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Abstract

We consider a semi-infinite linear programming problem
where the variables may belong to an infinite-dimensional
Hilbert space. We generalize a potential reduction method
introduced by Ye so that it can be used to solve this problem.
Furthermore, convergence of the iterates produced by this al-
gorithm to the optimal solution is proven. As an example,
we show how this algorithm can be used to solve continuous
linear programming (CLP) problems.

1 Introduction

Many optimization problems are naturally cast as semi-
infinite problems; for instance, continuous time, optimal con-
trol problems subject to all time state constraints. In this pa-
per, we consider a semi-infinite linear programming problem
where the variables may belong to an infinite-dimensional
Hilbert space. We generalize a potential reduction method
introduced by Ye [9] so that it can be used to solve this prob-
lem.

Although much of the research on interior point methods
(IPM’s) has focused on finite-dimensional problems, interest
in infinite-dimensional problems has begun to attract more at-
tention, especially of late. In recent papers by Faybusovich
and Moore [1, 2] the logarithmic barrier method is extended
so as to be amendable to infinite-dimensional quadratic opti-
mization problems subject to finitely many linear or quadratic
constraints. On the other hand, Ferris and Philpott [3, 4],
Powell [6] and Todd [8] study a class of semi-infinite linear
programming problems. Todd considers a family of semi-
infinite LP problems on the space of continuous functionals
and shows that a concept which he callsinvarianceis funda-
mental to whether a given IPM can be generalized to solve
the limiting semi-infinite problem onC[0; 1]. He determines
which IPM’s converge to a sensible limiting algorithm as the

number of constraints tends to infinity. Consequently, he does
not deal with the issue of convergence of the iterates produced
by the limiting algorithm. In particular, he shows that a poten-
tial reduction method introduced by Ye [9] has a sensible gen-
eralization to the semi-infinite case onC[0; 1]. In the papers
by Ferris and Philpott [3, 4] and Powell [6] the affine scaling
algorithm, and Karmarkar’s algorithm respectively are gener-
alized to the semi-infinite setting.

In this paper we combine features of [1, 2] and [3, 4, 6, 8]
by studying semi-infinite LP where the variable can belong to
an arbitrary infinite-dimensional Hilbert space (as opposed to
a space of continuous functionals). We generalize a potential
reduction method introduced by Ye [9]. Furthermore, conver-
gence of the iterates produced by this algorithm to the optimal
solution is proven. As an example, we show how this algo-
rithm can be used to solve continuous linear programming
(CLP) problems [7].

2 Semi-infinite LP and the Potential
Function.

Let (H; h�; �i) be a Hilbert Space andX a closed subspace of
H. For i = 1; � � � ;m and� 2 [0; 1] let ai(�) 2 H, bi(�) 2 R
andc 2 X be given. Assume thatai(�) and bi(�) depend
continuously on� 2 [0; 1]. Furthermore, assume that

X = spanfai(�) : i = 1; : : : ;m and� 2 [0; 1]g

We consider the semi-infinite linear programming problem
which has a primal form

(P )

8>><
>>:

hc; xi ! min

hai(�); xi � bi(�); i = 1; � � � ;m; � 2 [0; 1]

x 2 X



The problem dual to(P ) is

(D)

8>>>>><
>>>>>:

�
Pm

i=1

R 1

0 bi(�) _vi(�)d� ! max

c+
Pm

i=1

R 1

0 ai(�) _vi(�)d� = 0

vi(�) 2 BV [0; 1]

_vi(�) � 0

We make the following assumptions:

Assumption 2.1 There exists an optimal solutionx� 2 X for
(P ) such thathc; x�i > �1

Assumption 2.2 There existsx 2 X such thathai(�); xi <
bi(�) for i = 1; � � � ;m and� 2 [0; 1].

Assumption 2.3 There is0 < M < 1 such thatkxk � M

for every primal feasiblex 2 X.

