns1. Letenxy € Xuy be the orthogonal projection of (e:2) § N ;; !

¢ € X onto the subspace
Analogous to (10), the Newton step; € X for (Py) is

Xy =sparfa;(n):i=1,---,m;n € In}
Qn(z)™" Von(z,2)

A finite-dimensional discretization ) with respect to the (@, 2) = iy 1 (19)
partitiony is: (@n(x)~" - Von(x,z), Von(x,2))
. where
(en, ) = min
P a;(n),z) < b;(n); ely,i=1,---,m Clz77 ®Clz
re X i=1j=1 Z iE N
Dual to(Py) is It can be shown that(™) = ™) (2%, 2%, 1) where
IEER o o - N S
5% 2lim1 Di=1 Aijbi(7j) = max FVE0 0 ) = [<CN, 2y — ZJOV‘| [s:(, 2%)
p

(Dn) CN+2LNZ?1:12?:1/\M%(W):0 <%,QN( )1~V¢>N(l‘?wzfov)>] a7)

Aij >0 xN’ 77)
wheren;, = . Assuming that an optimal solution of is dual feasible fofDy). Givenzjov_ <z}, the lower bound
(Pn) exists, it follows fromX = Xy & (X5 N X) and update equation analogous(oF) is
a;(n;), en € Xw, thatthere iy, € X which achieves this 1 = argmax
optimal cost. SinceXy is a finite dimensional subset of, N
it follows that (Py) is equivalent to a finite-dimensional LP  (ZPy){ f™ (20 2 9,) > 0; i=1,--- m; n; € In
problem oveR¢N) whereg(N) = m - 2V. Let z%, denote o
the optimal solution fof Py). Then the sequencer’, 15, Z2Z N

has the following convergence properties. For (Px ), we have the following algorithm:

Lemma 4.1 Letz3, denote the optimal solution for the prob-
lem (Px) and z* the optimal solution for(P). Then

(en, ah) — (e, ).

Algorithm (Px):
% € X, <ai(77j),x0> <bi(mj)ne€ln,i=1,--- m;

2y < 2y

Proposition 4.1 If #* is the optimal solution for( P) then k=0
2% — 2" asN — . while <cN,x’f|_N>—ka\,>ed0

begin
Proof: This is proven using the result stated in Lemma 4.1. solve(Z Py) and obtain:5+;
The interested reader should consult [5] for exact detaiis. computer y (z%;, k+1) according to (15);

l’?v“ =ay—pOym (ﬁVaZJkVH)

Assumption 4.1 The sequencgr’ }32_, converges ag/ — with 83, = argmingso ¢(x% — B (2%, 25));

0. k=k+1



end Proof: We prove this using induction.
end This is true fork = 0, for letz° € X be feasible for P).
By simple modifications of the proofs in [9], it can be Denote byz{; the projection ofz® onto X. ThenzY is
shown that the iteratege’;, z%) produced by Algorithm  feasible for(Py) andzQ — z° asN — oo. Letz! < 2~
(Pn) have the following convergence results. solve (ZP) andz}, < z} solve(ZPy). Then by Lemma
4.2z — 2t asN — oco. Thus{(z%, 25 )} %, satisfies the
Proposition 4.3 If 2%, k € Z* is the sequence of feasible conditions of Lemma 4.3 anely, — «* asN — oc.

solutions produced by Algorith(Py ) for the problem( Py ), Suppose there is € Z* such thatX, — «* andz5 —

thena%, — 2% ask — occ. zF*1 as N — co. Then the conditions of Lemma 4.2 are
satisfied and hencej;"! — zf*1 asN — cc.

In fact, we need a stronger statement about convergence of The result follows from induction. -

the iteratesc%; than is stated in Proposition 4.3, namely that _
2%, — % uniformly. We shall assume that this is true. A Under Assumptions 2.1, 2.2, 2.3, 4.2 and 4.3, the sequence

precise statement of this is as follows: of interates{z*}2°  produced by Algorithn{P) has the fol-
lowing weak convergence properties:
Assumption 4.2 For all ¢ > 0 there existsV, ¢ such that

h - Theorem 4.1 1f {z*}?2, be the sequence of iterates pro-
|25 — 23| < eforall g > g andk > N. v

duced by AlgorithniP) andz* is an optimal solution of P)

: : thenz* — 2* ask .
Let 2¥ € X be feasible for P) andz%, € Xy be feasible v e

for Py. We denote by the optimal solution of Z Py) Proof: Let {2%}72, be the sequence of iterates which re-
associated with%;, andz**! the optimal solution of Z P) sult from applying Algorithm Py) to (Py). Lete > 0 and
with z*. We have the following result. z € X be given. By Lemma 4.4¢% — 2 asp — oo.

