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Abstract. We introduce a new methodology for benchmarking the
performance per watt of semantic web reasoners and rule engines on
smartphones to provide developers with information critical for deploy-
ing semantic web tools on power-constrained devices. We validate our
methodology by applying it to three well-known reasoners and rule en-
gines answering queries on two ontologies with expressivities in RDFS
and OWL DL. While this validation was conducted on smartphones run-
ning Google’s Android operating system, our methodology is general
and may be applied to different hardware platforms, reasoners, ontolo-
gies, and entire applications to determine performance relevant to power
consumption. We discuss the implications of our findings for balancing
tradeoffs of local computation versus communication costs for seman-
tic technologies on mobile platforms, sensor networks, the Internet of
Things, and other power-constrained environments.
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1 Introduction

The vision of the Semantic Web established by Berners-Lee, Hendler, and Las-
sila [4] has brought us a web with a variety of ontologies, interlinked datasets
[5], and efforts such as Schema.org to standardize terminology and encourage
webmasters to publish structured, machine-readable web content. Since 2001,
we have also seen the rise of the smartphone as a dominant platform for web
access. Smartphone use continues to grow. The International Telecommunica-
tions Union estimates that around 90% of the world’s population has access to
cellular connectivity versus 44% with wired broadband to the home.1 The ubiq-
uity of the mobile phone offers an opportunity to build previously impossible,
content-rich applications that benefit from semantic technologies.

One challenge that semantic technologies face when deployed on mobile plat-
forms like smartphones is the amount of energy available for the device to com-
pute and communicate with other semantic agents on the web. For example,

1 http://www.itu.int/en/ITU-D/Statistics/Documents/facts/

ICTFactsFigures2014-e.pdf
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the Google Nexus One, one of the first Android smartphones, had a single core
processor operating at 1 GHz and 512 MB of RAM. Samsung’s latest offering,
the Galaxy S5, has a quad core, 2.5 GHz processor and 2 GB of RAM, more
than a 8-fold increase in processing power and 4-fold increase in capacity in 5
years. However, the battery capacity of the two phones are 1400 mAh and 2800
mAh, respectively, indicating that battery technology is progressing more slowly
than processing technology, in a time period during which the complexity of
applications has increased. We therefore need tools to help developers identify
essential queries and to select ontologies of the appropriate expressivities for lo-
cal reasoning or identify when off-device computation is a more practical use of
devices’ limited energy reserves.

Context awareness [29,14,18], ubiquitous computing [12], and other user-
centric applications will benefit greatly by reasoning about different streams
driven by smartphone sensors. However, rich data sources can pose new chal-
lenges. Access control [28] and privacy have always been critical topics to consider
and are even more-so given revelations on weaknesses in various cryptography
libraries, such as the OpenSSL Heartbleed attack.2 Therefore, one scenario to
consider is one where personal data are kept and used locally to perform com-
putation rather than sending those data to an untrusted party. Alternatively, we
may build applications that selectively expose context or perform computation
in a context-sensitive way without sharing all inputs of those computations. Con-
sider a scenario where a wine recommendation agent (e.g. [19]) wants to make a
recommendation to a user, but only if the recommendation meets dietary, medi-
cal, or other restrictions available in a privileged document such as an electronic
medical record. If a health agent were available to manage computation on the
medical record, the wine agent would provide the recommendation to it. The
health agent then responds affirmatively if the supplied recommendation is rea-
sonable given the content of the medical record. The wine agent then makes its
recommendation without ever having direct access to user’s health information.

Democratization of application programming, accomplished via tools such as
the MIT AppInventor, allows anyone to build mobile applications using pre-
defined components. A linked data extension to AppInventor [21] allows users
to take advantage of SPARQL on mobile devices. However, users are given no
feedback about how their applications might affect the performance or battery
life of their (or others’) phones, where resources are relatively scarce. Therefore,
a new set of tools are required to aid the AppInventor community to incorporate
new technologies like those provided by the semantic web.