It is well known that ifvi(�) 2 BV [0; 1] is dual feasible (ie.
feasible for(D)) then

�
mX
i=1

Z 1

0

bi(�) _vi(�) d� � z� � hc; xi (1)

wherez� is the optimal cost for(P ) and(D). Let z � z�.
Suppose thatx 2 H is primal feasible. The primal potential
function for(P ) is

�(x; z) = � ln [hc; xi � z]�
mX
i=1

Z 1

0

ln si(�; x) d� (2)

wheresi(�) = bi(�) � hai(�); xi. For every primal feasible
x0 2 X, it follows from Assumption 2.3 that there exists
0 < K(x0) <1 such that

K(x0) > exp

"R 1

0 si(x; �)d� �
R 1

0 si(x
0; �)d�

�

#

for every primal feasiblex 2 X. Moreover

Proposition 2.1 Let � > 0 be given. Ifx; x0 2 X are primal
feasible andz; z0 are lower bounds ofz�, then

�(x; z) < �(x0; z0) + � ln
�

K(x0) � (hc; x0i � z0)

implies thathc; xi � z < �.

Proof: The interested reader should consult [5].

Therefore, by making�(x; z) sufficiently negative, the dual-
ity gap can be made sufficiently small.

3 Algorithm

We now develop an interior point algorithm which can be
used to reduce�(x; z).

LetX(�) = [X1(�); � � � ; Xm(�)]0 whereXj(�) 2 C[0; 1].
Definek � k2 andk � k1 as follows:

kX(�)k2 =

"
mX
i=1

Z 1

0

jXi(�)j
2
d�

# 1

2

kX(�)k1 = sup
1�i�m

sup
�2[0;1]

jXi(�)j

Given primal feasible solutionsx0; x1 2 H, let

�
a(�)

s(�; x0)
; x1 � x0

�
=

2
6664
D

a1(�)
s1(�;x0)

; x1 � x0
E

...D
am(�)
s1(�;x0)

; x1 � x0
E
3
7775

Note that �
aj(�)

sj(�; x0)
; x1 � x0

�
2 C[0; 1]

The following is an infinite dimensional generalization of a
result from [9], a proof of which appears in [5].

Proposition 3.1 Letx0; x1 2 X be primal feasible andz0 �
z� wherez� satisfies (1). If





�
a(�)

s(�; x0)
; x1 � x0

�




1

< 1 (3)

then

�(x1; z0) � �(x0; z0) �


r�(x0; z0); x1 � x0

�

+




D a(�)
s(�;x0) ; x

1 � x0
E


2

2

2
n
1�




D a(�)
s(�;x0) ; x

1 � x0
E




1

o (4)

where

r�(x; z) =
�

hc; xi � z
c +

mX
i=1

Z 1

0

ai(�)

si(�; x)
d�

Given a primal feasible solutionx0 2 X, we can use (4) to
determine another primal feasible solutionx1 2 X which
minimizes the upper bound on the difference

�(x1; z0x)� �(x0; z0) (5)

in the following way: we choose a primal feasiblex1 2 H

which minimizes the right hand side of (4). Noting that






�

a(�)

s(�; x0)
; x1 � x0

�




2

2

=


Q(x0) � (x1 � x0); x1 � x0

�
where

Q(x0) =
mX
i=1

Z 1

0

ai(�) 
 ai(�)

si(�; x0)2
d� (6)



we obtain from (4) the following problem overx:

r�(x0; z0); x� x0

�
! min



Q(x0) � (x� x0); x� x0

� 1

2 � �� < 1

x� x0 2 X

(7)

Note that the inequality (4) holds only if (3) is satisfied. On
the other hand, unless� = 0 the inequality in (7) being true
will not guarantee that (3) is true either. That is, a solutionx1

of (7), for 0 < �� < 1 will generally not give rise to a min-
imal upper bound on the difference (5) as suggested by the
inequality (4). For the moment, we assume that there exists
0 < �� < 1 such that the optimal solution of (7) gives rise to
a solutionx1 which satisfies the inequality (3) and hence (4).
We defer the issue of calculating�� until later and for the mo-
ment, assume that�� has been found. SinceQ(x0) : X ! X

is a strictly positive operator, onX for eachx0 2 X, it fol-
lows thath�; �ix0 : X�X ! R, h�; �ix0 =



Q(x0)�; �

�
defines

an inner product onX and hence, a Riemannian metric onX.
The gradient of�(x; z) with respect to this Riemannian met-
ric is given as follows.

