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Abstract. The concept of cyclic monotonicity of a multivalued map has been intro-
duced by R. T. Rockafellar with reference to the subdifferential operator of a convex
functional. He observed that cyclic monotonicity could be viewed heuristically as a
discrete substitute for the classical condition of conservativity, i.e., the vanishing of
all the circuital integrals of a vector field. In the present paper a potential theory
for monotone multivalued operators is developed, and, in this context, an answer to
Rockafellar's conjecture is provided. It is first proved that the integral of a monotone
multivalued map along lines and polylines can be properly defined. This result allows
us to introduce the concept of conservativity of a monotone multivalued map and to
state its relation with cyclic monotonicity. Further, as a generalization of a classical
result of integral calculus, it is proved that the potential of the subdifferential of a
convex functional coincides, to within an additive constant, with the restriction of
the functional on the domain of its subdifferential map. It is then shown that any
conservative monotone graph admits a pair of proper convex potentials which meet
a complementarity relation. Finally, sufficient conditions are given under which the
complementary and the Fenchel's conjugate of the potential associated with a con-
servative maximal monotone graph do coincide.

1. Introduction. Potential theory for nonlinear operators on topological vector
spaces is a well-established branch of functional analysis; an exhaustive and detailed
presentation can be found in the book by Vainberg [13].

The classical theory is concerned with the problem of finding a real-valued func-
tional whose gradient is an assigned operator and with the conditions ensuring that
such a functional does in fact exist.

The well-known general condition turns out to be the conservativity of the opera-
tor, that is, the vanishing of the related circuital integral along every closed curve in
the domain of the operator.

In convex analysis the subdifferential operator of a (not necessarily differentiate)
proper convex lower semicontinuous functional is defined to be the multivalued op-
erator that maps each point in the domain of the functional to the closed convex set
of its subgradients.
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It is then quite natural to put the following question: which conditions must be
fulfilled by a multivalued operator in order that it be the subdifferential operator of a
proper convex lower semicontinuous functional?

A complete answer was given by Rockafellar in [9, 11]: the necessary and suffi-
cient property to be satisfied by the multivalued operator is that of maximal cyclic
monotonicity.

Rockafellar's definitions and arguments have been reproduced in [8] by Moreau
who attributes to Minty [7] the first appeal to maximal monotonicity of a multivalued
operator.

In February 1991, while giving a lesson on nonsmooth mechanics, the first author
was asked by a doctoral student about the physical meaning of the cyclic monotonicity
of a multivalued operator.

This quite natural question drew the authors' attention to the connection between
cyclic monotonicity and conservativity.

It soon became apparent that a satisfactory answer to the question required the
development of a potential theory for monotone multivalued operators.

The first step in this direction was then to give a definite meaning to the concept
of the integral of such operators.

To hit the target it was first noticed that the integral of a real monotone multivalued
function on a bounded interval is well defined since the monotonicity of the function
implies that its "jumps" cannot be too many, in the sense that the set of all "jumps"
can be at most a countable one.

Starting from this basic idea, the definition of the line integral of a monotone
multivalued operator is straightforward and immediately extendible to integrals along
polylines. Such definition allows us to introduce the concept of conservativity of a
monotone multivalued operator.

With these tools at hand, the relation between conservativity and cyclic monotonic-
ity can be established and the potential of a conservative monotone multivalued map
can be defined by an integral formula, in perfect analogy with the classical theory.

In particular, it is shown that the potentials of the right and the left maps associ-
ated with a conservative monotone graph are proper convex functionals that meet a
complementarity property.

It is further proved that the complementary and the Fenchel's conjugate of the
potential associated with a conservative maximal monotone graph do coincide under
suitable regularity assumptions.

The concept of the potential of a monotone multivalued operator provides an effec-
tive tool for the systematic search of variational principles associated with problems
stated in terms of multivalued operators.

Applications to nonsmooth problems of structural mechanics will be developed in
forthcoming papers.

2. Some definitions of convex analysis. Let us recall here some basic definitions and
properties of convex analysis, which we shall refer to in the sequel. A comprehensive
treatment of the subject can be found, for example, in [1, 3, 8, 12].

Let (X, A'') be an ordered pair of dual locally convex topological vector spaces
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and (•, •) the related compatible duality pairing mapping the product space X x X'
into the set of reals 5R.

