
 Open access Proceedings Article DOI:10.1109/SOCDC.2009.5423856

A power-constrained MPU roadmap for the International Technology Roadmap for
Semiconductors (ITRS) — Source link

Kwangok Jeong, Andrew B. Kahng

Institutions: University of California, San Diego

Published on: 01 Nov 2009 - International SoC Design Conference

Topics: International Technology Roadmap for Semiconductors and Technology roadmap

Related papers:

 ITRS 2.0: Toward a re-framing of the Semiconductor Technology Roadmap

 Review key challenges

 ITRS commodity memory roadmap

 And, What Is Next?

 Impact of the ITRS Metrology Roadmap

Share this paper:

View more about this paper here: https://typeset.io/papers/a-power-constrained-mpu-roadmap-for-the-international-
2nst94cket

https://typeset.io/
https://www.doi.org/10.1109/SOCDC.2009.5423856
https://typeset.io/papers/a-power-constrained-mpu-roadmap-for-the-international-2nst94cket
https://typeset.io/authors/kwangok-jeong-4n94p7pboa
https://typeset.io/authors/andrew-b-kahng-1n8q9mkdy0
https://typeset.io/institutions/university-of-california-san-diego-wdy3fmoa
https://typeset.io/conferences/international-soc-design-conference-16jxpuhh
https://typeset.io/topics/international-technology-roadmap-for-semiconductors-sl6s7b0i
https://typeset.io/topics/technology-roadmap-2negukba
https://typeset.io/papers/itrs-2-0-toward-a-re-framing-of-the-semiconductor-technology-pxpr1fjqki
https://typeset.io/papers/review-key-challenges-terux5r147
https://typeset.io/papers/itrs-commodity-memory-roadmap-1cy7rw22z4
https://typeset.io/papers/and-what-is-next-ffqk41coxb
https://typeset.io/papers/impact-of-the-itrs-metrology-roadmap-2pnyc0b2nd
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-power-constrained-mpu-roadmap-for-the-international-2nst94cket
https://twitter.com/intent/tweet?text=A%20power-constrained%20MPU%20roadmap%20for%20the%20International%20Technology%20Roadmap%20for%20Semiconductors%20(ITRS)&url=https://typeset.io/papers/a-power-constrained-mpu-roadmap-for-the-international-2nst94cket
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-power-constrained-mpu-roadmap-for-the-international-2nst94cket
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-power-constrained-mpu-roadmap-for-the-international-2nst94cket
https://typeset.io/papers/a-power-constrained-mpu-roadmap-for-the-international-2nst94cket

Architectural-Level Prediction of Interconnect Wirelength and Fanout

Kwangok Jeong‡, Andrew B. Kahng†‡, and Kambiz Samadi‡

†CSE and ‡ECE Departments, UC San Diego, La Jolla, CA

{kjeong,kambiz}@vlsicad.ucsd.edu, abk@cs.ucsd.edu

Abstract— This paper proposes accurate architectural-level intercon-
nect wirelength and fan-out models. Existing models are based on
Rent’s rule and fail to capture the impact of microarchitectural and
implementation parameters. Hence, significant deviation is observed
when validated against implementation data, i.e., up to 79% (22%)
in total wirelength (average fanout). Our proposed models both enable
architectural-level prediction of interconnect wirelength and fanout, and
show significant accuracy improvement vs. existing models with respect
to layout data.

I. INTRODUCTION

Clock frequency, power consumption, and chip size are largely
determined by the wiring requirements of a VLSI system. Hence,
wirelength estimation has always been instrumental in determining
physically achievable design implementations [4]. Likewise, inter-
connect fanout can be used in interconnect modeling to enable more
accurate delay and power calculations.

Based on different design stages and available information at
each stage, we categorize wirelength estimation approaches into:
(1) analytical, (2) netlist-based, and (3) placement-based [1], [6].
Analytical methods are based on Rent’s rule, a famous well-
established empirical relationship, and assume that the netlist is not
known. However, the input may consist of the major factors, the total
number of gates, and average number of pins per gate. In netlist-
based methods, the total number of gates, total number of nets, total
number of pins, and fanout distributions are easily obtained. Since
we know exact values of major parameters, wirelength and fanout
values can be predicted more accurately. Such estimates are typified
by the “wireload models” used in RTL synthesis optimizations.
After the placement stage, all the pins in the netlist are placed and
the available routing resources, including number of routing layers,
etc. are known and better estimation accuracy is achieved.

