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Abstract— Recent system design trends suggest multicore 

architecture for all computing platforms including 

distributed and embedded systems running real-time 

applications. Multilevel caches in a multicore system pose 

serious challenges as cache requires huge amount of energy 

to be operated and cache increases unpredictability due to 

its dynamic behavior. Bandwidth and synchronization 

problems are also critical design factors for distributed and 

embedded systems. In this work, we propose a “miss table” 

based cache memory organization which is very effective for 

real-time distributed and embedded systems. Cache-level 

miss table holds information about the memory blocks that 

cause most level-1 cache (CL1) misses under normal 

execution. Proposed cache organization also includes private 

victim caches (VCs) to hold level-1 victim blocks and shared 

level-2 cache (CL2) to help synchronization. Proposed cache 

organization improves CL1 cache hits that decrease 

memory latency and total power consumption and improve 

predictability and bandwidth. We simulate an 4-core system 

with two-level caches using MPEG4, H.264/AVC, FFT, MI, 

and DFT workload. Experimental results show that the 

proposed miss table based cache organization helps reduce 

average memory latency and total power consumption by 

31% and 38%, respectively, when compared with cache 

organization without miss table and victim caches. 

 

Index Terms—cache organization, distributed systems, 

embedded systems, miss table, performance/power ratio, 

real-time applications 

 

I.  INTRODUCTION 

Most chip design vendors are using multicore 
architecture in their products and multicore processors are 
being used for all computing platforms including servers, 
workstations/PCs, and embedded systems. High 
performance/power ratio, predictability, synchronization, 
and bandwidth are important design factors for all 
modern systems, especially for distributed and embedded 
systems running real-time applications. In a distributed 
system, multiple sovereign computers communicate 
through a computer network to interact with each other in 
order to solve a common problem [1][2][3]. Embedded 
systems, in terms of complexity, range from simple (with 
a single microcontroller chip) to very complex (with 

multiple microcontrollers, peripherals, and networks 
mounted inside a large framework) [4][5][6][7][8][9]. 
Like desktop computing, the high performance/power 
ratio requirement for distributed and embedded systems is 
also increasing. Distributed and embedded systems are 
having multicore architectures for higher processing 
speed. Execution time predictability and total power 
consumption are critical issues for mobile and/or battery 
operated (multicore) systems supporting real-time 
applications.  

In order to satisfy the needs for increased processing 
speed, there are significant changes in the direction of 
designing and developing processors. Most chip-vendors 
including Intel, AMD, IBM, and Sun are deploying 
multicore (instead of single-core) processors to their 
product lines [10][11][12][13][14][15]. In a multicore 
processor or chip-level multiprocessor (CMP), two or 
more independent cores are combined into a die. 
Normally, each core has its private CL1 – CL1 may be 
split into instruction cache (I1) and data cache (D1) to 
improve performance. In addition to CL1, a multicore 
processor usually has unified shared CL2 or distributed 
CL2s. Intel’s Advanced Smart Cache is optimized for 

multicore processors to improve performance by sharing 
CL2 among the cores. AMD's multicore processor has 
distributed and dedicated CL2s (and shared CL3 in 
Opteron quad-core). Cache memory is first introduced by 
IBM in 1960s to bridge the speed gap between the CPU 
and the main memory. Almost immediately after that all 
gigantic chip-vendors introduce cache to their processors 
[16][17][18]. Today, processors are having multiple 
processing cores and most processors have on-chip CL1 
and off-chip CL2 [19][20][21][22]. Even though cache 
improves overall system performance, a system with 
cache memories consumes more total power than the 
system without caches [23][24][25][26][27][28][29][30] 
[31]. Excessive power consumption and execution time 
unpredictability may defeat the performance gain of 
distributed and embedded systems, especially when the 
system is mobile and/or battery operated and runs real-
time applications [32][33][34][35][36][37][38][39]. 
Multicore parallel and/or distributed systems are very 
suitable for high-performance systems, because 
concurrent execution of tasks is possible there. In many 
respects including power consumption and heat 
dissipation, single-core architecture is inadequate for 
achieving the required level of performance and/or the 
required level of reliability. Multicore architecture 
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Figure 1. Schematic diagram of inclusive cache architecture. 

 
Figure 2. Cache architecture with victim cache. 

consumes less amount of power as it runs at a lower 
frequency. However, significant amount of power is 
required to operate the caches as cache is power-hungry. 