Given a proper convex functional /:ImSu {+00} , its effective domain is the
nonempty convex set on which it assumes finite values

dom/ = {x e X | f(x) < +00}.

The Fenchel's conjugate f*: X' SR U {+00} of / is defined as

f*{x*) = sup{{x* ,y)-f{y)},
yex

so that the following Fenchel's inequality holds:

f(y) + f*(x*) > (x*, y) Vy e X, Vx* e X1.

The pairs (x , x*) for which Fenchel's inequality holds as an equality are said to
be conjugate and are related by the subdifferential multivalued operator d , defined
by

x* £ d f(x) f(z) - f(x) > (x*, z - x) Vz e X.
If the closed convex subdifferential set df(x) is nonempty, the functional / is

said to be subdifferentiable at x and each x* e d f(x) is called a subgradient of /
at x.

For any convex functional /, it turns out to be

x* e d f(x) => x e d f*(x*),
and the inverse implication holds if

liminf/(z) > f(x) Vxel,
Z—*X

that is, if / is lower-semicontinuous (l.s.c.) [3].

3. Integrals of monotone multivalued maps. A graph G is a nonempty subset of
the product space: G C X x X'. Two multivalued maps are naturally associated with
a graph G:

the right map G: X >-> X',

defined by

the left map G: X' ^ X,

G(x) = {x* el'|(x, x*) e Gj c x',

G(x*) = {x£l|(x, x*) eG} cl,

so that G (G) is a correspondence between elements of X (X') and subsets of
X' (X).

We shall write graph (G) or graph (G) to denote G in terms of the associated
maps.
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The domain and the range of the right and left map,

dom G — range Gd= {x e X \ G(x) / 0},

dom G - range G =f {x* G X' | G(x*) / 0} ,

are the projections of G on X and X' respectively.
The product sets dom GxX' and X x dom G are then subsets of the space X x X',

which will respectively be referred to as the vertical strip and the horizontal strip of
G and denoted by v-strip (G) and h-strip (G).

The set domG x domG = v-strip(G) n h-strip(G) will be called the frame of G
and denoted by frame (G).

Definition 3.1. Monotonicity. A graph G C X x X' is said to be monotone if

(x2 — x*, x2 - x,) >0 V(x;., x*) e G, i = 1,2.

A multivalued map M: X X' will be said to be monotone if graph (M) is mono-
tone.

Monotone graphs that meet a maximality property do play a special role in the
subsequent developments; we need then the following:

Definition 3.2. Maximal Monotonicity. A graph Gex c X x X' is said to be an
extension of a graph G C X x X' if G C Gex. Whenever G and Gex are monotone,
Gex will be called a monotone extension of G. It will be called a proper monotone
extension of G if Gex / G.

Given a set S C X x X', a monotone graph G c S is said to be maximal in S if it
cannot be properly extended to a monotone graph Gex C S. A monotone graph G is
said to be maximal if it is maximal in XxX'. The existence of a maximal monotone
extension of a given graph is ensured by Zorn's Lemma. Maximal monotonicity can
be equivalently stated as [8, 11].

(z* - x*, z - x) > 0 V(z, z*) € G (x, x*) G G.

The maps G and G themselves are then said to be maximal monotone.
Monotone extensions of a monotone graph in a one-dimensional case are sketched

in Fig. 1.
The next statement yields a useful result concerning the images of the multivalued

maps associated with a maximal monotone graph.

Lemma 3.3. Closed convex images. Let G c X x X' be a maximal monotone graph.
Then

G(x) C X' is a closed convex set Vx e dom G,

G(x*) c X is a closed convex set Vx* e dom G.

Proof. By definition of maximal monotone graph, the set

G(x) = {x* € x' I (x, x*) G G) = {x* e X' I (z* - x*, 2 - x) > 0 V(z, z*) G G} ,
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frame G

/ .
I

/ '
Fig. 1. Monotone extensions of a monotone graph G .

as intersection of a family of closed half-spaces, turns out to be closed and convex.
A symmetric argument yields the analogous result for the map G. □

In order to develop a potential theory for monotone multivalued maps, it is fun-
damental to prove that the line integral of these maps can be unambiguously defined.
To this end the following preliminary results are needed.