We introduce a methodology that we believe is broadly reusable and is
specifically motivated by these different scenarios to evaluate the performance
of semantic web technologies relative to the amount of energy consumed dur-
ing operation. In particular, we are focusing on varying the reasoning engine
but varying the query engine, ontologies, and datasets are all possible with
our approach. Ultimately, these metrics will provide developers a deeper insight
into power consumption and enable next-generation applications of semantic

2 http://heartbleed.com/

http://heartbleed.com/
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technologies for power constrained devices. The remainder of this paper is or-
ganized as follows: Section 2 compares our contributions with related work on
reasoner benchmarking; Section 3 describes our novel hardware and software
configuration used for collecting performance data; Sections 4 & 5 discuss the
ontologies, reasoners, and queries used for evaluating reasoner performance; Sec-
tion 6 presents performance per watt findings using our approach; Section 7
discusses some unanticipated results and implications for mobile semantic web
agents; and, Section 8 presents conclusions and opportunities for future research.

2 Related Work

While reasoner benchmarking is not new, performing benchmarks relative to
system power consumption and the amount of inferred statements has not been
previously explored to the best of our knowledge. We therefore look at a number
of existing benchmarks related to processing time and memory consumption as
well as evaluations performed by reasoner authors. We also consider some power
related work done in other areas of computer engineering and computer science.

The Lehigh University Benchmark (LUBM) [8] and the extended University
Ontology Benchmark (UOBM) [15] use an ontology written in OWL that models
university concepts such as classes, departments, professors, and students. The
goal of these benchmarks is to evaluate the scalability of inference systems using
a controlled ontology and a random instance set generated based on statistical
knowledge learned from real world data. We make use of LUBM as a portion
of our power benchmark for reasoners that support OWL DL, but evaluate
reasoners for memory and power consumption in addition to execution time.

The JustBench Framework [2] was developed to evaluate the performance of
reasoners using the justifications of their entailments rather than by analyzing
the reasoner’s performance on the entirety of an ontology or a random subset.
One of its goals is to aid ontology engineers in debugging performance of rea-
soners and ontologies. Bail et al. also highlighted five techniques for improving
reasoning behavior: a) introduce further training for knowledge engineers; b) re-
duce expressivity to more tractable logics, such as the OWL 2 profiles; c) generate
approximations in more tractable logics, e.g. OWL 2 EL approximation of a DL
ontology; d) apply fixed rules of thumb during ontology design; e) and, apply
analytical tools, such as profilers and benchmarks . They found that evaluating
justifications was a good first step to understanding how reasoners performed
over ontologies, but that such means are unable to test performance when no
entailment exists. While this research is promising, the short amount of time
required to generate a single justification is too small to be accurately detected
by our hardware, making this method of evaluation infeasible for our purposes.

Seitz and Schönfelder [20] present an OWL reasoner for embedded devices
based on CLIPS. The target device ran at 400 MHz with 64 MB of RAM. They
evaluated the performance and memory use of the reasoner on OWL 2 RL ontolo-
gies and identified issues with existing reasoning systems on devices with limited
resources. They benchmarked their reasoner using LUBM with 25,000 individu-
als. They found that runtime on the resource constrained platform runtime was
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O(n2) with respect to triples in their knowledge base. Memory consumption was
also observed as O(n2). Our benchmark includes a power metric to complement
their means of measuring CPU time and memory consumption to provide a more
holistic view of the resources a reasoner is consuming.

Henson, Thirunarayan, & Sheth [9] presented a novel bit vector algorithm for
performing a subset of OWL inference on sensor data in a resource constrained
device that showed performance on explanation and discrimination in a knowl-
edge base O(n) compared with Androjena, a variation of Jena designed to run
on Google’s Android operating system, at O(n3). Their evaluation introduced a
benchmark that used completely orthogonal bipartite graph matching to gener-
ate worst-case complexity in each system. While their benchmark was aimed at
resource constrained devices, it used a particularly limited subset of OWL that
would not be expressive enough to cover the use cases discussed in Section 1.