It is established that cache parameters (cache size, line 
size, associativity level, etc.) have significant impact on 
overall system performance. Studies show that victim 
buffer/cache and stream buffering improves performance 
by improving cache hits [40][41][42][43]. However 
victim cache requires additional power to be operated. 
Studies also show that cache locking improves 
performance/power ratio (up to 25% cache locking) and 
execution time predictability in single-core systems by 
holding all or some important blocks inside the cache 
[24][44][45][46][47][48][49][50]. Billions of transistors 
in a single chip are now possible and the design trend of 
multicore in distributed and embedded systems is 
expected to grow in the future. To the best of our 
understanding, current cache organizations are not 
adequate for multicore system. As an example, cache 
makes the unpredictability in multicore even worse. 
Cache locking techniques are developed to improve 
predictability. Most of the existing cache locking 
techniques are developed for single-core systems. A few 
articles those mention cache locking in multicore do not 
elaborate the strategy well [13][14]. Our goal is to 
provide a single (and simple) cache architecture solution 
to reduce the average memory latency and total power 
consumption and increase the predictability, bandwidth, 
and synchronization for multicore distributed and 
embedded systems running real-time applications. In this 
work, we propose a “miss table” based cache architecture 
with private victim caches and shared CL2, which is very 
effective for distributed and embedded systems. 
Information about memory blocks with higher level-1 
cache misses are stored in the miss table and level-1 
victim blocks are stored in victim caches.  

The rest of the paper is organized as follows. In 
Section 2, relevant surveyed articles are discussed. 
Proposed miss table based cache organization for real-
time distributed and embedded systems is presented in 
Section 3. In Section 4, the proposed cache organization 
is evaluated by presenting simulation details and some 
important simulation results. Finally, this work is 
concluded in Section 5.  

II.  SURVEY 

Improving the performance of distributed and 
embedded systems without any negative impact on power 
consumption is very challenging. Performance/power 
ratio improvement (in multicore) by optimizing cache 
memory subsystem has regained attention in the recent 
years. Several cache optimization techniques have been 
proposed to improve the performance of distributed and 
embedded systems. Cache locking is also used to improve 
performance/power ratio. However, currently available 
cache locking mechanism is not suitable for multicore 
architecture. In this section, we present some popular 
single-core cache memory hierarchies, followed by a 
number of existing single-core cache locking techniques, 

and cache organization used in contemporary popular 
multicore processors. 

A.  Single-Core Cache Memory Hierarchies 

Cache memory has a very rich history in the evolution 
of modern computing [18]. Cache memory is first seen in 
the IBM System/360 Model 85 in late 1960s. In 1989, 
Intel 468DX microprocessor introduced on-chip 8 KB 
CL1 cache for the first time. In early 1990s, off-chip CL2 
cache appeared with 486DX4 and Pentium 
microprocessor chips. Today's microprocessors usually 
have 128 KB or more of CL1, and 512 KB or more of 
CL2, and optional 2 MB or more CL3. Some CL1 cache 
is split into I1 and D1 in order to improve performance 
[11][12]. Intel Pentium 4 processor, one of the most 
popular single-core processors that use inclusive cache 
architecture, is discussed in [21].  

The schematic diagram of a typical inclusive cache 
memory subsystem is shown in Figure 1. In inclusive 
cache architecture, CL2 contains each and every blocks 
that CL1 (i.e., I1 and D1) may contain. In case of a CL1 
miss followed by a CL2 miss, the block is first brought 
into CL2 from main memory, then into CL1 from CL2. 
Intel Pentium 4 Willamette has on-die 256 KB inclusive 
CL2; with 8 KB level-1 trace/instruction cache (I1) and 8 

KB level-1 data cache (D1). 
The schematic diagram of a memory system with a 

victim cache between CL1 (I1, D1) and CL2 is presented 
in Figure 2. Victim cache reduces average memory 
latency. Usually the effective cache size of this 
architecture is more than CL2 and it provides 
performance gain [43][51]. The victim cache hierarchy is 
suitable for systems with limited cache-memory area (like 
embedded systems) and applications that perform a large 
amount of memory accesses (like multimedia) [52]. 