Definition 3.4. Single-valued representatives. Let us consider a real monotone
multivalued map <E>(/) with dom<I> = [0, 1] and its maximal monotone extension
in [0, 1 ] x 5ft, which is

where
<J> (t) =f sup |(JO(t) | t < 6 5ft U {-(X)} ,

0+(?) =f inf {|JO(t) | t > /} e 5ftU {+oo},
under the usual convention that the "sup" and the "inf' of the empty set respectively
are equal to -oo and +oo. A real function a from [0,1] into 5ft such that

a(t)e®Jt) We [0,1]
will be called a single-valued representative of Om(t), and we shall write a e .
It is evident that every a e 3>m is a monotone function.

In Fig. 2 (see p. 618) a real multivalued map (a) and its maximal monotone ex-
tension in the v-strip (b) are illustrated.

Remark 3.5. It can be proved that the subset

S = {t€ [0, 1] | infcDm(0<supcDm(0}
on which the multivalued map Om is not single-valued turns out to be finite or
countable [2] and coincides with the set of discontinuity points of all its single-valued
representatives.

Lemma 3.6. Integrability of monotone multivalued real maps. Given a real mono-
tone multivalued map O with dom O = [0, 1 ], its integral on the interval [0, 1 ] is
finite and well defined by the formula

fl Q>(t)dt =f f®m(t)dt f a(t)dt VaeOm.
Jo Jo Jo
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(a)

Fig. 2. A monotone graph and its maximal monotone extension in
the v-strip.

Proof. Since the set S of discontinuity points of the single-valued representatives
a e Om has a zero Lebesgue measure in 3?, it follows that such representatives are
continuous Lebesgue almost everywhere (a.e.) on [0, 1]. Every a e Om is monotone
and finite at the end points, hence bounded on [0, 1 ]; a theorem by Vitali-Lebesgue
[6] ensures then its Riemann integrability. The value of the integral does not depend
on the choice of a € Om , the difference between any two functions a being zero
Lebesgue a.e. on [0, 1]. Finally from the inequalities

-oo < sup O(O) < [ a(t)dt < infO(l) < +oo,
Jo

it follows that the integral has a finite value. □
Remark 3.7. By virtue of the monotonicity of the functions a, the following

formula holds for the integral:
'1-1 } ,1 (n-1

suPiX>,)(',+i - ',) j =yo $(0^ = inf
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where the 's refer to arbitrary partitions of the interval [0, 1].

Lemma 3.8. Monotonicity of the projection along a line segment. Let M : X h-> X' be
a monotone multivalued map, and consider an oriented line segment [a, b] C dom M
with parametric representation x(t) = a + th , where h — b - a and 0 < t < 1. The
projection of the map M along the segment, which is the real multivalued map

«F(0 = (M(x(t)), h) d= {(x(t), h) | x{t) 6 >

from [0, 1] into JR, has a monotone graph.
Proof. For all e ^(/j), y/2 G we have, by the monotonicity of M,

(V2 ~ Vx){t2 ~ tx) = {x*(t2) -x(tx), t2h - txh)
= (x*{t2) x(t2) -x(^)) > 0,

which was to be proved. □
It is easy to show that, if dom M is convex, the monotonicity of the projection of

M along every line segment in dom M implies the monotonicity of the map M .
We can now set the definition of line integral for a monotone multivalued map.
Definition 3.9. Line integrals. Let M: X h-> x' be a monotone multivalued

map and [a, b] an oriented line segment in dom M with parametric representation
x(t) = a + th , where h = b - a and 0 < t < 1. Then we set

[ (M(x),dx)d= [ (M(x(t)), h) dt,
J a J 0

where the integral is well defined by virtue of Lemmas 3.6 and 3.8. The integral of
M along an oriented polyline n in dom M is accordingly defined as the sum of the
line integrals along each side.

Remark 3.10. From the inequality in Lemma 3.6 and the definition of ¥(*) we
get

rb
(a*, b - a) < / (M(x), dx) < {b*, b - a),

J a

for every line segment [a, b] c domM, for all a* e M(a) and b* e M(b).
Definition 3.11. An arbitrary subdivision of a segment [a, b] by means of a

finite family of segments oriented congruently to [a, £] will be called a refinement
of [a , b] .

Hence a refinement of a given polyline n is any polyline that can be obtained by
a suitable refinement of each side of n .

An immediate consequence of Remark 3.7 is then the following:

Theorem 3.12. Polyline integrals. Let M: X X' be a monotone multivalued
map. If 7t is any oriented polyline in dom M we have

sup , xi+l - Xj)| = J^{M(x), dx) = inf >

where the X3 s refer to arbitrary refinements of n , the choice of x* e M(xj) being
inessential.