In this work, we propose interconnect wirelength and fanout
models that have the flexibility of the analytical models with
the accuracy of placement-based models. Our contributions are as
follows.

• We propose accurate closed-form models to estimate inter-
connect wirelength and fanout. Our models are derived from
implementation data.

• We consider microarchitectural and implementation parameters
in our models to allow more accurate estimation of interconnect
wirelength and fanout.

• Our models show significant accuracy improvement vs. the
existing models with respect to implementation data.

The remainder of this paper is organized as follows. In Section II
we review two of the recent works in interconnect wirelength and
fanout estimations [3], [9]. Section III describes our implementation
flow and testcases, and presents the details of our design of
experiments. Section IV describes our modeling methodology and
presents our proposed average wirelength and fanout models for
one of our testcases. In Section V we validate our proposed models
and compare them with the existing models. Finally, Section VI
concludes the paper.

II. EXISTING MODELS

The underlying assumption for the existing models is that Rent’s
rule holds throughout an entire system. Rent’s rule is a simple
power-law relationship between the number of I/O terminals for
a logic block, T , and the number of gates contained in that block,
N as shown in [8]:

T = kNp
(1)

where k and p are empirical parameters. Hence, the number of nets
of length l, Net(l) may be estimated by [3]

Net(l) = q(l)D(l) (2)

where D(l) is the number of valid two-pin net placement sites
and q(l) is the probability that a placement site is occupied. The
occupancy probability can be derived as

q(l) =
1

2l
([1 + 2l(l − 1)]p + [2l(l − 1) + 4l]p − [2l(l − 1)]p (3)

−[1 + 2l(l − 1) + 4l]p)

and the number of 2-terminal net placement sites within the bound-
ary of a finite, 2-D array of N gates is given in Equation (4).

D(l) =

{

l(l2 − 1 + 6L(L − l))/3 1 ≤ l ≤ L
(2L − l + 1)(2L − l)(2L − l − 1)/3 L ≤ l ≤ 2L
0 otherwise

(4)
In addition, fanout distribution can also be derived by using

Rent’s rule recursively in a collection of gates. The following set
of equations are due to [9]. In a system with N gates, the overall
number of terminals connected through m-point nets is N ·Tnet(m),
where Tnet(m) is the number of terminals shared through an m-
point net of each gate in the boundary of the m gates. Therefore
total number of m-point nets is simply N · Tnet(m)/m. Hence,
total number of m-point nets in the entire system can be described
by Equation (5). Subsequently, replacing m with Fo+1, where Fo
is fanout, gives Equation (6).

Net(m) =
kN((m − 1)p−1 − mp−1)

m
(5)

Net(Fo) =
kN(Fop−1 − (Fo + 1)p−1)

Fo + 1
(6)

Equation (6) describes the fanout distribution in a logic network of
N gates, in which k and p are Rent parameters.

Despite their flexibility, existing analytical wirelength and fanout
models are not accurate due to (1) not having accurate information
about the netlist, and (2) not taking into account the combining
impact of microarchitectural and implementation parameters. Final
design outcomes are affected by certain optimization steps that
are employed during design implementation, i.e., pre-placement,
post-placement, and pre-clock tree synthesis optimization steps, etc.
Hence, the choice of implementation parameters can significantly
change the quality of results. In this work, we consider the impact
of relevant implementation parameters in our models (cf. Section
III).

III. IMPLEMENTATION FLOW AND DESIGN OF EXPERIMENTS

A. Implementation Flow and Tools

Figure 1 shows our implementation flow which includes tradi-
tional SP&R flow plus wiring characteristic extraction and model
generation steps that we have scripted for “push-button” use in our

978-1-4244-5035-0/09/$26.00 ©2009 IEEE -53- ISOCC 2009

experiments. The steps in Figure 1 represent the major physical
design steps. At each step we require that the design must meet the
timing requirements before it can pass on to the next step.