B. Single-Core Cache Locking 

Some cache locking approaches in real-time systems 
are presented in [47][48][49]. According to these 
approaches, cache contents are statically locked so as to 
make memory access time and cache-related preemption 
delay predictable. Cache locking may cause more power 
consumption due to the extra logic to implement it. 
However, these approaches can be used to improve 
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Figure 3. Classification of contemporary multicore processors. 

 
Figure 4. Schematic diagram of Intel quad-core architecture. 

 
Figure 5. Diagram of IBM Cell-like multicore architecture. 

performance/power ratio if the right amount of correct 
memory blocks are locked.   

In [29], static cache analysis is combined with data 
cache locking to estimate the worst-case memory 
performance in a safe, tight, and fast way. Experimental 
results show that this scheme is more predictable than a 
system without cache. In [26], various algorithms to 
select a set of instructions to be locked in cache are 
compared. The algorithms mentioned in [25][26][29][44] 
show performance improvement and estimate a tight 
upper bound of the response time of tasks. The 
techniques mentioned above are used mainly to evaluate 
predictability in a single-core system. These cache 
locking techniques are inadequate to evaluate the 
performance/power ratio analysis – a crucial design factor 
for distributed and embedded systems.  

An algorithm for off-line selection of the contents of 
two on-chip memories – locked caches and scratchpad 
memories is proposed in [49]. Experimental results show 
that the algorithm generates good ratio of on-chip 
memory accesses on the worst-case execution path. The 
major problem with this algorithm is that the worst-case 
performance with locked caches may degrade with large 
cache lines due to cache pollution.  

In [45], cache locking in Intel Pentium-like single-core 
architecture is simulated running FFT, MI, and DFT 
workload. Simulated architecture has one processing core 
and two levels of cache memory hierarchy. Experimental 
results show that cache locking improves both the 
performance and predictability up to a limit 
(approximately 25%) of locked cache size. After that 
limit, predictability can be further improved by 
sacrificing performance. No analysis on power 
consumption is done in this work. 

C.  Multicore Cache Organizations 

 Most manufacturers are adopting multicore processors 
to acquire high processing speed for the future computing 
systems. Various contemporary multicore processors are 
classified in Figure 3. It is noted that, most popular 
multicore processors from Intel, ADM, and IBM have 
multilevel caches [11][12][20]. 

AMD quad-core (Opteron Deerhound) has 256 KB I1, 
256 KB D1, 2 MB dedicated CL2s, and 4 MB shared 

CL3 [11]. Figure 4 depicts the schematic diagram of Intel 
quad-core (Xeon DP) processor architecture that has 128 
KB I1, 128 KB D1, and 8 MB shared CL2 [12]. 

Sony, Toshiba, and IBM (STI) have designed Cell 

multicore processor, primarily to boost up the processing 
speed demanded by the electronic games [13][14][15]. 
This architecture has a Primary Processing Entity (PPE) 
and some helper units called Synergistic Processing 
Elements (SPE’s) (see Figure 5). The PPE contains a 32 
KB I1 and a 32 KB D1 caches. A 512 KB CL2 is shared 
by the PPE and SPEs. Each SPE may have 256 KB 
SRAM, 4 x 128 bit ALU (Arithmetic Logical Unit), and 
128 of 128-bit registers. The Element Interconnect Bus 
(EIB) is the communication bus internal to the Cell 
processor. 

The advances in semiconductor technologies facilitate 

to support increasing number of processing cores. As a 
result, homogenous or heterogeneous multicore platforms 
with more and more processing cores are expected to 
become the leading craze in the future. Private CL1 and 
CL2 and shared CL3 are being used to improve system 
bandwidth [53][57]. Prepushing and software controlled 
eviction are being used to improve communications 
support for multithreaded applications [54]. Cache-based 
memory copy hardware accelerator in a multicore system 
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Figure 6. Miss table based cache architecture with victim cache. 

 
Figure 7. Schematic diagram of a multicore processor (partial) 
                    showing MT, VC, CL2, and one core. 

 
Figure 8. Control logic of the proposed victim cache. 

is proposed to improve cache memory performance [55]. 
Contemporary multicore architectures indicate that the 
number and/or level of caches increase with the increase 
in processing cores. Therefore, caches in distributed and 
embedded multicore systems should be used very wisely 
so that high performance/power ratio is achieved 
[56][58][59]. 