*«+1
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Remark 3.13. Let M: X X' be a monotone multivalued map, and let M be
a monotone extension of M. If n is an arbitrary oriented polyline in domM , we
have

f {M(x), dx) = f (M(x), dx).
J 71 J 71

In fact, the projection of M along any oriented line segment that belongs to n is a
monotone extension of the projection of M, and then, by virtue of Lemma 3.6, the
line integrals of M and M coincide as well as the integrals along the polyline n .

Let us now set the definition of curvilinear integral.
Definition 3.14. Curvilinear integrals. Let M: X >-* X' be a monotone multi-

valued map with a convex domain, a> an oriented curve defined by a continuous
mapping from [0,1] into domM, and 11^ the family of iso-oriented polylines
whose vertices xjt i = 1, belong to w such that x{ = a>(0) and xn = co( 1).
The family Y\w can be structured as a directed set by defining in it a partial order-
ing, denoted by -<, according to which n, , n2 e are such that nx -< n2 if every
vertex of nx is also a vertex of 7t1.

Given the real-valued function /: 3?, it is said that / has a generalized
limit fm through [14] if

Ve > 0 3 ne € Uw: n£ ■< n e Yloj ̂  \fu-f(n)\ <e,

and we write
lim f(n) = f .ne n/v

The curvlinear integral of the map M along co is accordingly defined as

[ {M(x), dx) =f lim [ (M(x), dx).
J co Jn

The assessment of suitable regularity assumptions on the curve co, able to ensure the
existence of the generalized limit above for any monotone multivalued map, is still
an open problem; a result due to Rockafellar concerned with the locally boundedness
of a monotone operator along a closed curve in the interior of its domain [10] could
be a starting point to develop an existence theorem.

4. Potential theory. At this stage of the analysis we have properly defined the
concepts of line and polyline integrals of a monotone multivalued map and depicted
their properties.

The next step will consist in the formulation of the potential theory for such maps;
to this end we start giving the definition of conservativity, which is fundamental for
the subsequent developments of the theory.

Definition 4.1. Conservative multivalued maps. A monotone multivalued map
M : X X' is said to be conservative if

(M(x), dx) = 0,
I

for every closed polyline n C domM .

/<J 71
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If domAf is convex, the conservativity of M implies, according to Definition
3.14, that the curvilinear integral along a closed curve co C domM exists and van-
ishes.

Remark 4.2. Conservativity of the extension. If M: X h-> X' is a conserva-
tive monotone multivalued map and M is a monotone extension of M such that
dom M = dom M, then M is conservative. In fact for every closed polyline n C
dom M we get

£ (M(x), dx) = J> (M(x), dx) — 0
J 71 J 71

by Remark 3.13 and the conservativity of M.
The following statement extends a classical result of potential theory to conserva-

tive monotone multivalued maps.
Remark 4.3. Path independence. The polyline integral of a conservative mono-

tone multivalued map M along any oriented polyline in its domain connecting two
arbitrary points depends only upon the end points of the polyline. If domAf is
convex, the curvilinear integral along any oriented curve a> C domAf exists and
depends only upon the end points of the curve.

Definition 4.4. Cyclic monotonicity. A multivalued map M: X h-> X' satisfying
the inequality

n

$>*, xi+l - xt) < 0, with n + 1=0,
i=0

for every xQ, , xn belonging to dom M and for every choice of x* e M{xi), has
been termed cyclically monotone by Rockafellar [9, 11, 12].

Trivially cyclic monotonicity implies monotonicity.
Rockafellar proved that the graph of a multivalued map is included in the graph

of the subdifferential of a lower semicontinuous proper convex functional if and only
if it is cyclically monotone (see also Moreau [8]).

Remark 4.5. Let G c X x X' be a graph. It is easy to prove that the proposition

X>,*,*,•+, -*,-><o,
i=0

for every choice of x0, , xn, xn+x = x0 belonging to domG and for every choice

of x* G G(xi), is equivalent to

(=0

for every choice of x*Q , ... , x*n, x*+l = x*0 belonging to dom G and for every choice

of x( G G(x*). In fact, the two formulas can be obtained by applying the same prop-
erty to an «-tuple (xi, x*) G G with i = 0, ... , n according to reverse numerations.
A simple algebra further shows that

X>* , Xi+l - Xl) = l- Xi > Xm)
i=0 i=0
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and

i2(xl i - x,+i - x.) = - £«, - x*' *.■>
1=0 i=0

for every «-tuple of points {xi, x*) e X x X'. We may thus infer that

G cyclically monotone o G cyclically monotone.