Lim, Misra, and Mo [13] present an numeric analysis of energy efficiency of
database query answering in a distributed environment. They approximate the
amount of energy consumed by wireless transmission of data in a sensor platform
using the theoretical power values for communications hardware set in the IEEE
802.11 and BlueTooth standards. Our work captures actual power use, which
includes energy consumption of the CPU and real-world noise that may include
energy consumed for checking for and retransmitting error packets, energy used
responding to multicast/broadcast from other devices on the network, among
others. We also provide figures for cellular radios not considered in that work.

The field of high-performance computing, in particular the area of fully-
programmable gate array (FPGA) design, has looked at benchmarking custom
hardware designs in a power-awaremanner. Tinmaung et al. [26] present a power-
aware mechanism for synthesizing FPGA logic. Jamieson et al. [10] present a
method for benchmarking reconfigurable hardware architectures for applications
in the mobile domain. While these works are oriented around power optimization,
they are primarily interested in hardware design for specific highly parallelizable
problems. Our benchmark focuses on establishing metrics for the semantic web
community and in particular those looking to deploy semantic web technologies
on off-the-shelf mobile hardware.

3 Power Consumption Measurement Methodology

Our methodology uses a physical device setup to capture power measurements.
Benchmark evaluation is performed on the device, discussed in Section 3.2, and
we also capture baseline measurements to provide an understanding of how rea-
soning performance compares to other basic operations, e.g. “screen on” for an
extended period of time or data access via the device radios.

3.1 Power Monitor Setup

The goal of our work is to establish a metric for determining how much energy
is consumed during reasoning tasks so developers can be aware of the effects of
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Fig. 1. Power bypass wiring for phone battery. Left, a conceptual diagram for bypassing
the battery. Right, an example of the bypass implemented for the Google Nexus One.

semantic web tools on mobile device battery life. To this end, we need to provide
a battery substitute that collects power samples during operation of the phone
and use those data to compute the performance per watt of each reasoner.

We build our experimental framework around an external power supply sold
by Monsoon Solutions3 and use it as a battery substitute for Google Android
smartphones. The power monitor captures voltage (2.1∼4.5 Volts) and current
(max. 3.0 Amperes) drawn by the phone at a frequency of 5 kHz.4 Follow-
ing the company’s instructions, we bypassed the battery of the smartphone as
demonstrated in Figure 1. The leads connected to the battery are 85 mm for
the positive lead and 77 mm for the ground, exclusive of the manufacturer’s
leads.5 The power monitor is connected to a laptop running Windows XP SP3
to collect data. We use Cygwin as a scripting environment for interacting with
the test setup. Our test script sends a start command to the device via WiFi
after which both systems wait for a period of 10 seconds to allow the WiFi radio
to enter its idle state so that power draw is minimal. The script then starts
the power monitor software set to begin recording when power increases above
750 mW and to stop recording when power falls below 60 mW. These threshold
values were determined by pilot trials where the changes in power consumption
were manually noted by the researchers. The complete code is released under
the GNU General Public License and made available on GitHub.6

3.2 Experimental Platform

We execute each test three times per trial, with thirty trials executed per query.
The first execution is run in order to warm up Android’s Dalvik virtual machine
(VM) so that classes are linked appropriately and that this linking operation
does not penalize any particular implementation. The second run is used to
determine performance as well as measure the amount of energy consumed during
reasoning. The third run is performed using the Android Dalvik Debug Monitor

3 http://www.msoon.com/LabEquipment/PowerMonitor/
4 Power is voltage times amperage.
5 Lead length affects the resistance between the power monitor and the phone, result-
ing in different power observations. We document the lengths here for reproducibility.

6 https://github.com/ewpatton/muphro-test-framework

http://www.msoon.com/LabEquipment/PowerMonitor/
https://github.com/ewpatton/muphro-test-framework
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Fig. 2. Baseline power measurements for screen off (red), screen on (blue), data down-
load over WiFi (green), HSPA+/3G (purple), and LTE/4G (orange). Note that the
4G/LTE radio consumes power at a rate of up to 2.5 times that of the 3G/HSPA+
radio, which in turn consumes power at a rate almost two to three times the WiFi
radio. Thus, developers of distributed semantic web tools should carefully weigh the
energy costs of WiFi vs 3G vs 4G for communication.