III.  MISS TABLE BASED CACHE ORGANIZATION 

In this work, we propose a miss table based cache 
architecture with private victim caches and shared CL2 
for multicore systems for improved performance. In this 
organization, a miss table is introduced at the cache level 
to store the cache miss information of the code currently 
being executed. This architecture makes better use of 
memory blocks by using the miss table information. In 
addition to improving the performance/power ratio, this 
architecture improves the predictability and bandwidth. 
Therefore, this cache organization makes it suitable for 
high-performance low-power multicore real-time 
distributed and embedded systems. Schematic diagram of 
proposed miss table based cache organization with victim 
caches for multicore systems is shown in Figure 6. It in 
an Intel Xeon-like quad-core architecture.  

In the following subsections, we discuss the 
implementation of the miss table with victim caches and 
CL2 and the methodology of workload characterization 
for multicore systems. 

A.  Miss Table 

We introduce a miss table (MT) inside the CPU such 
that it can be accessed from CL1s, victim caches, and 
CL2. MT can be a small cache or a set of registers to hold 
information about all (or some important) blocks that 
cause the most cache misses. Block addresses are sorted 
in descending order of the number of misses. For each 
application/function, after post-processing the tree-graph 
generated by Heptane (Hades Embedded Processor 
Timing ANalyzEr) [60], block address information is 
prepared for the MT. We use popular Heptane package to 
analyze each application/function, because it will be 
assigned to a core in the multicore system. When an 
application/function is assigned to a core, MT is 
populated by the related block addresses. MT information 
is used to select a cache block to be locked or a victim 
block to be replaced.  For both entire and way cache 

locking, MT should store information about ‘N’ cache 

blocks (at most) when the cache can be divided into ‘N’ 

blocks. Each core has its private CL1 (I1 and D1). The 
CPU has one shared CL2. VCs hold level-1 victim blocks 
and additional memory blocks when stream buffering is 
used. A modified replacement policy is used. Using the 
MT, this policy selects a block that has the minimum 
number of misses and that is not locked (at CL2). In case 
of a tie in the number of misses, a block is selected 
randomly. If a block’s information is not in the MT, it 
should be selected first. The schematic diagram of the 
data flow inside a core is shown in Figure 7.  

When a core starts execution, if the requested memory 
block is not found in CL1, VC is checked (if VC is 
enabled). A victim block in CL1 is selected using the 
miss table. Finally, if the requested memory block is not 
found in CL2, it is fetched from the main memory. When 
a new block comes to CL2, it is checked using the MT 
information if the block should be locked. ‘L’ bit is set to 

indicate a block is locked.  
Victim cache control logic for the proposed cache 

architecture is presented in Figure 8. The victim cache 
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can be enabled or disabled as needed. For stream 
buffering, victim cache must be enabled. 

B.  Workload 

Currently available workload and workload 
characterization methodology are not useful to run our 
simulation programs. So, we develop a workload 
characterization methodology that can be used to simulate 
both single-core and multicore systems. Our workload 
characterization methodology has three important phases 
– code division, code estimation, and block selection. 

Code Division: In phase-I, we analyze the 
application(s) and divide the code into smaller segments 
as needed. Small applications can be mapped directly 
among the cores. In order to support large applications, 
the code is divided into smaller (end-to-end) functions in 
such a way that a function can be assigned to a core. 
Code division is crucial for achieving better performance 
as it helps load balancing. 

Code Estimation: In phase II, we estimate important 
operations for each application (in case of small 
applications) or function (in case of large applications). 

Code estimation can be done manually for smaller code 
segments. Results (types and numbers of operations) of 
code estimation for FFT code are shown in Table I. 

Block Selection: Finally in phase III, we select the 
blocks that cause more cache misses under normal 
execution. Major steps in this process are explained with 
an example (see Table II). A tree-graph for each code 
segment is created using Heptane simulation package. 
The nodes of the tree-graph represent the structure of 
programs in the high-level language and the leaves 
represent the basic blocks. From the tree graph, we 
collect the number of instructions and cache miss 
information for each node. From off-line analysis we 
determine which code section of the source file causes 
more misses. By post-processing the information 
collected from the tree-graph, we obtain the block address 
that can be locked. The number of instructions and cache 
misses for sequence nodes are negligible. The number of 
instructions and cache misses for loop nodes are excluded 
in this work because we consider all code nodes (where a 
loop node represents a set of code nodes). Table II shows 
the block addresses and total misses (sorted in descending 
order of the number of misses) obtained for FFT code. 
For locking, blocks are selected depending on the cache 
size, line size, and locked cache size. For an example: if 
cache size is 2 KB and line size is 128 B, then number of 

blocks is 2*1024/128 = 16. Now, 25% cache locking 
means first 4 (25% of 16 is 4) blocks should be selected 
for locking. A small routine is required to be executed at 
the system start-up to load the content of the cache with 

the selected block address values and lock the cache for 
the whole execution period. 