Cyclic monotonicity is then a characteristic property of graph G, with the dual spaces
X and X' playing a symmetric role.

The next theorem shows the relation between the concepts of cyclic monotonicity
and conservativity for a monotone map.

Theorem 4.6. On the relation between cyclic monotonicity and conservativity. A
cyclically monotone multivalued map M\ X >-> X' is monotone and conservative.
Conversely, if a map M is monotone and conservative with a convex domain, it is
cyclically monotone.

Proof. Let M be cyclically monotone. The inequalities in Remark 4.5 imply
that, in the formula stated in Theorem 3.12, the "sup" is nonpositive and the "inf" is
nonnegative. It follows that all three terms must vanish and hence M is conservative.

Now let M be monotone and conservative with a convex domain. Having chosen
x0, , xn£ dom M, the closed polyline n whose vertices are xt will be included in
the convex set dom M . By virtue of the equality in Theorem 3.12 and the vanishing
of the circuital integral of M along n we have

n

^2(x*, x;+1 - xf) < 0, with n + 1 = 0,
1=0

for every choice of x* e M{xt); hence, M is cyclically monotone. □

Theorem 4.7. Conservativity of the inverse map. If GCXxX' is a monotone graph
and the map G is conservative with a convex domain, the map G is conservative
too.

Proof. By virtue of Remark 4.5 and Theorem 4.6 we have

I G conservative q CyCj monot ^ q CyCj monot ^ q conserv. □
[ dom G convex

Now let us state the following definitions, which will be useful in the sequel.
Definition 4.8. Conservative monotone graphs. A monotone graph GcXxX'

is said to be conservative if dom G and dom G are convex sets and the maps G and
G are conservative. Let us remark that, by Theorem 4.7, it is sufficient to assess the
conservativity of one of the two maps G or G.

Definition 4.9. A set 5 C X is said to be n-connected if for every pair x,y£5
there exists a polyline n c S starting at x and ending at y.

Definition 4.10. A set S c X is said to be quasi-convex if there exists a nonempty
convex open set A c X such that A c S C A , where A denotes the closure of A .
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In Banach spaces, the domain of a maximal monotone operator is quasi-convex if
its convex hull has a nonempty interior [10].

It is worth noting that a convex set with nonempty interior is quasi-convex and
that a quasi-convex set is 7i-connected.

The concepts introduced so far allow us to state the following.

Theorem 4.11. The potential of a multivalued map. To any conservative monotone
multivalued map M: X i-> X' with a 7t-connected domain, there corresponds, to
within an arbitrary additive constant, a convex potential /: X h-> SR U {+oo} , which
is the restriction on domAf of a lower semicontinuous proper convex functional.
The potential / is assumed to be +oo outside dom M and is defined on dom M
by

/(x) - /(x0) d= [ (M(z), dz)
J 71

= sup ( J2(x*, xi+l - X,.) + (x*n , x - Xn)}

= inf ' x,+i - *«> + <**' * - *«>} '

where n is an arbitrary polyline in dom M starting at x0 and ending at x, the
's are relative to arbitrary refinements of n, and the choice of x* e M(xi) is

inessential.
Proof. Let us first remark that the definition of potential is well posed since the

integral of the map is path independent. Its equivalent expressions in terms of finite
sums follow, according to Theorem 3.12, by integrating along an arbitrary polyline
in dom M starting at x0 and ending at x .

Finally the formula above reveals that, on dom M, the potential is equal to the
lower semicontinuous proper convex functional, which is defined as the pointwise
supremum of a family of continuous affine functionals [3, 12]. □

Let us notice that, if dom M is a closed set, / turns out to be a lower semicon-
tinuous proper convex functional.

Remark 4.12. If dom M is a convex set then the "sup" and the "inf' in Theorem
4.11 can be evaluated for all x, , ... , xn in domM with x* € M(xt) or, equiva-
lent^, for all (xt, x*) with i = 1,...,« belonging to graph (M). In fact, in this
case, the oriented polyline n whose vertices are x0, xt, , xn,x turns out to be
included in the convex set dom M for every choice of xx, ... , xn in dom M.

