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Abstract: In the present work zinc oxide nanoflakes (ZnO-NF) structures with a wall 

thickness around 50 to 100 nm were synthesized on a gold coated glass substrate using a 

low temperature hydrothermal method. The enzyme uricase was electrostatically 

immobilized in conjunction with Nafion membrane on the surface of well oriented  

ZnO-NFs, resulting in a sensitive, selective, stable and reproducible uric acid sensor. The 

electrochemical response of the ZnO-NF-based sensor vs. a Ag/AgCl reference electrode 

was found to be linear over a relatively wide logarithmic concentration range (500 nM to 

1.5 mM). In addition, the ZnO-NF structures demonstrate vast surface area that allow high 

enzyme loading which results provided a higher sensitivity. The proposed ZnO-NF  

array-based sensor exhibited a high sensitivity of ~66 mV/ decade in test electrolyte 

solutions of uric acid, with fast response time. The sensor response was unaffected by 

normal concentrations of common interferents such as ascorbic acid, glucose, and urea. 
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1. Introduction  

Uric acid (UA) is the main end product of purine metabolism, and its excretion in urine is caused by 

purines that are produced in the catabolism of the dietary and endogenous nucleic acid. The production 

of excess uric acid may precipitate in the kidney and the lower extremities. One problem caused by the 

metabolism of the uric acid is gout [1]. Several epidemiological studies have suggested that the 

production of excess uric acid in human serum is also a risk factor for cardiovascular disease [2]. Thus, 

the detection of UA in human physiological fluids is necessary for the diagnosis of patients suffering 

from a range of disorders associated with altered purine metabolism. Recently, various uric acid 

biosensors have emerged from laboratories, because of the advantages of simple measurement, a short 

response time, high sensitivity, and high selectivity [3–7]. Most uric acid biosensors are based on 

amperometric principles [8–11]. The main problem in the practical application of many amperometric 

biosensors is that the electrode must be held at approximately 0.7 V [12]. The relatively high electrode 

potential enables other biological electroactive molecules to react on the surface of the electrode [13]. 

However, interferences can be reduced by preferring potentiometric configuration as described in our 

earlier investigations [14–17]. Recent advances in the biocompatible nanomaterials and biotechnology 

open a promising field toward the development of the nanostructured based electrochemical biosensing. 

Among the nanomaterials, zinc oxide (ZnO) is of special interest for biological sensing due to its many 

favorable properties like a wide direct band gap (3.37 eV) and large exciton binding energy (60 meV). 

In addition, ZnO has high ionic bonding (60%), and it dissolves very slowly at biological pH values.  

Recently, a number of scientific investigations based on different ZnO nanostructures fabricated by 

various physical and chemical routes have been reported for sensing applications. These include 

nanowires/nanorods [18] nanotubes [19,20] combs [21,22] forks [23], fibers [24], flakes [25], 

composites [26], tetrapods [27], particles [28], flowers [29], sheet/disks [30], etc. Due to their unique 

advantages in combination with immobilized enzymes, these ZnO nanosensors offer some significant 

advantages owing to their small size and high surface area to volume ratios allowing larger signals, 

better catalysis and the more rapid movement of analyte through sensors, thus showing higher 

sensitivity and a lower limit of detection (LOD) as compared to those prepared from bulk ZnO devices. 

ZnO nanoflake (ZnO-NF) structures possess lots of interesting unique properties such as porous 

structures and large surface areas and there have been reports on the use of ZnO-NF structures as 

sensors with improved performance and higher sensitivity compared to ZnO nanorods/nanowires [25]. 

Moreover, ZnO has a high isoelectric point (IEP) of about 9.5, which should provide a positively 

charged substrate for immobilization of low IEP proteins or enzyme such as uricase (IEP ≈ 4.6) as 

described in our earlier investigations [31–34]. 

In this study, we have successfully demonstrated the potentiometric determination of uric acid with 

high electrochemical response by using a ZnO-NF-based sensor fabricated by a hydrothermal method. 

This method has many advantages such as being a low cost, simple, high yield, low temperature 

deposition process and also proves to be less hazardous compared to other methods. The high 

electrochemical response can be attributed to the unique structural properties of our sensor electrode 

like the high surface to volume ratios of ZnO-NFs, which can provide a favorable microenvironment 

for the immobilization of uricase enzyme and retain the good enzymatic activities which in turn 

enhances the sensitivity of sensor electrode for the analyte, as demonstrated by the detection of uric 

acid in the absence of a mediator. 
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deionized water (150 mL) with 0.025 M zinc nitrate hexahydrate [(Zn (NO)3)2·6H2O)] and 0.025 M 

hexamethylenetetramine [C6H12N4] that was kept in preheated an oven at 90 °C for 2–4 hours. After 

the growth process, the fabricated ZnO-NFs were cleaned in de-ionized water and dried at room 

temperature. A typical AFM image of ZnO-NPs arrays grown on the gold coated plastic electrode 

using this procedure are shown in Figure 1(b).  