From Table II, total cache misses is 246. By locking 
the first four cache blocks (approximately 25%), 124 
cache misses can be avoided (i.e., cache miss is reduced 
by 50%). 

IV. EVALUATION 

We use simulation technique to evaluate the proposed 
miss table based cache organization with victim caches 
and CL2 for multicore distributed and embedded systems. 
We develop simulation platform, generate workload by 
characterizing the applications, and model the multicore 
architecture used in distributed and embedded systems. In 
the following subsections, we first briefly discuss 
simulation details. Then, we present some important 
simulation results. 

A.  Simulation Details 

We develop a multicore cache simulation program 
using VisualSim [61]. We generate workload for 
MPEG4, H.264/AVC, FFT, MI, and DFT applications 
using Heptane to run the VisualSim simulation program. 

TABLE I.   
CODE ESTIMATION FOR FFT 

Type of Operation Number of Operations (%) 

Integer 18 

Floating-point 71 

Load/Store 9 

Branch 2 

 

TABLE II. 
SORTED BLOCK ADDRESS FOR FFT 

Number Block 
Address 

Total Cache 
Misses 

Block in 
MT? 

1 0 35 Yes 

2 80 33 Yes 

3 300 32 Yes 

4 100 28 Yes 

5 400 17 Yes 

6 320 15 Yes 

7 380 14 Yes 

8 180 12 Yes 

9 280 11 Yes 

10 360 11 Yes 

11 420 10 Yes 

12 200 9 Yes 

13 140 4 Yes 

14 480 4 Yes 

15 160 3 Yes 

16 220 3 Yes 

17 440 3 No 

18 120 1 No 

19 260 1 No 
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We obtain results for various cache parameters and 
locked CL2 size. In this subsection, we briefly discuss the 
assumptions, simulation platform, workloads, and 
parameters used in this simulation. 

 
Assumptions: Important assumptions for modeling the 

selected architecture and for running the simulation 
program include, 
 There is only one miss table, which is accessible 

from CL1s, VCs, and CL2. 
 Each core has its own private VC. VCs can be 

functionally enabled and disabled. 
 Only level-2 cache locking is implemented (using 

MT) to reduce cache inconsistency.  
 Modified cache replacement strategy is considered 

for CL2. Locked blocks are excluded by the 
modified replacement policy. Random cache 
replacement strategy is used for CL1.  

 For both CL1 and CL2, write-back memory update 
policy is used.  

 The delay introduced by the bus that connects CL2 
and main memory is 12 times longer than the delay 
introduced by the bus that connects CL1 and CL2. 

 
Simulation Platforms: In this work, we develop a 

simulation platform using two popular simulation tools – 
Heptane [60] and VisualSim [61]. We install/configure 
Heptane in Linux Fedora operating system and VisualSim 
in Windows XP operating system in a Dell PowerEdge 
1600SC PC. Heptane simulates a processing core, takes C 
code as the input application, and generates tree-graph 
that shows the blocks that cause misses. After post-
processing the tree-graph, block addresses are selected 
for the miss table. Input and output parameters for 
Heptane are shown in Table III.  

VisualSim provides a GUI interface to model and 

simulate embedded multicore systems using applications’ 

workload. We use VisualSim to simulate multicore cache 
architecture with MT, VCs, and CL2. Input and output 
parameters for VisualSim are shown in Table IV. 

Workload: In this work, we use Moving Picture 
Experts Group’s MPEG4, Advanced Video Coding – 
widely known as H.264/AVC, Fast Fourier Transform 
(FFT), Matrix Inversion (MI), and Discrete Fourier 
Transform (DFT) applications to run the simulation 
program. Some important characteristics of these 
applications are shown in Table V. 