The next proposition yields a preliminary result that will be referred to in the
sequel.

Lemma 4.13. Let f:X hJ(u {+oo} be a convex functional whose domain has a
nonempty interior. If / is minorized by an affine functional in the interior of its
domain, the same relation holds in the whole space X.

Proof. It has to be proved that, given x* e X' and k e SR such that

f(x) > (x*, x) + k Vx € intdom /,
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the same property holds for every x £ X. The inequality trivially holds if x £
dom /. On the other hand, considering the closed halfspace

= x K: / > (x*, x) + k}
and the set

intepi/ = {(x, /)elx5f:xe intdom/,

it follows that intepi f C S+ and, hence, trivially, intepi/ C S+ . In a topological
vector space, a convex set with nonempty interior is included in the closure of its
interior; then we have

So we have

and, by definition of S4

epi / c int epi / c 5 .

(x,f(x))eS+ Vx e dom/,

fix) >(x*,x) + k
for every x e dom /. □

Theorem 4.14. Maximality of the subdifferential of a potential. Let M: X i-> X' be
a conservative monotone map with dom M quasi-convex, and let G — graph(A/).
The graph of the subdifferential df of the potential / of M is the unique maximal
monotone extension of G in v-strip (G). Hence, if M is maximal monotone in
v-strip((?) then M = df.

Proof. To prove the theorem let us first notice that, by Remark 3.10, we have

fiy) - fix) =f f (M(z), dz) > (x*, y - x) V(x,x')eC, ye intdom M,
J X

since the line segment connecting x and y lies in the quasi-convex set dom M . By
virtue of Lemma 4.13, the inequality above does in fact hold for all y e X ; then, by
definition, x* e d f(x). It follows that

G C graph(<9/) C v-strip(G).
Since the subdifferentials of convex functionals are monotone maps, the inclusion
above simply states that graph (d f) is a monotone extension of G .

Let us show that the extension is maximal. To this end consider the family ^xv
of the monotone extension Gexv of G in the v-strip (G). By virtue of Remarks 3.13
and 4.2, the potential f of M will be also the potential of the right map associated
with any graph of «^xv so that, being graph idf) G and Gexv C graph(d/) for
any Gexv e JFxv, graph id f) turns out to be the unique maximal element of the
family. □

Remark 4.15. A simpler proof of Theorem 4.14 can be carried out by assuming
the convexity of dom M instead of its quasi-convexity. In fact, under this hypothesis,
the inequality appearing in the proof of the theorem does hold for every y e dom M
and then trivially for every y e X .

The next theorem provides the generalization to the present context of a classical
result of integral calculus: the potential of an operator, which is the gradient of a
functional coincides, to within an additive constant, with the functional itself.
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Theorem 4.16. The integral theorem. Let g: X i-> 3? u {+00} be a proper convex
functional, continuous in the nonempty set int dom g . The subdifferential dg: X >->
X' is a conservative monotone multivalued map, and the restriction of g to domdg
is the potential of dg , to within an arbitrary additive constant.

Proof. It is well known that dg turns out to be cyclically monotone [9, 11, 12]
and, hence, by Theorem 4.6, monotone and conservative. Since g is continuous in
int dom g , we have [8] intdom g C domdg .

Let x0 G int dom g . For all x G dom dg c dom g , the line segment starting at x0
and ending at x belongs to intdom,? (except at most the point x).

Denoting by / the potential of dg, we have

f{x) - f(x0) =f [ {dg(z), dz)
Jx0

= [ (dg(x(t)), h)dt = [ di//(t)
Jo Jo

= f d+i//(t)dt= f d y/(t)dt
Jo Jo

= g{x)-g{x0),

where x{t) = x0 + th with h = x - x0, t G [0, 1], i//(t) = g(x(t)), d+y/ and
d~ y/ are respectively the right and the left derivative of y/(t), and the equality
[d~y/(t), d+y/(t)] = dy/{t) = (dg(x{t)), h), t g [0, 1[, follows from the continuity
of g. □
Corollary 4.17. Maximality of the subdifferential of a convex functional. If g: X
(-> 5Ru{+oo} is a proper convex functional, continuous in the nonempty set int dom g,
then the subdifferential dg is maximal monotone in v-strip of graph(dg).