Synthesis

(Design Compiler)

Place + Route

(SOC Encounter)

Routed DEF

RTL Codes

(Netmaker & SPIRAL)

Architectural

Parameters

Wiring Reports /
Rent Parameters

Model Generation

(Multivariate Adaptive
Regression Splines)

Implementation

Parameters

Wirelength / Fanout
Models

Fig. 1. Implementation flow.

In our flow, we first synthesize corresponding RTL codes of each
of our testcases with worst-case timing libraries. During synthesis
process we can set certain optimization objectives among which are:
(1) target frequency, (2) target area, and (3) target power. Choosing
different combinations of these objectives yields widely different
quality of results. Hence, to mimic a typical industrial timing-driven
flow, where certain performance constraints must be satisfied, we
impose the target frequency as the primary objective while area
and power minimization are considered as secondary objectives. In
addition to optimization parameters, there are some ‘inherent noise’
in IC implementation tools that may be aggravated with respect
to tightness of the timing constraint (i.e., target frequency) [7].
Therefore, we implement the designs at slower frequencies than
the maximum achievable.

Using synthesized netlist we implement the designs through place
& route (P&R) steps using different row utilization and aspect ratio
values, at the floorplan stage. At the end of routing stage we generate
the placed and routed DEF, and obtain wiring characteristics,
i.e., total wirelength, total number of nets, average fanout, etc.
and associate them with the corresponding microarchitectural and
implementation parameters. In order to compare our models against
the existing models we need to provide Rent parameters. We use
an internal Rent parameter evaluation program which calculates
Rent parameters of a given circuit design using circuit partitioning
method, MLPart [2].

In our experiments we use two different IP cores: (1) on-chip
router, and (2) Discrete Fourier Transform (DFT). We use Netmaker
v0.82 and SPIRAL v1.0 to generate a library of synthesizable
router and DFT core RTL netlists, respectively. We perform our
experiments using libraries in TSMC 65GP technology. We use
Synopsys Design Compiler [14] to synthesize the RTL netlists and
Cadence SOC Encounter [13] to execute the P&R flow. We use
different row utilization and aspect ratio values (explained more in
Section III-B) and RentCon, an internal Rent parameter evaluation
program, to extract Rent parameter values. Finally, MARS3.0 tool
suite [12] is used for model generation.

B. Design of Experiments

As with any other model characterization task, it is not trivial to
obtain meaningful and sensible results, as large number of variables
determines the ultimate outcomes. Hence, we only choose the
relevant microarchitectural and implementation parameters that are
of interest at the system-level which also significantly affect the
quality of results. In our experiments we have two main axes: (1)
microarchitectural parameters, and (2) implementation parameters.
Below we explain the corresponding microarchitectural parameters
for each of our testcases and show the values that they take on in
our experiments.

On-Chip Router. For router we pick a baseline virtual channel
(VC) router in which VC allocation and switch allocation are
performed sequentially in one clock cycle. In a VC router the
microarchitectural parameters are:

• fw: flit-width is the width of link or channel between routers
and is specified in bits

• nvc: number of virtual channels
• nport: number of input and output ports
• lbuf : buffer length which is the number of flit buffers per

virtual channel

DFT Core. For DFT we pick a conventional parameterizable DFT
core obtained from SPIRAL DFT generator [15] with the following
relevant microarchitectural parameters:

• nDFT : size of the DFT core
• width: specifies the precision of the fixed-point representation

of the input, the output, and intermediate data values
• t: twiddle bitwidth which specifies the precision of the fixed-

point representation for the precomputed twiddle factors
• nfifo: size of FIFO queues

In addition to the above list, there are three more parameters
which control the resource usage of the DFT core: (1) dir which is
a boolean parameter that selects whether the core accepts natural-
ordered input vectors and outputs bit-reversed-ordered output vec-
tors, or vice versa, (2) scale which is a boolean parameter that
determines whether the fixed-point data representation of interme-
diate values is scaled by a factor 2 to avoid overflow, and (3) dp

which specifies the number of kernel modules instantiated in the
DFT implementation (i.e., degree of parallelism). These parameters
are to allow the user to customize the tradeoff between performance
and resource usage and do not change the functionality of the core.
Hence, we do not consider them in our models. However, if their
impact on wiring characteristics (i.e., wirelength and fanout) is of
interest, then they can be added to the model at the expense of
increased setup cost due to larger number of configurations. Table
I shows the router and DFT core microarchitectural parameters and
the values they take on in our design of experiments.