Important Input / Output Parameters: Important 
input parameters and their respective values used in this 
work are shown in Table VI. We keep I1 cache size equal 
to D1 cache size. Also, we keep the CL1 (I1 and D1) line 

size equal to the CL2 line size and the CL1 associativity 
level equal to the CL2 associativity level. In this work, 
we simulate an 4-core system and keep CL2 cache size 
fixed at 256 KB. 

Output parameters in this work are the average 
memory latency per task and total power consumption. 
We define delay as the time between the start of 
execution of a task and its end. We use an activity based 
power analysis method. Power consumption by each 
component is considered. CL1 consumes about 43% 
processor power [62]. Table VII shows how power 
consumption is distributed among processor, CL2, and 
main memory. In this method, a system component is 
considered to be one of the three states – active 
(component consumes adequate amount of energy to be 
turned on and active), ideal (component consumes 
minimum amount of energy just to be turned on), or sleep 
(component is turned off and consumes no energy). For a 
system with X components and Y tasks, the total power 
consumption can be expressed as shown below, 
 
 X, Y 
Pt (total) = Σ Σ (Pij (active) + Pij (ideal) Equation (1) 
 i = 1, j = 1 

TABLE III. 
INPUT / OUTPUT FOR HEPTANE 

Input Output 

Application: C code  
XML file (Miss Blocks) 

Block Address 
Number of misses 

Number of instructions 

 

TABLE V. 
CHARACTERISTICS OF THE APPLICATIONS 

Applications Code Size 
(KB) 

Number of 
Instructions 

MPEG4 Decoder 233.20 25,207,118 

H.264/AVC Decoder 199.14 19,810,037 

FFT 2.34 365,184 

MI 1.47 227,518 

DFT 1.16 171,307 

 

TABLE IV. 
INPUT / OUTPUT FOR VISUALSIM 

Input Output 
Number of integers 
Number of floats 

Number of loads/stores 
Number of branches 

Cache miss rate 
Miss table (MT) 

 

Average memory latency 
Total power consumption 

 

TABLE VI. 
IMPORTANT INPUT PARAMETERS 

Input Parameters Value 

I1/D1 cache size (KB) 2, 4, 8, 16, or 32 

CL1/CL2 line size (Byte) 16, 32, 64, 128, or 256 

CL1/CL2 associativity level 1-, 2-, 4-, 8-, or 16-way 

CL2 cache size (KB) 256 (fixed) 

Number of cores 4 (fixed) 
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Figure 9. Average memory latency per task versus I1 cache size. 

 
Figure 10. Total power consumption versus I1 cache size. 

B.  Simulation Results 

We present some important simulation results in the 
following subsections. We model a system with 4 cores 
and run the simulation program using MPEG4, 
H.264/AVC, FFT, MI, and DFT workloads.  

Impact of I1 Cache Size: The average memory 
latency per task versus I1 cache size for no locking and 
25% level-2 cache locking is shown in Figure 9. 

Experimental results show that average memory latency 
per task for MPEG4 and H.264/AVC decreases when we 
move from no locking to 25% locking and/or from 
smaller I1 to larger I1; the decrement is significant for 
smaller I1. However, average memory latency per task 
for FFT, MI, and DFT remains the same when we move 
from no locking to 25% locking and/or from 4KB I1 to 
larger I1. This is because FFT, MI, and DFT code entirely 
fit into 4KB or larger I1. But MPEG4 and H.264/AVC 
applications are bigger (than those of FFT, MI, or DFT) 
and do not entirely fit into I1. Results also show that 
average memory latency per task due to MPEG4 is 
always greater than those of others. This is because 
MPEG4 has more stressful workload than the others do. 
Similar behavior is observed for the total power 
consumption versus I1 cache size for no locking and 25% 
level-2 cache locking (see Figure 10). The total power 
consumption decreases when we move from no locking 
to 25% CL2 locking and/or from 4KB I1 to larger I1 for 
MPEG4 and H.264/AVC; the decrement is significant for 
smaller I1. However, total power consumption for FFT 
remains almost the same. Total power consumption due 
to MPEG4 is always greater than those of others. 