Server (DDMS), which collects memory consumption usage whenever the Dalvik
VM collects garbage. Note that we collect memory usage separately due to the
fact that DDMS works over the Android Debug Bridge that communicates with
the device either by Universal Serial Bus (USB) or by WiFi. We cannot use
USB with the power monitor because the phone attempts to “charge” the power
monitor, resulting in bad data, and using WiFi to communicate with the device
during the tests would skew the power measurements. We therefore save the
DDMS-oriented execution for WiFi when power is not being measured to prevent
interfering with the primary focus of our evaluation. Thus, we are able to collect
and monitor time to completion, memory requirements, and performance per
watt estimations for our benchmark.

We execute our benchmark on Samsung’s Galaxy S4 running the stock An-
droid 4.3 operating system. The S4 has a quad-core 1.9 GHz CPU, 2 GB of
RAM, and a 2600 mAh battery. We note that the Dalvik VM limits process
memory to 128 MB, so any task that requires more memory than this will fail.

3.3 Baseline Power Measurements

Since we are concerned with evaluating semantic web reasoner performance, we
desire the ability to control for other phone components that may skew results.
We took baseline measurements to understand the effects of different subsystems
on power during common user actions or during normal system operation. We
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Table 1. Summary of tested ontologies

Ontology Classes Properties Subclass Subprops Assertions

Schema.org 582 778 580 1 171

LUBM 43 32 36 5 103074

measured screen off with all radios off, screen on with all radios off, and tested
two scenarios where we downloaded a 1 MB SPARQL/XML resultset from a
remote server with an artificial latency of 30 seconds between the request and
the start of the transfer over the WiFi, 3G, and 4G radios. Figure 2 charts the
outcome of these results. Important points to note are that the 3G radio during
transmission and broadcast can draw 1.56 Watt of power, which would cause the
battery to deplete in just over 5 hours. The same download over WiFi requires
significantly less power. The 4G radio draws even more power, requiring a peak
of 4.00 W.7 Overall, the amount of energy consumed by the WiFi, 3G, and 4G
radios is 4.82 kJ, 14.4 kJ, and 9.77 kJ, respectively.

4 Ontology Selection

We choose to use a selection of different ontologies for evaluation to mimic differ-
ent types of workloads that may be seen in real applications of the results of this
work. The ontologies we selected are in RDFS and OWL DL. Table 1 provides a
summary of the class and property hierarchies for the different ontologies used.

We use schema.org as it is widely known and gaining rapid adoption due
to search engines backing it. The schema.org ontology is primarily composed
of subclass axioms on primitive classes. Given the broad domain coverage of
schema.org, we anticipate easy repurposing for driving user interfaces for inter-
acting with linked data, such as those presented in our previous work on a mobile
wine recommendation agent [19].

We include the Lehigh University Benchmark (LUBM), as it has emerged as
a popular benchmark for evaluating the query answering runtime performance
of reasoning engines using 14 queries.8 Due to the memory limitations of the
platforms in question, we evaluated LUBM on a subset of the full A-Box, limiting
our queries to the first 4 files produced by the LUBM data generator (∼21
thousand triples). We intended to specify the knowledge base size explicitly, but
the LUBM generator does not provide triple-level control over the output. The
LUBM ontology is OWL DL, and thus we recognize that those reasoners that
do not support OWL DL will potentially provide incomplete solutions.

7 These peak times are taken directly from the raw data. The figure shown uses a
moving average of one half second to smooth out excessive noise, which reduces the
magnitude peak values in the visualization.

8 http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt

http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt
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5 Reasoner Selection

We focus on Java-based reasoners to enable redeployment on mobile phones
running the Android operating system.9 We selected the reasoners based on
their different algorithms (RETE networks, Tableaux, Hypertableaux) and sup-
ported expressivities in order to provide coverage of different techniques. Since
we cannot evaluate all possible reasoners due to space constraints, most reasoners
should be comparable to one of those identified here.

Jena Rules. The Jena Semantic Web Framework [6] provides an implementation
of the RETE algorithm [7] along with rule sets for RDFS, OWL Lite, and a subset
of OWL Full. We used a variant of Apache Jena 2.10.0 with references to the
Java Management Interfaces removed since they are unavailable on Android.