The following assumption is required in some of the results Since strong convergence implies weak convergence, there
that follow. exists Ny € Z* such that(z, 2% — zF) < £ for all p >

N;. By Proposition 4.3 and Assumption 4:cg — x uni-
Assumption 4.3 Let 2" be optimal for(Z ) associated with  formly so there existsv € Z* and N, € Z+ such that
z € X. Forall e > 0, there exists € R such that:* > z > (z,af —27) < £ forall k > K andg > N,. By Propo-
* » g q 3
z* —eandf;(z,z,n) > 0forall 5 € [0,1].

sition 4.1, there exist&/s € Z* such that(z, z; — 2*) < §

for all ¢ > Ns. Thus, withp, ¢ > max{Nj, Ny, N3}
Lemma 4.2 Letz*, % andz*' be as above. Suppose that andk > I, we have| (z,aF — ") | < | (2% —ak) | +

2 — 2* asN — oo. If there existsV € Z* andz > —oo [z b — 22} |+ | (2,27 — 27) | < e. .

such thatz < z§*! < oo for eachN > N, then(ZP) has e e o

an optimal solutior*+1 andzjkv+1 2k as N = oo An |mmed|ate consequence of the definition of weak conver-
gence is the following:

Proof:  Refer to [5] for details m  Corollary 4.1 Let {z*}%2, and z* be as in Theorem 4.1.

k *
We consider now the convergence of the Newton step. Then(e, z") — (¢, 2") ask — oo,

N _ N . If in addition we assume that Assumption 4.1 holds, we have
Lemma 4.3 Letk € Z7 be given. Foreveryy € Z7 letz,  the following strong convergence result:
be feasible for Py ), «* be feasible fo P) with 2% — z*
asN — oo. If 25+ < 2% andz#+! < :* are asin Lemma  Theorem 4.2 Let {*};2, and «* be as in Theorem 4.1.

4.2 theneht! — zF+1 asN — oc. Thenz* — &* ask — co.

Proof: The proofis similar in spirit to that of Theorem 4.1,
and requires in addition, the result stated in Proposition 4.2.
The interested reader should consult [5] for details. =

Proof: We give a brief outline of the proof. For complete
details, the reader should consult [5]. Let

By = arg gl;g qj)N(l‘?\f - 67‘-1\7(%@\7’ ij\f-l—l)’ ij\f-l—l)
pr = arg min o (F — pr(a®, K, K 5 Example
As with all interior point methods, a crucial part of Algorithm
In [5] it is shown thatry (4, 25H1) — =(z*, z5+1) and is calculating the Newton step (9). We consider now a class of
3% — 3* asN — oo. The result follows. - infinite-dimensional LP problems which are known as contin-

uous linear programming”' L P) [7]. By placing additional

differentiability constraints on the set of feasible solutions,
Lemma 4.4 Let {z%}22 , and{z"}2° , be iterates produced this class of problems can be transformed into a constrained
by (Py) and (P) respectively. For every € Z+ 2% — z* linear optimal control problem which falls under the frame-
asN — oo. work (P). We shall focus on calculating the Newton step.



The (C'LP) problem s stated as follows:
[ ¢ (t)x(t) dt — min
(CLP) N Bn)a(n) + fy K1) (1) dt < b()
z(n) > 0;m € [0, 1]

In addition, we shall assume that thez 73[0, 1] and twice
differentiable; that is there exisigt), «(t) € L3[0, 1] such
that

w(t) = y(t)
yit) = u(t)
z(0), y(0) = v

With this additional constrainf(' L P) is a special case of the
following constrained linear optimal control problem:

fol (1) w(r) dT — min
(E)S [y ai(n, r)w(r)dr <bi(n); i=1,---,m
weX
where
X ={we L0, 1]:
w(t) = A(t) w(t) + B(t)u(t), w(0) =0} (18)

Then

L {p—|—A'p:]')EL§"[O,1],
p(1) =0, p absctsorf0, 1]} (29)

For (E), we have the potential function

1 1

é(w,z)=pln [/ d(m)w(r) dT—z] —/ Ins;(w, r)dT
0 0

The Newton step (9) which we denote i?, %) is

€(w0,z0) = —Q(wo)_1~v¢(w0, zo) (20)

where
m L as . al
Z/ az(nat) ag(Zat) d77 (21)
i=1 70 52’(7% w )

When there is no risk of confusion, we shall denote
&(w?, 2% t) by £(t). Substituting (21) into (20) gives

—V(b(wo 2Lt =

Z / Sl (] i r)enar) iy @2

Nowé&(t) € X so

for somer(t) € LT[0, 1] where®(t, 7) is the state transition
matrix associated with the state equation which defixiaa
(18). Substituting (23) into (22) gives

—V(b 2020t =

// a; 77,77 woﬁ, )/0 ®(7,0) B(0) r(6) do drdn
(24)

Therefore, to calculate the Newton step, one needs to solve
the integral equation (24) for(¢) and (23) for the Newton
stepé(t). In practise it may only be possible to solve (24) ap-
proximately - for example, partitionir{@, 1] and constraining

r(t) to be piecewise constant on each subinterval. However,
the Newton steg(¢) obtained by solving (23) with this piece-
wise constant(¢) will still satisfy the conditiore (¢) € X
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