 

 

TABLE VII. 
POWER CONSUMPTION BY PROCESSOR, CL2, AND MEMORY 

Parameter Power (%) Unit/Usage 

I1 27 6 

D1 16 3 

CPU 36 7 

Others 21 4 

Processor Total 100 20 

CL2 - CL2/(I1+D1)*(5+3) 

Main Memory (MM) - MM/(I1+D1)*(5+3) 
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Figure 11. Average memory latency per task versus I1 line size. 

 
Figure 14. Total power consumption versus I1 associativity level 

 
Figure 13. Mean delay per task versus I1 associativity level. 

 
Figure 12. Total power consumption versus I1 line size. 

The results due to MPEG4 decoder and H.264/AVC 
decoder workloads are very similar; so in the rest of the 
discussion, the MPEG4 results will also represent the 
omitted H.264/AVC results. For similar reason, the FFT 
results will also represent the omitted MI and DFT 
results. 

Impact of I1 Line Size: The average delay per task 
versus I1 line size for no locking and 25% locking using a 
miss table is shown in Figure 11. We notice that the mean 
delay per task goes down for MPEG4, regardless of the 
line size, with increasing line size leveling off at a line 
size of 128B. However, the average delay per task for 
FFT remains the same. This is because FFT code fits 
entirely in 4KB I1, so changing line size and/or using a 
miss table do not impact on average memory latency. 

Similarly, we notice that 25% level-2 cache locking 
using a miss table helps decrease total power 
consumption regardless of I1 line size [see Figure 12]. It 
is also noted that total power consumption decreases with 
increasing I1 line size leveling off at a line size of 128B. 
Again, total power consumption for FFT remains the 
same because FFT code fits entirely in 4KB I1 and 
changing line size and/or applying cache locking do not 
impact on total power consumption. 

Impact of I1 Associativity Level: The impact of no 
cache locking and 25% L2 cache locking on average 
memory latency by varying I1 associativity level is 
shown in Figure 13. Experimental results show that for 
any I1 associativity level, average memory latency per 
task for MPEG4 decreases when we move from no 
locking to 25% locking or I1 associativity level is 
increased. The decrease is significant for smaller 

associativity levels. For 4KB I1, average memory latency 
per task for FFT remains the same at any associativity 
level. 

Figure 14 illustrates the impact of no cache locking 
and 25% level-2 cache locking on total power 
consumption by varying I1 associativity level. 
Experimental results show that for any I1 associativity 
level, total power consumption for MPEG4 decreases 
when we move from no locking to 25% locking and I1 
associativity level is increased. Again, total power 
consumption for FFT remains the same for 4KB I1. 

Impact of Miss Table: Using a miss table has 
significant impact on average memory latency per task 
and total power consumption. Experimental results show 
that using a miss table with cache locking decreases 
average memory latency per task for MPEG4 application. 
From Figure 15, it is also noted that beyond 25% cache 
locking (for MPEG4), the average memory latency per 
task increases with the increase in the number of locked 
blocks. Simulation results also show that when smaller 
applications like FFT entirely fits in I1, there is no 
positive impact of the miss table and cache locking on 
average memory latency per task. Using a miss table with 
cache locking has positive impact on total power 
consumptions for some applications. From experimental 
results we notice that total power consumption starts 
decreasing with the increase in the number of the locked 
blocks (up to 25% cache locking) for MPEG4 application 
(see Figure 16). We also notice that total power 
consumption decreases when the miss table is used with 
cache locking (up to 25% cache locking for MPEG4). On 
the other hand, for smaller applications like FFT that 
entirely fits in 4KB I1, there is no positive impact of 
cache locking on total power consumption. 
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Figure 15. Average memory latency per task versus level-2 locked cache size (with and without a miss table). 

 
Figure 16. Total power consumption versus level-2 locked cache size (with and without a miss table). 

 
Figure 17. Average memory latency per task versus level-2 locked 
cache size (with and without victim caches). 

 
Figure 18. Average memory latency per task versus level-2 locked 
cache size (with and without victim caches). 

 

 

 
Impact of Victim Caches: Finally, we present the 

impact of using victim caches with a miss table on 
average memory latency per task and total power 
consumption. Experimental results reveal that for 
MPEG4 application, average memory latency per task 
decreases when victim caches are used with cache 
locking (see Figure 17). Beyond 25% cache locking (for 
MPEG4), the average memory latency per task increases 
with the increase in the number of locked blocks. 