Pellet. The Pellet reasoner [22] provides full support for OWL 2 DL, DL-safe
SWRL, and uses the Tableaux algorithm. Due to this, its memory requirements
often prohibit its use in memory-limited devices such as mobile phones.

HermiT. The HermiT reasoner [16] uses a novel hypertableaux resolution algo-
rithm to provide complete support for OWL 2. Due to the nature of this algo-
rithm, it can perform more operations in polynomial time and reduced space,
making it useful in more scenarios than the tableaux algorithm.

We intended to include the reasoners μ-OR [1], one of the first to be designed
for OWL Lite inference on resource constrained devices, and COROR [24,25], a
Jena variant that loads rules selectively based on class expressions, but we were
unable to obtain source code or binaries from the original authors.

6 Results

We hypothesize that the amount of energy used for reasoning will be linearly
related to the amount of time required to perform the reasoning, a common
assumption that needs to be validated. We also hypothesize that the mean power
will be similar between reasoners as they are primarily CPU bound.

We define effective performance of a semantic software stack as

ρe(q) =
1

n

n∑

i=1

resultsq
timeq,i

where q is the query number, n is the number of trials run, resultsq is the number
of query results found by the reasoner for query q, and timeq,i is the execution
time for trial i. Mean power for a query is computed as:

9 We recognize that Google provides a native development toolchain for cross-
compiling existing C/C++ libraries for Android, but leave an evaluation of reasoners
written in these languages as future work.
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Listing 1. SPARQL queries used for evaluating RDFS inference on the Schema.org
ontology

# query 1

SELECT ?cls (COUNT(?super) as ?supers) WHERE {

?cls rdfs:subClassOf ?super

} GROUP BY ?cls

# query 2

SELECT ?cls (COUNT(? property) as ?props) WHERE {

?cls rdfs:subClassOf schema:Organization .

?property schema:domainIncludes ?cls .

} GROUP BY ?cls

# query 3

SELECT ?property (COUNT(?cls) AS ?range) WHERE {

?property schema:rangeIncludes ?x .

?cls rdfs:subClassOf ?x .

} GROUP BY ?property

P̄ (q) =

n∑
i=1

[P̄q,itimeq,i]

n∑
i=1

timeq,i

where P̄q,i is the mean power reported by the power monitor for trial i.

6.1 Schema.org

Schema.org provides an upper ontology in RDFS for describing content in mi-
crodata on the web. Backed by four of the world’s major search engines, it is
poised to dramatically change how structured data are published and consumed
on the web. In a recent interview,10 RV Guha of Google shared that over 5 mil-
lion websites are now publishing microdata using Schema.org. Understanding
how consuming the schema provided by Schema.org affects power consumption
on a mobile device will enable developers to determine when the local consump-
tion of Schema.org content is useful versus performing that consumption in the
cloud. We consider that the classes and relations defined by Schema.org are use-
ful for driving user interfaces for mobile linked data publishing applications and
being able to query the schema efficiently is paramount to making this vision
a reality. Three key relationships within the schema that we wish to evaluate
are subclass relationships (modeled using rdfs:subClassOf ) and the domainIn-
cludes and rangeIncludes properties. We provide three queries (Listing 1) to
cover various common user interface needs: finding subtypes of the current type,

10 http://semanticweb.com/schema-org-chat-googles-r-v-guha_b40607

http://semanticweb.com/schema-org-chat-googles-r-v-guha_b40607
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Table 2. Summary of each reasoner on the three queries we designed for Schema.org’s
ontology. Left, the effective performance for each reasoner. Right, the performance per
watt of each reasoner.

Query 1 2 3

HermiT 17.24 N/A N/A

Jena 104.8 2.158 84.65

Query 1 2 3

HermiT 22.61 N/A N/A

Jena 109.2 2.256 86.03

Table 3. Number of query answers for the subset of the 14 LUBM queries on which all
reasoners returned results. Asterisks indicate those queries for which Jena’s rule engine
was unable to provide the complete result set found by HermiT and Pellet.