TABLE I

LIST OF ROUTER AND DFT MICROARCHITECTURAL PARAMETERS USED

IN OUR DESIGN OF EXPERIMENT.

Router
Parameter Values

fw {16, 24, 32, 64}-bits
nvc {2, 3, 5, 7}

nport 3, 5, 7, 9
lbuf {2, 3, 5, 7}-flit buffers

DFT
Parameter Values

n {4, 16, 128}-bits
width {8, 16, 32}

t 2, 4, 6
nfifo {2, 4, 16}-flit buffers

Our implementation parameters include (1) clock frequency fclk,
(2) aspect ratio ar, and (3) row utilization util. Target clock fre-
quencies for the router design are 100MHz, 200MHz, and 400MHz,
and we use 100MHz, 250MHz, and 450MHz for the DFT core.
We also use three different aspect ratio values, 0.5, 1.5, and 2.5,
while for row utilization, 50%, 70%, and 92% are used. Using
automation scripts we vary the above microarchitectural parameters
and generate corresponding RTL netlists for router and DFT cores,
respectively. We then implement the RTL netlists using TSMC 65GP
library.

IV. MODELING PROBLEM

Approximating a function of several to many variables using only
the dependent variable space is a well-known problem with appli-
cations in many disciplines. The goal is to model the dependence of

-54- ISOCC 2009

a target variable y on several predictor variables x1, · · · , xn given
realizations {yi, x1i, · · · , xni}

N
1 . The system that generates the data

is presumed to be described by [5]

y = f(x1, · · · , xn) + ε (7)

over some domain (x1, · · · , xn) ∈ D ⊂ Rn containing the
data. There are two main regression analysis methods: (1) global
parametric, and (2) nonparametric. The former approach has limited
flexibility, and can produce accurate approximations only if the as-

sumed underlying function, f̂ , is close to f . In the latter approach, f̂
does not take a predetermined form, but is constructed according to
information derived from the data. Multivariate adaptive regression
splines (MARS) is a machine learning-based regression technique
which is used in our methodology.

Given a design microarchitecture Xµarch, circuit implementation
Ccirc, we apply MARS to construct interconnect wirelength and

fanout models, WL = f̂(xµarch
1 , · · · , xµarch

n , ccirc
1 , · · · , ccirc

n),

and FO = ĝ(xµarch
1 , · · · , xµarch

n , ccirc
1 , · · · , ccirc

n), respectively.

Variables xµarch
1 , · · · , xµarch

n , and ccirc
1 , · · · , ccirc

n denote corre-
sponding router / DFT microarchitectural and implementation pa-
rameters, respectively. The general MARS model can be represented
as [10]

ŷ = c0 +

I
∑

i=1

ci

J
∏

j=1

bij(xij) (8)

where ŷ is the target variable (i.e., average wirelength and fanout),
c0 is a constant, ci are fitting coefficients, and bij(xij) is the
truncated basis function with xij being the microarchitectural /
implementation parameter used in the ith term of the jth product.
I is the number of basis functions and J limits the order of
interactions.

The optimal MARS model is built in two passes: (1) Forward
pass: MARS starts with just an intercept, and then repeatedly adds
basis function in pairs to the model. Total number of basis functions
is an input to the modeling, and (2) Backward pass: during the
forward pass MARS usually builds an overfit model; to build a
model with better generalization ability, the backward pass prunes
the model using a generalized cross-validation (GCV) scheme

GCV (I) =
1

n

∑n

k=1(yk − ŷ)2

[1 − C(M)
n

]2
(9)

where n is the number of observations in the data set, I is the
number of non-constant terms, and C(M) is a complexity penalty
function to avoid overfitting.

Using implementation data and the nonparametric regression
technique explained above, we propose accurate architectural-level
interconnect wirelength and fanout models. Figures 2 and 3 show
our proposed average wirelength and fanout models for DFT core,
respectively.

