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A POTENTIAL REPRESENTATION FOR TWO-DIMENSIONAL WAVES IN
ELASTIC MATERIALS OF HARMONIC TYPE*

by R. F. JEFFERS and J. K. KNOWLES (California Institute of Technology)

1. Introduction. In the present note we consider two-dimensional finite dynamical

deformations for the class of homogeneous, isotropic elastic materials introduced by

F. John in [1] and referred to by him as materials of harmonic type. The theory of such

materials, developed in [1] and [2], appears to be simpler in many respects than that of

more general elastic materials, and it may offer the possibility of investigating some

features of nonlinear elastic behavior more explicitly than is possible in general.

For plane motions of such materials, we derive here a representation for the displace-

ments in terms of two potentials which is analogous to the theorem of Lam6 in classical

linear elasticity (see [3]) for the case of plane strain. The two nonlinear differential

equations satisfied by the potentials reduce upon linearization to the wave equations

associated with irrotational and equivoluminal waves in the linear theory.

In the following section we state without derivation the equations governing two-

dimensional waves in an elastic material of harmonic type. The reader is referred to [1]

for details. In Sec. 3 we derive the representation in terms of potentials described briefly

above.

2. Harmonic materials. Let x, y, z be coordinates in a fixed rectangular Cartesian

frame, and let R be a region in the x, y-plane. In its undeformed state an elastic body

is assumed to occupy a cylindrical region with generators parallel to the z-axis and

whose cross-section in the plane z = 0 is R. We consider deformations of this body in

which a particle at (x, y, z) in the undeformed state moves to the point (x + u, y + v, z)

at time t, where u = u(x, y, z, t) and v = v(x, y, z, t) are displacements at time t in the

x- and ^-directions, respectively.

For the present case of plane strain, the strain energy W per unit undeformed volume

for elastic materials of harmonic type is of the form

W = 2ji[F{r) - s], (2.1)

where

r = [(2 + ux + vvf + (w„ - vxf]u2, (2.2)

s = (1 + 0( 1 + vv) - uvvx , (2.3)

and the constant ^ > 0 is the shear modulus of linear elasticity. In (2.2), (2.3) and

subsequently, subscripts x and y indicate partial differentiation. In the undeformed state

we have r = 2 and s = 1. The three times continuously differentiable function F in (2.1)

is characteristic of the given material and is subject to the following restrictions:

* Received September 13, 1970.
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F(2) = 1, F'C2) = 1, F"(2) = ic?/c22 , (2.4)

where cL , c2 are the respective speeds of irrotational (dilatation) and equivoluminal

(shear) waves in the linear theory. The first of (2.4) corresponds to the requirement

that W = 0 for rigid body motions, while the remaining conditions assure consistency

with the linear theory of isotropic materials. It is convenient to define

G(r) = 2F'(r)/r, r > 0; (2.5)

we assume1 that G(r) is positive for all r > 0.

If body forces are absent, the differential equations of motion are

putt = Ax + By , pvlt = Av — Bx , (2.6)

where p is the constant mass per unit undeformed volume and

A = 2t±F'(f) cos 6, B — —2ixF'(r) sin 0, (2.7)

2 + uz + vv . „ vx — u„ /n m
cos 6 =  - , smfi =  -■ (2.8)

r r

In the equilibrium case A and B are conjugate harmonic functions and consequently

the local rotation angle 6 satisfies Laplace's equation. This property is responsible for

the term harmonic for materials of this type.

The "Lagrange stresses" associated with the deformation are computed as follows:

qn = 2v[F'(f) cos 6 - 1 - vv], q21 = 2ii[F'{r) sin 6 + uu], ^ ^

ql2 = 2!/t[— F'(r) sin 6 + vx], q22 = 2ix[F'{r) cos 6 — 1 — ux].

Here qn is the component of traction in the ^-direction, measured per unit undeformed

area, on a surface element whose orientation in the undeformed state was normal to the

rr-axis; q2\ is the component of traction in the ^/-direction, also measured per unit unde-

formed area, on such a surface element.2 Similar interpretations apply to q22 and q12 .