Query 1 3 4 5 6* 7* 8* 9* 14

HermiT 4 6 34 719 1682 67 1682 38 1319

Pellet 4 6 34 719 1682 67 1682 38 1319

Jena 4 6 34 719 1319 59 1319 15 1319

Table 4. Performance (results/sec) for the different reasoners on LUBM queries, mea-
sured as query answers per second. Larger values indicate better performance.

Query 1 3 4 5 6* 7* 8* 9* 14

HermiT 0.0419 0.0635 0.365 7.466 42.48 0.631 16.94 0.378 33.37

Pellet 0.1893 0.2793 1.592 32.57 74.46 2.541 65.84 1.562 60.43

Jena 0.4511 0.6297 3.927 59.99 150.0 4.574 99.56 1.408 151.2

identifying properties for which the current type is in the domain, and after
selecting a property, finding valid range types, so an application can display rel-
evant instances. We note that these queries are intended to stress how many and
how quickly reasoners compute subclass and subproperty subsumptions.

Table 2 presents the reasoner evaluation results for the queries in Listing 1.
We note that both HermiT and Pellet provide different challenges due to the
fact that Schema.org’s schema is not DL-compatible it lacks distinction between
object and data properties. We were unable to execute queries 2 and 3 against
HermiT using the OWL API due to this lack of delineation in the ontology
and the API’s inability to query at the level of rdf:Property. For all queries,
Pellet used more than 128 MB of RAM, resulting in premature termination of
the virtual machine so we exclude it from this analysis. A Mann-Whitney U
test between HermiT and Jena’s power measurements indicated no statistical
difference (U = 158, p = 0.8177), thus the difference in performance per watt
can be attributed entirely to the performance of each reasoner on the ontology.

6.2 Lehigh University Benchmark

Table 3 shows the number of query solutions found when all reasoners returned
at least one answer. Due to their completeness, Pellet and Hermit generate the



A Power Consumption Benchmark for Reasoners on Mobile Devices 419

●●
●

●

●

●

●

●

●

−50

0

50

100

150

975 1000 1025 1050
Power (mW)

P
er

fo
rm

an
ce

 (
re

su
lts

/s
ec

)
query

●

●

●

●

●

●

●

●

●

1

3

4

5

6

7

8

9

14

reasoner

● jena

pellet

hermit

Fig. 3. Performance vs power for Jena, Pellet, and HermiT reasoners on LUBM queries.
The shaded regions represent the standard error of the linear approximation of perfor-
mance per watt.

same answer set. Jena fails to return a complete answer set in 4 queries (noted
with asterisks) and finds no results in four of five others.11 Table 4 shows the
effective performance for each reasoner in the different query conditions.

A Kruskal-Wallis non-parametric one-way analysis of variance with mean
power as a dependent variable and reasoner as the independent variable for each
LUBM query presented in Table 3 showed significant difference in power drawn
for all LUBM queries, with p < 0.001, with the exception of query 6 (H = 3.08,
2 d.f., p = 0.214). Pairwise Bonferroni-adjusted Mann-Whitney U comparisons
on the differing queries indicated a statistically significant difference in the mean
ranks of Hermit compared with Pellet and Jena. This finding is substantiated
by Figure 3, which shows a tight clustering of HermiT’s performance per watt
measurements (except that for query 6) away from those of Jena and Pellet.

7 Discussion

Ali et al. [1] and Henson et al. [9] both demonstrated scalable, low expressivity
reasoners for resource constrained devices, but also highlighted that traditional
inference systems on resource constrained devices are either very costly (as with
Jena, HermiT) or impossible (as with Pellet). We affirmed their difficulty with
deploying traditional reasoners on resource-constrained devices and have noted

11 No reasoner answered query 2 due to the subset of the dataset we are using. We
assumed a uniform distribution in the types and quantity of triples generated by
LUBM, but that assumption resulted in insufficient data to satisfy the patterns in
query 2. Jena also found no results for queries 10-13.
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where appropriate when a test failed due to a limitation of the platform as
compared with a limitation of the reasoning engine itself. As larger memory
spaces become available on mobile platforms, we anticipate that these failures
will become fewer.