Basis Functions

b1 = max(0, nDFT - 16); b2 = max(0, 16 - nDFT);
b4 = max(0, 16 - width) ×b1; b5 = max(0, util - 0.5);
b6 = max(0, nfifo - 2); b7 = max(0, width - 16);

.

.

.
b31 = max(0, ar - 1.5) ×b7; b35 = max(0, t - 2) ×b31;

Average Wirelength Model

WLavg = 22.4886 + 0.056 ×b1 - 0.328 ×b2 + 0.013 ×b4
- 5.891 ×b5 - 0.226 ×b6 - 0.194 ×b7 - 0.271 ×b8
- 0.018 ×b9 + 0.001 ×b11 + 0.017 ×b12 + 0.0002 ×b13
+ 0.001 ×b15 + 0.002 ×b16 - 9.104e-6 ×b17 - 2.176e-5 ×b18
- 0.051 ×b19 - 0.017 ×b21 - 2.228e-5 ×b24 + 0.0003 ×b25
+ 0.003 ×b27 - 0.01284 ×b35

Fig. 2. Average wirelength model for DFT core in 65nm.

Basis Functions

b1 = max(0, nDFT - 16); b2 = max(0, 16 - nDFT);
b3 = max(0, width - 8); b4 = max(0, nfifo - 2);
b5 = max(0, nDFT - 16) ×b4; b6 = max(0, 16 - nDFT) ×b4;

.

.

.
b30 = max(0, width - 16) ×b9; b33 = max(0, 16 - nDFT) ×b18;

Average Fanout Model

FOavg = 3.707 + 0.003 ×b1 - 0.034 ×b2 - 0.011 ×b3
- 0.016 ×b4 + 8.602e-5 ×b5 + 0.002 ×b6 + 7.051e-5 ×b7
+ 0.002 ×b8 - 9.943e-5 ×b9 - 0.002 ×b10 - 0.084 ×b13
+ 7.989e-6 ×b16 - 4.533e-6 ×b17 + 0.0002 ×b18
+ 1.011e-5 ×b21 + 0.0005 ×b22 + 0.006 ×b23 + 0.003 ×b25
- 0.0003 ×b27 - 1.478e-5 ×b28 - 1.492e-5 ×b29
- 8.567e-6 ×b30 - 1.225e-5 ×b33

Fig. 3. Average fanout model for DFT core in 65nm.

V. EXPERIMENTAL SETUP AND SIGNIFICANCE ASSESSMENT

We now validate our wirelength and fanout models described
in earlier sections. For interconnect wirelength we compare four
different models.

1) Our proposed model (Prop.)
2) Christie et al. [3] model with N , p, and k modeled as a

function of microarchitectural and implementation parameters
(Model 2)

3) Modified Christie model with a correction factor (Model 3)
4) Christie model with N , p, and k derived from layout data for

each configuration (Model 4)

For interconnect fanout we compare the same four models except
that our reference model is the one proposed by Zarkesh-Ha et al.
[9].

Our proposed model (Prop.) uses machine learning-based re-
gression method, i.e., MARS, to estimate interconnect wirelength
and fanout as a function of microarchitectural and implementation
parameters. For Model 2 we use the same regression approach to
model N , p, and k as a function of microarchitectural and imple-
mentation parameters. Then, we use the estimated Rent parameters
in the Christie (Zarkesh-Ha) model to obtain wirelength (fanout) val-
ues. In the Christie model, unit distance between adjacent placement

sites, i.e., l = 1, is modeled as
√

XdieYdie/N , where Xdie and
Ydie are the width and height of the floorplan size of each design,
respectively. In Model 3, we first model N , p, and k as a function
of microarchitectural parameters only (i.e., with similar modeling
approach as in Prop.). Next we apply the estimated Rent parameters
in the Christie (Zarkesh-Ha) model and introduce a correction factor
α such that Actual Wirelength = α×ModelChristie (Actual Fanout
= α × ModelZarkesh−Ha). Then we model α as a function of
implementation parameters only, using the same modeling approach
as in our proposed models. In the modified Christie’s model (Model
3), we do not include the unit distance model as used in Model 2
because unit distance depends implementation parameters. Finally,
Model 4 uses Christie (Zarkesh-Ha) model to estimate wirelength
(fanout) using extracted N , p, and k values from implemented
designs.