Lemma 3.1 LetQ(x0) : X ! X be given by (6). The gradi-
ent of�(x0; z0) with respect to the Riemannian metric defined
by the inner producth�; �is is

rx0�(x
0; z0) = Q(x0)�1r�(x0; z0) (8)

Proof: The functional


r�(x0; z0); �

�
: X ! R is a

bounded linear functional on the Hilbert (sub)spaceX, so by
the Riesz theorem for functionals on a Hilbert space, there
exists a uniquerx0�(x

0; z0) 2 X such that

r�(x0; z0); y

�
=



Q(x0) � rx0�(x

0; z0); y
�

for all y 2 X. Therefore

r�(x0; z0) �Q(x0) � rx0�(x
0; z0) 2 X?

The result follows from the fact that

r�(x0; z0) �Q(x0) � rx0�(x
0; z0) 2 X

From Proposition 2.1, it follows that the optimal solutionx1

of (7) is

x1 = x0 � ��
Q(x0)�1 � r�(x0; z0)

hQ(x0)�1 � r�(x0; z0);r�(x0; z0)i
1

2

(9)

We return now to the question of choosing��. Recall that in
general,0 < �� < 1 will not guarantee that (3) holds and
hence, will not guarantee the reduction in�(x; z) which (4)
suggests. However, if�� is calculated as follows, a reduction
in the potential function is guaranteed. The following is an
infinite dimensional generalization of a result from [9] and

the interested reader should consult [5] for a derivation. Let
� 2 X be given by

� =
Q(x0)�1 � r�(x0; z0)

hQ(x0)�1 � r�(x0; z0);r�(x0; z0)i
1

2

(10)

Suppose that0 < �� � 1
2 satisfies the inequality

��
����
�

ai(�)

si(�; x0)
; �

����� < 1 i =
1

2
; � � � ;m; � 2 [0; 1]

It can then be shown that

�(x0����; z0)��(x0; z0) ��
��

2



Q(x0) � �; �

�
=�

��

2
(11)

Unlike the finite dimensional case, a reduction of�(x0; z) by
at least a fixed constant after each iteration is not guaranteed
because�� depends onx0. Thus, (11) on its own does not
guarantee that�(x; z) can be made arbitrarily negative. Also,
for this reason the theoretically attractive upper bound poly-
nomial complexity on the number of iterates does not hold.

We now consider the issue of updating a lower boundz0 of
z�. Letx0 2 X be a primal feasible solution. It can be shown
thatv(�) 2 BV [0; 1] satisfying

_vi(�) = f(x0; z0; �)

where

fi(x
0; z0; �) =

"

c; x0

�
� z0

�

# h
si(�; x

0)�1

�
ai(�)

si(�; x0)2
; Q(x0)�1 � r�(x0; z0)

��
(12)

is dual feasible. The lower boundz0 can be increased toz1 >
z0 so long as

fi(x
0; z1; �) � 0; i = 1; � � � ;m; � 2 [0; 1]

Hence,z1 can be obtained by solving:

(ZP )

8>><
>>:

z1 = argmaxz

fi(x
0; z; �) � 0; i = 1; � � � ;m; � 2 [0; 1]

z � z0

If z1 can be made arbitrarily large, then(P ) has no solution.
Note also that for1 > z1 > z0

�(x0; z1) < �(x0; z0)

Algorithm (P ):
x0 2 X,



ai(�); x0

�
� bi(�) � 2 [0; 1], i = 1; � � � ;m;

z0 � z�;
k = 0;
while



c; xk

�
� zk > � do

begin
solve(ZP ) and obtainzk+1;



compute�(xk; zk+1) according to (10);
xk+1 = xk��� �(xk; zk+1)
with �� = argmin��0 �(x

k���(xk ; zk+1));
k = k + 1

end
end

4 Convergence results

We consider now the convergence of the iterates(xk; zk) pro-
duced by Algorithm(P ). Consider the following discretiza-
tion of (P ): let IN � [0; 1] be a finite subset of the form

IN =

�
i

2N
: i = 1; � � � ; 2N

�

which partitions [0; 1] into 2N subintervals. Clearly
IN�IN+1. Let cN 2 XN be the orthogonal projection of
c 2 X onto the subspace