Proof. Let /: X 5J U {+00} be the potential of dg. It is obvious that the
map dg is conservative and that dom dg is quasi-convex. Theorem 4.14 ensures
then that df is the unique maximal monotone extension of dg in v-strip (dg).
Being dom d f = dom dg , the theorem will be proved if we show that graph(<9/) C
graph(dg). To this end we observe that

(x, x*) g graph(3/) f(y) - f(x) > (x*, y - x) \/y G dom / D int dom g.

Since, by Theorem 4.16, f = g on domdg , we get

g(y) - g(x) > {x*, y - x) Vy G int dom g.

Then, by virtue of Lemma 4.13, the inequality above holds My e X so that (x, x*) G
graph(dg). □

Incidentally, we note that a convex functional /: 3?" h-> 3? u {+00} is continuous
in the interior of its domain.

The following theorem yields a basic result of the potential theory for conservative
monotone graphs (see Definition 4.8).

Theorem 4.18. Complementary potentials. With any conservative monotone graph
G C X x X1 there can be associated a pair of proper convex functionals f, f , called
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the complementary potentials of G, which meet the relation

[/(*) - fix0)] + [fc{x*) - fc(x*0)] = {x*, x) - (x*, xQ)
for all (x, x*), (x0, Xg) e G.

Proof. By virtue of Theorem 4.11 the potential fc associated with G is given on

domG by

fc(x*) ~ fc{x*0) d= f{G(z*), dz*)
J 71*

' n-\

= inf \ ]T(x*+1 - x*, xi+l) + (x* - x*, x)
v i=o )

where n* C domG is a polyline starting at Xq and ending atx*.
The complementarity relation can then be proved by a suitable rearrangement of

the terms in the 's defining the potential / of G and observing that the "sup"
and the "inf' appearing in the next formulas can be evaluated, by virtue of Remark
4.12, for every choice of an n-tuple (x*, xt) belonging to G. Then we have

fix) - /(*„) = sup j]C(x*' x(+i " x<> + <x« ' x - xn) J

= sup ~ X'+l' X<+^ + ~ x* > x> j + (x* > x) ~ (x0 ' xo>

= - inf l^(x;+l - X*, Xi+l) + {.x* - X*n , x)| + (x*, x) - (x*, x0)

= fc(xo) - fc(x*) + (x*, x) - (x*, x0),

where (x, x*) e G and (x0, x^) e G. □

Theorem 4.19. Maximality in the frame. If G C X x x' is a conservative mono-
tone graph, the set Gm = graph(<9/) n graph(<9^) is the unique maximal monotone
extension of G in frame(<7).

Proof. Let us consider the family of the monotone extensions Gex of G in
frame(G). Each element Gex of this family trivially belongs to both families <^xv
and i^xh of the monotone extensions of G in v-strip (G) and h-strip (G) respec-
tively. Hence it will be included in the maximal elements of <^xv and ^xh . By
Remark 4.15, it follows that

Gex C graph(df) n graph(dfc) VGex 6 9^.
Then the set graph (df) n graph(<9^), being itself an element of J^x, will be the
unique maximal element of the family. □

An immediate consequence of the previous theorem is
Remark 4.20. If G is a conservative monotone graph, the complementarity re-

lation between / and fc does hold for all the pairs (x, x*) which belong to the
maximal monotone extension G of G in frame (G).
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Further from Theorem 4.19 we infer that
Remark 4.21. If G C X x X' is a conservative maximal monotone graph then

G = graph(df) = graph{dfc).
It is worth noting that graph (d f) and graph (dfc) are not necessarily coincident

unless G is a conservative maximal monotone graph.
An illustrative example is provided in Fig. 3 where: (a) is the sketch of a graph

G, which is maximal in its frame, and (bl)-(b2), (c1)-(c2) respectively show

x
frame G

df

dom G

v-stnp

(ci)

X

(a)

dom G x

(b2)

dom G

h-strip

at

(c2)

Fig. 3. A monotone graph with its potentials and the corresponding
subdifferentials maps.
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the complementary potentials associated with G and the graphs of the corresponding
subdifferential maps.

The complementarity property of the convex potentials / and fc associated with
a conservative monotone graph G c X x X' can equivalently be formulated by stating
that the functional

I(x, x*) =f fix) + fcix*) - (x*, x)
is finite and constant on the maximal monotone extension Gm of G in frame (G).