The morphological and structural studies were performed by using Scanning Electron Microscopy 

(SEM). The SEM images of the ZnO-NFs with as fabricated, after enzymes immobilization and after 

measurements are shown in Figure 2(a–c).  

Figure 2. A typical SEM images of ZnO-NFs arrays grown on gold coated glass substrate 

using low temperature chemical growth. The figure showing (a) the ZnO-NFs arrays as 

fabricated; (b) with immobilized uricase and (c) the same sensor electrode after measurements. 

 

It can be clearly seen that the wall thickness of the grown ZnO-NFs are 50–100 nm in diameter with 

uniform density. These ZnO-NFs were well oriented on the surface of the electrodes. The morphological 

and structural characteristics of the fabricated ZnO-NFs arrays can be controlled by adjusting the 

growth parameters. 

2.3. Enzymes Immobilization on ZnO-NFs  

To immobilize the uricase enzyme on the fabricated ZnO-NFs, first we have prepared an uricase 

solution in 10 mM PBS pH 7.4. Uricase was electrostatically immobilized by dipping the  

ZnO-NF-based electrode into the enzyme solution for 15 minutes at room temperature and then for 

drying, it was left in air for 60 min. After drying, Nafion solution (1% in methanol, 5 µL) was applied 

onto the electrode surface to prevent possible enzyme leakage and eliminate foreign interferences. All 



S

e

s

r

th

m

A

(

3

3

th

e

r

a

o

v

g

b

b

Sensors 201

enzyme elec

steps, the pr

reference ele

he potentiom

measuremen

Atomic forc

Digital Inst

3. Results a

3.1. The Ele

The elect

he ZnO-NF

electrochem

room temper

acid in PBS

observed ar

volume. Dur

It is very

gives these s

biological fl

based on an 

Figure

uricase

workin

2, 12  

ctrodes wer

repared sen

ectrode purc

metric outp

nts, a mode

ce microsco

truments) in

and Discuss

ectrochemic

trochemical 

F-based sens

ical respons

rature (23 ±

. An electro

ound 200 m

ring all expe

y important 

sensors muc

luids is aro

enzymatic 

e 3. Schem

e as worki

ng electrode

 

re stored in 

nsors were c

chased from

put voltage o

el 363A po

opy images 

n tapping mo

sion 

al Response

measureme

sor as the w

se of the ZnO

± 2) °C. The

ochemical r

mV. The re

eriments the

E =

to note tha

ch more bio

und 7.4. Th

reaction cat

matic diagram

ing electro

e. 

         

dry conditi

checked po

m Metrohm.

of the ZnO-

otentiostat/g

were acquir

ode with Si

e of ZnO-NF

ents were ca

working elec

O-NFs sens

e sensor as 

esponse fro

esponse sta

e ZnO-NFs s

= E0 − 0.059

at ZnO-NFs

o-compatibi

he sensing

talyzed by u

m of the ur

de showing

ions at 4 °C

otentiometri

. A pH mete

-NFs based

alvanostat 

red using a

 cantilevers

Fs Sensors 

arried out us

ctrode and 

sor versus an

fabricated i

om ZnO-NF

ayed around

sensor follo

916 V/n log

are relative

ility in biolo

mechanism

uricase as d

ric acid sen

g the poss

 

C when not

ically in uri

er (Model 7

sensors pre

(EG & G,

Dimension

s. 

 

sing a two-e

an Ag/AgC

n Ag/AgCl r

s sensitive t

Fs sensor in

d 200 mV

wed the Ne

g [Reduced]

ely stable a

ogical fluid

m of most el

described in

nsing setup

ible electro

t in use. Af

ic acid solu

744, Metroh

esented here

Las Vegas

n 3100 Scan

electrode con

Cl one as a r

reference el

to the conce

the 100 µM

regardless 

rnst’s expre

/[Oxidized]

around a ne

ds and speci

lectrochemi

Figure 3.  

using ZnO

ochemical 

  

fter complet

utions with 

hm) was use

e. For the ti

s, NV, USA

nning Probe

nfiguration 

reference el

lectrode was

entration ch

M uric acid 

of the ana

ession:  

] 

utral pH of

ies since the

ical uric ac

O-NFs coate

reaction ne

 

        279

ting all thes

an Ag/AgC

ed to measur

ime respons

A) was used

e Microscop

consisting o

lectrode. Th

s measured 

hanges of ur

solution wa

alyte solutio

f 7.4 and th

e pH of mo

cid sensors

ed with 

ear the 

 

91

se 

Cl 

re 

se 

d. 

pe 

of 

he 

at 

ric 

as 

on 

his 

st 

is 



Sensors 2012, 12                            

 

2792

When uric acid is oxidized in the presence of uricase it is turned into allantoin along with carbon 

dioxide and hydrogen peroxide. Due to the presence of water (H-OH), it is a high probability that 

allantoin will accept a proton from (H-OH) converting it to allantoinium ion, which in turn will interact 

with the ZnO-NFs and produce a potential change at the electrode. As the concentration of ions 

changes in surrounding the ZnO-NFs and the electrode potential will change [36]. The potentiometric 

responses of the sensor electrodes were studied in uric acid solutions made in buffer (PBS pH 7.4) with 

concentration ranging from 0.5 µM to 1,500 µM. During the measurements it was observed that the 

carbon dioxide produced does not affect the stability of ZnO-NFs as shown in SEM image of Figure 2(c) 

and we did not observe any substantial change in pH of the buffer solution (PBS).  