XN = spanfai(�) : i = 1; � � � ;m; � 2 INg

A finite-dimensional discretization of(P ) with respect to the
partitionIN is:

(PN )

8>><
>>:

hcN ; xi ! min

hai(�); xi � bi(�); � 2 IN ; i = 1; � � � ;m

x 2 X

Dual to(PN ) is

(DN )

8>>>>><
>>>>>:

� 1
2N

Pm

i=1

P2N

i=1 �ijbi(�j)! max

cN + 1
2N
Pm

i=1

P2N

i=1 �ijai(�j) = 0

�ij � 0

where �i = i
2N . Assuming that an optimal solution of

(PN ) exists, it follows fromX = XN � (X?
N \ X) and

ai(�j); cN 2 XN , that there isx�N 2 XN which achieves this
optimal cost. SinceXN is a finite dimensional subset ofX,
it follows that (PN ) is equivalent to a finite-dimensional LP
problem overRq(N) whereq(N ) = m � 2N . Let x�N denote
the optimal solution for(PN ). Then the sequencefx�Ng

1
N=1

has the following convergence properties.

Lemma 4.1 Letx�N denote the optimal solution for the prob-
lem (PN ) and x� the optimal solution for(P ). Then
hcN ; x�N i ! hc; x�i.

Proposition 4.1 If x� is the optimal solution for(P ) then
x�N * x� asN !1.

Proof: This is proven using the result stated in Lemma 4.1.
The interested reader should consult [5] for exact details.

Assumption 4.1 The sequencefx�Ng
1
N=1 converges asN !

1.

Under Assumption 4.1, we have the following strong conver-
gence for the sequencex�N .

Proposition 4.2 Let x� be the optimal solution for(P ) and
x�N 2 XN be the optimal solution for(PN ). Under Assump-
tion 4.1,x�N ! x� asN !1.

Let z�N be the optimal cost for(PN ) and(DN ). For primal
feasiblex and dual feasible� we have

�
1

2N

mX
i=1

2NX
i=1

�ijbi(�j) � z�N � hcN ; xi (13)

The potential function for(PN ) wherez � z�N is

�N (x; z)=� ln (hcN ; xi�z)�
1

2N

mX
i=1

2NX
i=1

ln si(x; �j) (14)

Analogous to (10), the Newton step�N 2 XN for (PN ) is

�N (x; z) =
QN (x)�1 � r�N (x; z)

hQN (x)�1 � r�N(x; z);r�N(x; z)i
1

2

(15)

where

QN (x0N ) =
1

2N

mX
i=1

2NX
j=1

ai(�j)
 ai(�j)

si(�j; x0N )2
(16)

It can be shown that�(N)
ij = f

(N)
i (x0N ; z

0
N ; �j) where

f
(N)
i (x0n; z

0
N ; �) =

"

cN ; x

0
N

�
� z0N

�

# �
si(�; x

0
N )�1

�
ai(�)

si(x
0
N ; �)

2
; QN (x0N )�1 � r�N (x0N ; z

0
N )

��
(17)

is dual feasible for(DN ). Givenz0N � z�N , the lower bound
update equation analogous to(ZP ) is

(ZPN )

8>><
>>:

z1N = argmaxz

f
(N)
i (x0; z; �j) � 0; i = 1; � � � ;m; �j 2 IN

z � z0N

For (PN ), we have the following algorithm:

Algorithm (PN ):
x0N 2 XN ,



ai(�j); x0

�
� bi(�j) � 2 IN , i = 1; � � � ;m;

z0N � z�N ;
k = 0;
while



cN ; x

k
+N

�
� zkN > � do

begin
solve(ZPN ) and obtainzk+1

N ;
compute�N (xkN ; z

k+1
N ) according to (15);

xk+1
N = xkN��

�
N �(xkN ; z

k+1
N )

with ��N = argmin��0 �(xkN���(x
k
N ; z

k+1
N ));

k = k + 1



end
end
By simple modifications of the proofs in [9], it can be

shown that the iterates(xkN ; z
k
N ) produced by Algorithm

(PN ) have the following convergence results.