An important minimality property for /(x, x*) is provided by the next theorem.

Theorem 4.22. Minimality of the invariant. Let G C X x X' be a conservative
monotone graph and f, fc the associated complementary potentials. The finite con-
stant value taken by /(x, x*) on Gm = graph(3/) n graph(<9^) is an absolute min-
imum in the product space X x X1. Denoting by

= {(x, x*) 6 X x X' | /(x, x*) - min /},

the minimal set of /(x, x*), we have

= Gm.

Proof. Let us first prove that graph(<9/) n graph(<9^) C . In fact, if (x, x*) G
Gm , we have by definition

fiy) - fix) >(x*,y-x) Vyel,
fciz*) - fix*) > (z* - x*, x) Vz* e X'.

Adding f ix*) and fix) respectively to both members of the first and the second
inequality, we get

liy,x*)>lix,x*) vyex,
/(x, z*) > /(x, x*) Vr* € X'.

Now, for every y € domGm , there exists a y* e X' such that iy, y*) £ Gm . Then
from the latter inequality we get

I(y,z*)>I(y,y*) = I{x,x*) Vz* e X'.

Since I{y, z*) = +00 when y g dom Gm , it turns out that

Iiy, z*) > /(x, x*) VyeX, Vz* G x',

which implies that (x, x*) G Jt.
The opposite inclusion C graph(d/) Dgraph(9^,) follows by observing that, if

(x, x*) G JK, by definition we have

/(x, x*) < Iiy, z*) Vy g X, Vz* e X'

and then "a fortiori"

Iiy, x*) > /(x, x*) Vy e X,
/(x, z*) > /(x, x*) Vz* G X',
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from which the result is obtained by reverting the first step in the proof of the theo-
rem. □

Without loss in generality we can assume that I(x, x*) = 0 on G so that the
minimality property yields

fc(x*) > (x* , x) - f(x) V(x, X*) £ X X x'.
A comparison with Fenchel's inequality:

f*{x*)>(x*,x)-f(x) V(x,x*)gXxX'
could lead at first sight to the erroneous conclusion that, for any conservative mono-
tone graph, fc — f* must result on the whole X'.

In fact, Fenchel's inequality is optimal since, by definition, f*{x*) is the least
upper bound of the numerical set described by the right-hand side when a: ranges
over X. When x* e dom G, the values of the potential fc and of the functional
/* are both equal to the maximum of this numerical set, so that

fc(x*) = max{(x*, x) - f(x) \ x e X} = f*{x*) Vx* e domG.

On the contrary, outside domG, we can just state fc(.x*) > f*{x*) since by defini-
tion fc(x*) = +00 while f*{x*) could assume a finite value.

The failure of the identity f = f* is depicted by the example in Fig. 4 where the
potentials / and fc of the graph reported in Fig. 3 and the corresponding Fenchel's
conjugates are sketched.

dom G x

1z
X

dom G

Fig. 4. Fenchel's conjugates of the potentials / and fc of the graph
G in Fig. 3.
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dom G

f*

dom G X

(c) (d)

Fig. 5. Maximal monotone graph G for which

The identity fc = f* fails even when the graph G is maximal monotone as
depicted in Fig. 5. Nevertheless this identity can be stated under a stronger hypothesis
as shown by the following theorem.

Theorem 4.23. Conjugacy property of complementary potentials. Let G C X x X'
be a conservative maximal monotone graph, / and f the complementary potentials
associated with G, and /*, (fc)* the corresponding Fenchel's conjugates. If at the
point x* G X' the subdifferential of f* is a nonempty set, we have fc(x*) = f*(x*).
Hence, if /* is everywhere subdifferentiable in its domain, it turns out that fc — f* ■
An analogous statement can be formulated in terms of / and (fc)* .

Proof. Since G is maximal monotone in v-strip(G), Remark 4.15 implies that
G = graph(<9/). It is well known that [12] graph(<9/) C graph(<9/*) so that, by the
maximality of G = graph(<9/), we have

graph (df) = graph (<9/*).

Then, it follows that the Fenchel's equality

f(x) + f*(x*) - {x*, x) = 0
holds for each pair (x, x*) G G. By subtracting the equality above from the defini-
tion of I(x, x*) we get

fc(x*) = f*{x*) Vx* G dom (df*),
and the result is proved. A dual argument gives the last part of the statement. □
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