Simulation results also show that when applications 
entirely fits in I1 (as FFT fits in 4KB I1), there is no 
positive impact of using victim caches on average 
memory latency per task. 

Experimental results also reveal that total power 
consumption starts decreasing with the increase in the 
amount of the locked blocks for MPEG4 application as 
shown in Figure 18. We also notice that total power 
consumption decreases when victim caches are used with 
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a miss table based cache locking. Beyond 25% cache 
locking (for MPEG4), total power consumption increases 
with the increase in the amount of locked blocks. Again, 
when applications entirely fits in I1 (as FFT fits in 4KB 
I1), there is no positive impact of using victim caches on 
total power consumption.  

In summary, we present the maximum increment (+) or 
decrement (-) in average memory latency per task and 
total power consumption from their initial values (the 
values of the respective parameters are mentioned in 
Figures 9 – 18). As shown in Table VIII, using a miss 
table help achieve 23% reduction in average memory 
latency per task and 31% reduction in total power 
consumption for H.264/AVC. For MPEG4, the reductions 
are less than H.264/AVC but significant (21% reduction 
in average memory latency per task and 28% reduction in 
total power consumption). So, performance/power ratio 
for MPEG4 and H.264/AVC is improved significantly by 
using a miss table and victim caches. It is noted that in 
this experiment, for I1 size 4KB or larger, using a miss 
table and victim caches with cache locking has no 
positive impact of performance/power ratio for FFT. 

For MPEG4 and H.264/AVC, average memory latency 
per task and total power consumption can be reduced 
even further using cache locking as shown in Table VII. 

V. CONCLUSION 

Multicore architectures provide a viable platform for 
distributed and embedded systems to implement highly 
computation intensive and real-time applications. 
However, multilevel cache organization in multicore 
architecture may decrease performance/power ratio and 
increase execution time predictability due to cache’s 

adaptive and dynamic behavior. Also, high-performance 
processing cores (with multiple caches) consume 
significant amount of energy and dissipate tremendous 
amount of heat which are critical for embedded systems. 
Bandwidth and synchronization are critical design factors 
for distributed systems. Therefore, running complex 
applications on distributed and embedded multicore 
systems with cache memories encounters serious 
challenges. Recently published articles show that various 
cache optimization techniques are proposed to improve 
cache performance in multicore architecture. In this work, 

we introduce a “miss table” based cache memory 
organization that also includes private victim caches and 
shared CL2. Miss table helps improve cache locking and 
cache replacement performance by providing the cache 
miss information (if not locked) for memory blocks. This 
approach reduces cache misses by locking the cache 
blocks with maximum number of cache misses and 
replacing the cache blocks with minimum number of 
cache misses. Victim caches help improve cache hits and 
bandwidth by holding some level-1 victim blocks. Shared 
CL2 helps synchronization among cores. In this scheme, 
a better use of the cache is possible because the expected 
cache miss information is known (via the miss table) 
before running a code segment.  

We model a multicore architecture with 4 processing 
cores and 2 levels of caches and run the simulation 
program using workload from MPEG4, H.264/AVC, 
FFT, MI, and DFT applications. We find the addition of 
the miss table to a multilevel cache organization is very 
promising. Experimental results show that for MPEG4 
workload a reduction of 21% in average memory latency 
per task and a reduction of 28% in total power 
consumption are achieved by introducing the miss table 
(without any cache locking). Results (from Table II) also 
show that this method may improve predictability by 
reducing cache misses by 50% or more when one-fourth 
cache is locked. It is also noticed that miss table and 
victim caches with cache locking improve 
performance/power ratio for MPEG4 (reduce average 
memory latency per task by 29% and total power 
consumption by 36%). According to the simulation 
results, the presence of a miss table has more impact on 
H.264.AVC results than on MPEG4 results; this is 
because H.264.AVC workload is less stressful when 
compared with MPEG4 workload. Finally, it is noted that 
miss table, victim caches, and/or cache locking has no 
positive impact on performance/power ratio for FFT (also 
for MI and DFT) as FFT code is very small. 

It is important to keep the maximum number of cores 
in active state to achieve the maximum performance. 
However, the more cores are active, the more power 
should be consumed. A balance must be maintained in 
the core allocation strategy for multicore systems 
between the performance and power consumption trade-
off. We plan to investigate power-aware core allocation 
strategy for multicore architecture in our next endeavor. 
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