Proposition 4.3 If xkN , k 2 Z+ is the sequence of feasible
solutions produced by Algorithm(PN ) for the problem(PN ),
thenxkN ! x�N ask!1.

In fact, we need a stronger statement about convergence of
the iteratesxkN than is stated in Proposition 4.3, namely that
xkN ! x�N uniformly. We shall assume that this is true. A
precise statement of this is as follows:

Assumption 4.2 For all � > 0 there existsN , �q such that

xkq � x�q


 < � for all q > �q andk > N .

Let xk 2 X be feasible for(P ) andxkN 2 XN be feasible
for PN . We denote byzk+1

N the optimal solution of(ZPN )
associated withxkN , andzk+1 the optimal solution of(ZP )
with xk. We have the following result.

The following assumption is required in some of the results
that follow.

Assumption 4.3 Let z� be optimal for(ZP ) associated with
x 2 X. For all � > 0, there existsz 2 R such thatz� > z >

z� � � andfi(x; z; �) > 0 for all � 2 [0; 1].

Lemma 4.2 Letxk, xkN andzk+1
N

be as above. Suppose that
xkN ! xk asN ! 1. If there exists�N 2 Z+ and�z > �1
such that�z < zk+1

N < 1 for eachN > �N , then(ZP ) has
an optimal solutionzk+1 andzk+1

N
! zk+1 asN !1.

Proof: Refer to [5] for details

We consider now the convergence of the Newton step.

Lemma 4.3 Let k 2 Z+ be given. For everyN 2 Z+ let xkN
be feasible for(PN ), xk be feasible for(P ) with xkN ! xk

asN ! 1. If zk+1
N � z�N andzk+1 � z� are as in Lemma

4.2 thenxk+1
N ! xk+1 asN !1.

Proof: We give a brief outline of the proof. For complete
details, the reader should consult [5]. Let

��N = argmin
��0

�N (xkN � ��N (xkN ; z
k+1
N ); zk+1

N )

�� = argmin
��0

�N (xk � ��(xk; zk+1); zk+1)

In [5] it is shown that�N (xkN ; z
k+1
N

) ! �(xk; zk+1) and
��N ! �� asN !1. The result follows.

Lemma 4.4 LetfxkNg
1
k=0 andfxkg1k=0 be iterates produced

by (PN ) and(P ) respectively. For everyk 2 Z+ xkN ! xk

asN !1.

Proof: We prove this using induction.
This is true fork = 0, for let x0 2 X be feasible for(P ).

Denote byx0N the projection ofx0 ontoXN . Thenx0N is
feasible for(PN ) andx0N ! x0 asN ! 1. Let z1 � z�

solve(ZP ) andz1N � z�N solve (ZPN ). Then by Lemma
4.2z1N ! z1 asN !1. Thusf(x0N ; z

1
N )g1N=1 satisfies the

conditions of Lemma 4.3 andx1N ! x1 asN !1.
Suppose there isk 2 Z+ such thatxkN ! xk andzk+1

N !
zk+1 asN ! 1. Then the conditions of Lemma 4.2 are
satisfied and hence,xk+1

N ! xk+1 asN !1.
The result follows from induction.

Under Assumptions 2.1, 2.2, 2.3, 4.2 and 4.3, the sequence
of interatesfxkg1k=1 produced by Algorithm(P ) has the fol-
lowing weak convergence properties:

Theorem 4.1 If fxkg1k=1 be the sequence of iterates pro-
duced by Algorithm(P ) andx� is an optimal solution of(P )
thenxk * x� ask!1.

Proof: Let fxkNg
1
k=1 be the sequence of iterates which re-

sult from applying Algorithm(PN ) to (PN ). Let � > 0 and
z 2 X be given. By Lemma 4.4,xkp ! xk as p ! 1.
Since strong convergence implies weak convergence, there
existsN1 2 Z

+ such that


z; xk � xkp

�
< �

3 for all p >

N1. By Proposition 4.3 and Assumption 4.2xkq ! x�q uni-
formly so there existsK 2 Z

+ andN2 2 Z
+ such that


z; xkq � x�q
�
< �

3 for all k > K andq > N2. By Propo-
sition 4.1, there existsN3 2 Z+ such that



z; x�q � x�

�
< �

3
for all q > N3. Thus, with p; q > maxfN1; N2; N3g
andk > K, we havej



z; xk � x�

�
j � j



z; xk � xkq

�
j +

j


z; xkq � x�q

�
j+ j



z; x�q � x�

�
j < �.