3. Potential representation. We now suppose that u, v are twice continuously

differentiate with respect to x, y, t for t > 0, (x, y) £ R and satisfy the differential

equations of motion (2.6). For simplicity we also assume that u = ut = v = vt = 0 in R

for t = 0. Integrating (2.6) twice with respect to t, we obtain

»<*•». 0 - 5 { 0 - '> * + S f. C - ') ̂

,, 9 - i ( (. - r) *r - £ /; (« - T) M

(3.1)

If we define

$ = ['(t - r)-dr, * = -f (t- t) - dr, (3.2)
J0 p Jo P

(3.1) may be written

u = $x _ , v = ^ . (3.3)

1 See the discussion in § 2.2 of [1],

2 The notation for the q's is that of [1]; note that q12 ^ qi
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From (3.2) and (2.7) we have

*«« = - = — F'(r) cos 6, *(t = -- = ^ F'(r) sin (3.4)
P P P P

or, from (2.2), (2.8), (2.5) and (3.3),

P$(1 = M(?(r)(2 + AS), P*„ = M(?(r) A*, (3.5)

where A stands for d2/dx2 + d2/dy2. Since from (3.2), (2.7), (2.8), (2.4), <i> = ixt2/p in

the undeformed state, it is natural to write

$ = + <p, * = i. (3.6)
P

We have thus shown that

u = <px - ft, , v = cp„ + ft (3.7)

where <p and ip satisfy the differential equations

iv,. = G(r) A<p + 2[G(r) — 1], 4 ft< = G(r) Aft (3.8)
C2 C2

r = [(2 + Arf2 + (Aft2]1/Z, (3.9)

and use has been made of the fact that c% = nfp.

If the initial displacement and velocity vectors do not vanish, they may be repre-

sented in terms of potentials by means of the Helmholtz theorem [3] specialized to two

dimensions. The remainder of the above argument is then carried out with little modifica-

tion.3

On the other hand, suppose that <p, \p are three times continuously differentiable with

respect to x, y, t and define u, v by (3.7). A simple direct calculation shows that u, v

satisfy (2.6) if <p, satisfy (3.8).
We may express the Lagrange stresses q in terms of <p and \p as follows. Using (3.7),

(3.9), (2.7), (2.8) in the first of (2.9), we obtain

<Zn = 2/u[JG(r)(2 + Aip) — 1 — xv\■

By the first of (3.8), this can be written

hi ~ 2^(^2 <ptt <pyv ^xvj' (3.10)

For the other q's, we obtain similarly

?12 = ^2 'ht + fti + Vx}j , (3.11)

?21 = ^f^C2 Xf/" Vxvj ! (3.12)

?22 = 2/x(^2 Vtt — <Pxz + ft»)- (3.13)

3 The derivation, of (3.7), (3.8) given above is similar to that employed in the linear theory in three

dimensions by Somigliana [4].
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Eqs. (3.7), (3.8) and (3.10)-(3.13) comprise the representation formulas which we

set out to obtain.

We consider the linearization of (3.8). According to (2.4), (2.5),

G(r) = 1 + WJc\ - 1 )(r - 2) + 0[(r - 2)2] as r -» 2. (3.14)

Linearizing (3.8) with respect to <p, \p thus yields

~2 *Ptt = A<P] 75 Tptt ~ Alf/', (3.15)
C1 c2

these are the respective equations for dilatation and shear waves in the linear theory.

Since the right-hand sides of (3.10)-(3.13) are linear in <p and they must be identical

with the corresponding expressions of the linear theory. It may be noted that if (3.15) is

used to simplify (3.11), (3.12), we recover the fact that q12 = q2i in the linear theory.

As a final remark, we observe that the two nonlinear differential equations (3.8) for

the potentials <p, 4* may be combined into a single com-plex equation. Thus if

X = </> + if, (3.16)

then Eqs. (3.8) are equivalent to

\ x„ = G(|2 + AX|)(2 + AX) - 2. (3.17)
c2
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