For Models 2, 3, and 4, to extract Rent parameters, we use layout
reports to obtain N , and an internal Rent parameter evaluation
program RentCon, which extracts p and k values from a placed and
routed DEF. To compute p and k we use circuit partitioning-based
method in which we recursively partition the netlist into smaller
partitions using min-cut bisection until the minimum number of cell
instances over all partitions reaches 2, and we count each source-
sink connection crossing the boundary as one pin. For each level of
the recursive bipartitioning, we compute the geometric mean values
of cell instances and pins, which represent one data point in the
fitted curve of the Rent parameter.1

1The classic multilevel circuit partitioner MLPart [2] is used to recursively
partition the circuit netlist.

-55- ISOCC 2009

TABLE II

COMPARISON OF AVERAGE WIRELENGTH DERIVED FROM OUR PROPOSED (PROP.), MODEL 2, MODEL 3, AND MODEL 4 (CHRISTIE [3]) MODELS

WITH RESPECT TO ACTUAL IMPLEMENTATION DATA.

Metric Discrete Fourier Transform (DFT) Router
Prop. Model 2 Model 3 Model 4 Prop. Model 2 Model 3 Model 4

maximum % error 21.3 76.4 98.2 79.5 17.9 59.4 54.6 59.9

average % error 3.4 17.9 22.7 18.1 2.3 27.4 16.3 27.2

TABLE III

COMPARISON OF AVERAGE FANOUT DERIVED FROM OUR PROPOSED (PROP.), MODEL 2, MODEL 3, AND MODEL 4 (ZARKESH-HA [9]) MODELS WITH

RESPECT TO ACTUAL IMPLEMENTATION DATA.
Metric Discrete Fourier Transform (DFT) Router

Prop. Model 2 Model 3 Model 4 Prop. Model 2 Model 3 Model 4

maximum % error 5.7 23.7 18.7 22.7 1.4 18.9 22.1 18.2

average % error 0.8 10.1 7.3 10.1 0.2 5.6 5.7 5.6

To generate our models, we randomly select 10% of our entire
data set (i.e., total of 2187 cases for each testcase), and test the
models on the other 90% of the data. To show that the selection
of the training set insignificantly changes our model accuracy we
randomly select 10% of the entire data set five times and show the
corresponding maximum and average error values (Table IV).

TABLE IV

IMPACT OF RANDOM SELECTION OF THE TRAINING SET ON MODEL

ACCURACY.

Experiments average wirelength % diff average fanout % diff
max avg max avg

Exp 1 22.9 3.4 4.3 0.7

Exp 2 18.2 3.5 6.0 1.3

Exp 3 23.9 3.4 8.6 0.6

Exp 4 24.2 3.4 5.1 0.7

Exp 5 16.8 3.5 4.8 0.7

Tables II and III show comparisons of our proposed wirelength
and fanout models with the above models, respectively. We observe
significant accuracy improvement vs. existing models (Model 4)
with respect to layout data. Our estimated average wirelength values
show an accuracy improvement of up to 14.7% (58.2%), and
24.9% (42%) in average (maximum) errors for DFT and router
testcases, respectively. For average fanout, we observe up to 9.3%
(17%), and 5.4% (16.8%) in average (maximum) errors for DFT
and router testcases, respectively. Finally, Figures 4, 5, 6, and 7
show scatter plots of our average wirelength and fanout estimations
against corresponding Christie and Zarkesh-Ha models (i.e., Model
4) with respect to layout data.2 These plots confirm the accuracy
improvement of our proposed models vs. existing models.

From Models 2 and 3 we understand that both microarchitectural
and implementation parameters should be considered during model
development. In addition, we can confirm that existing Rent’s rule-
based wirelength and fanout estimation models fail to correctly cap-
ture the impact of microarchitectural and implementation parameters
which results in unrealistic wiring characteristics estimations.