An immediate consequence of the definition of weak conver-
gence is the following:

Corollary 4.1 Let fxkg1k=0 and x� be as in Theorem 4.1.
Then



c; xk

�
! hc; x�i ask !1.

If in addition we assume that Assumption 4.1 holds, we have
the following strong convergence result:

Theorem 4.2 Let fxkg1k=0 and x� be as in Theorem 4.1.
Thenxk ! x� ask !1.

Proof: The proof is similar in spirit to that of Theorem 4.1,
and requires in addition, the result stated in Proposition 4.2.
The interested reader should consult [5] for details.

5 Example

As with all interior point methods, a crucial part of Algorithm
is calculating the Newton step (9). We consider now a class of
infinite-dimensional LP problems which are known as contin-
uous linear programming(CLP ) [7]. By placing additional
differentiability constraints on the set of feasible solutions,
this class of problems can be transformed into a constrained
linear optimal control problem which falls under the frame-
work (P ). We shall focus on calculating the Newton step.



The(CLP ) problem is stated as follows:

(CLP )

8>><
>>:

R 1
0 c

0(t)x(t) dt! min

B(�)x(�) +
R 1

0 K(�; t) x(t) dt � b(�)

x(�) � 0; � 2 [0; 1]

In addition, we shall assume that thex 2 Ln
2 [0; 1] and twice

differentiable; that is there existsy(t), u(t) 2 Ln
2 [0; 1] such

that

_x(t) = y(t)

_y(t) = u(t)

x(0); y(0) = 


With this additional constraint,(CLP ) is a special case of the
following constrained linear optimal control problem:

(E)

8>><
>>:

R 1
0 c

0(� )w(� ) d� ! minR 1

0 ai(�; � )w(� ) d� � bi(�); i = 1; � � � ;m

w 2 X

where

X =
�
w 2 L2n

2 [0; 1] :

_w(t) = A(t)w(t) +B(t)u(t); w(0) = 0g (18)

_�w(t) = A(t) �w(t); �w(0) = 0

Then

X? =
�
_p+ A0 p : _p 2 L2n

2 [0; 1];

p(1) = 0; p abs cts on[0; 1]g (19)

For (E), we have the potential function

�(w; z)=� ln

�Z 1

0

c0(� )w(� ) d��z

�
�

Z 1

0

ln si(w; � )d �

The Newton step (9) which we denote by�(w0; z0) is

�(w0; z0) = �Q(w0)�1 � r�(w0; z0) (20)

where

Q(w0) =
mX
i=1

Z 1

0

ai(�; t) � a
0
i(�; t)

si(�; w0)2
d� (21)

When there is no risk of confusion, we shall denote
�(w0; z0; t) by �(t). Substituting (21) into (20) gives

�r�(w0; z0; t) =
mX
i=1

Z 1

0

ai(�; t)

si(�; w0)2

�Z 1

0

a0i(�; � ) �(� ) d�

�
d� (22)

Now �(t) 2 X so

�(t) =

Z t

0

�(t; � )B(t) r(� ) d� (23)

for somer(t) 2 Lm
2 [0; 1] where�(t; � ) is the state transition

matrix associated with the state equation which definesX in
(18). Substituting (23) into (22) gives

�r�(x0; z0; t) =
mX
i=1

Z 1

0

Z 1

0

ai(�; t) a0i(�; � )

si(�; w0)2

Z �

0
�(�; �)B(�) r(�) d� d�d�

(24)

Therefore, to calculate the Newton step, one needs to solve
the integral equation (24) forr(t) and (23) for the Newton
step�(t). In practise it may only be possible to solve (24) ap-
proximately - for example, partitioning[0; 1] and constraining
r(t) to be piecewise constant on each subinterval. However,
the Newton step�(t) obtained by solving (23) with this piece-
wise constantr(t) will still satisfy the condition�(t) 2 X.
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