The tested sensor configuration showed large dynamic ranges with an output response (emf) that was 

linear vs. the logarithmic concentrations of the uric acid with sensitivity around 66 mV/decade as shown 

in Figure 4(a). A very fast response time was noted over the whole concentration range with 95 % of 

the steady state voltage achieved within 8 s, as shown in Figure 4(b).  

Figure 4. (a) Calibration curve for the ZnO-NFs based uric acid sensor and (b) Time 

response of the ZnO-NFs based uric acid sensor in 100 µM uric acid solution. 

 

3.2. Reproducibility, Measuring Range and Detection Limit of the ZnO-NFs Based Sensor 

To evaluate the performances of the proposed sensor, we have checked the parameters like 

reproducibility, measuring range, detection limit, response time and selectivity, etc. The 

reproducibility is an important characteristic for the performance evaluation of a sensor. To evaluate 

reproducibility and long term stability of the proposed ZnO-NFs based sensors, we independently 

fabricated six sensor electrodes under the same conditions; the relative standard deviation of the 

fabricated sensor electrodes in standard uric acid solutions was less than 5%. The sensor to sensor 

reproducibility in 100 µM uric acid solution is shown in Figure 5. 
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mentioned methods, we checked the selectivity and stability of the sensor by output response curve. The 

possible interferences present in blood that normally interfere with an amperometric uric acid biosensor 

include ascorbic acid (AA) urea (UR) and glucose (GL) [38]. Hence, ascorbic acid, urea and glucose 

were selected to affirm the selectivity of the potentiometric uric acid sensor. In the present work, upon 

addition of 1 mM glucose, 100 µM ascorbic acid and 1mM urea solutions in a 100 µM uric acid solution 

the signal changed only slightly, which indicates a good selectivity, as shown in Figure 6.  

Figure 6. Effect of potentially interfering substances on sensor response (emf) upon adding 

1 mM glucose (GL), 100 µM ascorbic acid (AA) and urea (UR) into 100 µM uric  

acid solution. 

 

This was repeated several times on new, independently prepared sensors and continued to show 

negligible signal response to interferences. In practical measurements, however these changes in 

sensor response can be neglected.  

4. Conclusions 

In conclusion, we have successfully demonstrated a simple fabrication procedure for a highly 

sensitive electrochemical uric acid sensor based on ZnO nano-flake-based structures. The proposed 

electrochemical nanosensor demonstrates immense surface area to volume ratios which provide a 

suitable microenvironment for enzyme loading because of its porosity that allows for very good 

sensitivity as compared to other ZnO nanostructures as shown in Table 1, portability and small size.  

Table 1. Comparison of some uric acid sensors based on different ZnO nanostructures. 

Transducer Matrix Sensitivity 
Response 

time 

Shelf 

life 
Range Reproducibility Reference 

Potentiometric 
ZnO 

nanowires 
29 mV/decade 6–9 s 12 weeks 

1 µM–

1,000 µM 
20 times [31] 

Potentiometric ZnO nanotubes 68 mV/decade 8 s 12 weeks 
0.5 µM– 

1,500 µM 
20 times [32] 
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Table 1. Cont. 

Transducer Matrix Sensitivity 
Response 

time 

Shelf 

life 
Range Reproducibility Reference 

Amperometric ZnO nanorods ------- ------- 20 days 
5 µM– 

1 mM 
10 times [33] 

Amperometric 
ZnO 

nanoparticles 

393mA 

cm−2M−1 
~8 s 

12 

weeks 

5 µM– 

1 mM 
--------- [34] 

Potentiometric 
ZnO 

nanoflakes 

~66 mV/ 

decade 
~8 s 

12 

weeks 

500 nM– 

1.5 mM 
20 times [present] 

The uricase sensor retained its enzymatic activity due to strong electrostatic interaction between 

zinc oxide and uricase. Moreover, the developed ZnO-nanoflake-based nanosensor showed excellent 

performance regarding sensitivity, stability, selectivity, reproducibility and resistance to interference 

when the sensor was exposed to uric acid test solutions. These results revealed that electrochemical 

sensors based on ZnO nanoflakes have the potential to perform measurements biologically relevant to 

on-spot clinical diagnosis. They are also convenient to assemble into portable chip based sensing 

devices suitable for unskilled users. 
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