10

12

14

16

18

20

22

24

26

28

30

32

10 15 20 25 30

Actual Average Wirelength (um)

E
s
tim

a
te

d
 A

v
e
ra

g
e
l W

ir
e
le

n
g
th

 (
u
m

)

Fig. 4. Our estimated average wire-
length against layout data.

8

13

18

23

28

33

38

43

48

53

10 15 20 25 30

Actual Average Wirelength (um)

E
s
tim

a
te

d
 A

v
e
ra

g
e
 W

ir
e
le

n
g
th

 (
u
m

)

Fig. 5. Christie’s average wirelength
estimation against layout data.

2These plots are for the DFT models, however, router models show similar
accuracy.

2.9

3.1

3.3

3.5

3.7

3.9

4.1

3 3.2 3.4 3.6 3.8 4 4.2

Actual Average Fanout

E
s
tim

a
te

d
 A

v
e
ra

g
e
 F

a
n
o
u
t

Fig. 6. Our estimated average fanout
against layout data.

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

4.1

2.9 3.1 3.3 3.5 3.7 3.9 4.1

Actual Average Fanout

E
s
tim

a
te

d
 A

v
e
ra

g
e
 F

a
n
o
u
t

Fig. 7. Zarkesh-Ha’s average fanout
estimation against layout data.

VI. CONCLUSIONS

In this work, we present accurate architectural-level intercon-
nect wirelength and fanout prediction models. Our models show
significant accuracy improvement vs. existing models, i.e., up to
58% and 17% for wirelength and fanout estimations, respectively.
Accurate wiring estimations can drive effective early-stage design
space exploration. To enable system-level design space exploration,
we consider all the relevant microarchitectural parameters of our
testcases. In addition, our models consider the combining effect of
the architectural and implementation parameters on wiring charac-
teristics.

REFERENCES

[1] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov and A.
Zelikovsky, “On Wirelength Estimations for Row-Based Placement”,
IEEE Trans. on Computer-Aided Design, 18(9), 1999, pp. 1265–1278.

[2] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Improved Algorithms
for Hypergraph Bipartitioning”, Proc. ASPDAC, 2000, pp. 661–666.

[3] P. Christie and D. Stroobandt, “The Interpretation and Application of
Rent’s Rule”, IEEE Trans. on Very Large Scale Integration Systems,
8(6), 2000, pp. 639–648.

[4] J. A. Davis, V. K. De and J. D. Meindl, “A Stochastic Wire-Length
Distribution for Gigascale Integration (GSI) – Part I: Derivation and
Validation”, IEEE Trans. on Electron Devices, 45(3), 1998, pp. 580–
589.

[5] J. H. Friedman, “Multivariate Adaptive Regression Splines”, Annals of
Statistics, 19(1), 1991, pp. 1–66.

[6] K. Jeong, A. B. Kahng and H. Yao, “On Modeling and Sensitivity of
Via Count in SOC Physical Implementation”, Proc. ISOCC, 2008, pp.
125–128.

[7] A. B. Kahng and S. Mantik, “Measurement of Inherent Noise in EDA
Tool”, Proc. ISQED, 2002, pp. 206–211.

[8] S. Landman and R. L. Russo, “On a Pin Versus Block Relationship
for Partitions of Logic Paths”, IEEE Trans. on Computers, C-20, 1971,
pp. 1469–1479.

[9] P. Zarkesh-Ha, J. A. Davis, W. Loh and J. D. Meindl, “Stochastic
Interconnect Network Fan-out Distribution Using Rent’s Rule”, Proc.
IITC, 1998, pp. 184–186.

[10] Y. Zhou and H. Leung, “Predicting Object-Oriented Software Main-
tainability Using Multivariate Adaptive Regression Splines”, Journal
of Systems and Software, 80, 2007, pp. 1349–1361.

[11] Netmaker,
http://www-dyn.cl.cam.ac.uk/ rdm34/wiki/index.php?title=Main Page.

[12] MARS User Guide, http://www.salfordsystems.com/mars.php.
[13] Cadence SOC Encounter User’s Manual, http://www.cadence.com/.
[14] Synopsys Design Compiler User’s Manual, http://www.synopsys.com/.
[15] SPIRAL, http://www.spiral.net/hardware/dftgen.html.

-56- ISOCC 2009