One unanticipated interesting result was the difference in the device’s power
draw between HermiT’s operation and that of Pellet and Jena. We looked at the
experimental logs to determine possible causes and one significant factor that we
have identified is memory consumption. HermiT’s memory use is roughly double
that of the other reasoners, causing the virtual machine to invoke the garbage
collector more frequently. Since the short term garbage collector for Android
runs concurrently on another thread, it is possible that the energy difference
is the cost of the system engaging a second CPU core for garbage collection.
This hypothesis is partially substantiated by one outlier (query 6) observed in
Figure 3. When we compared the memory use on this query to others, it was
roughly two thirds, more in line with memory consumption observed in Pellet.
However, further experiments are required to isolate this effect.

Lastly, the combination of reasoning time and power are critical to under-
standing how to deploy semantic technologies on mobile platforms. In the case
of Jena, the total amount of energy consumed ranged anywhere from 4.5 kJ to
8.9 kJ, indicating that it takes less energy to reason about some of these ontolo-
gies than it would to request the results from an external source via the 3G or
4G radios. However, HermiT and Pellet exhibit much higher energy consumption
due to the longer running time of their algorithms, suggesting that it is always a
better use of energy to offload OWL DL reasoning to an external resource when
completeness is required by the application.

7.1 Experiences

Our original intention was to use the library OWL-BGP [11] as a SPARQL in-
terface to reasoners designed for the OWL API (e.g. HermiT). However, due to
a limitation in the Android Dalvik byte-code format, we were unable to success-
fully compile the library. In its place, we reimplemented the SPARQL queries
used in each of the different test conditions as Java classes that would accept the
OWL API’s OWLReasoner class and generate a SPARQL result set by performing
an appropriate set of operations on the reasoner.

Memory consumption was another challenge we addressed in multiple ways. In
all tests, we observed that reasoning under Jena’s OWL profile was impossible as
out-of-memory errors were thrown prior to completion and thus we limited our
tests to the RDFS profile. This evaluation performed on a Mid 2013 Macbook
Pro with a 2.8 GHz Intel Core i7 and 16 GB of RAM with a Java heap of 4
GB demonstrated that most reasoning operations would require at least 2.4 GB
and in some instances, the Jena rules engine still exhausted the entire heap and
failed to return results.

In order to execute the Jena reasoners, Hermit, and Pellet on the Android
platform, we needed to make minor modifications to each library. While we will
not explain details here, we note that all of the modified sources and binaries
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are made available under the appropriate source code license via our GitHub
repository mentioned in Section 3.1.

The findings of this paper are subject to drastic changes in hardware de-
sign and power management that cannot be predicted from this work alone. For
instance, advances in power management circuitry or power-efficient CPU archi-
tectures may have significant impact on power consumption that would improve
the performance per watt observations that we have made (assuming such ar-
chitectural changes do not negatively affect performance). Thus, we are making
this software freely available under both the Apache 2.0 and GPL 3.0 licenses so
that all of the tests performed herein can be repeated on alternative hardware
as devices are made available.

8 Conclusions

We presented a novel, reusable, open-source methodology for evaluating semantic
web reasoner performance on power-constrained hardware and evaluated three
reasoners, Jena, Pellet, and HermiT, against standard benchmark ontologies and
queries to establish the amount of power drawn during reasoning, information
previously unknown in the field. The reusable methodology is one contribution
and the use of the methodology to evaluate some best in class reasoners and
standard benchmark ontologies is another contribution. We affirmed that single-
threaded reasoners exhibit energy consumption linear in the amount of pro-
cessing time and identified some discrepancies related to the effects of garbage
collection on rate of energy consumption on an Android smartphone. We showed
that incompleteness can greatly increase performance per watt if such incom-
pleteness is acceptable in an application. Lastly, we demonstrated the effects
of different smartphone features on power consumption to gain insights into the
costs of communicating with external services to assist in making decisions about
whether to perform processing on-device or off-device.

We found that for RDFS inference, the Jena RETE rule engine performed bet-
ter than its complete OWL counterparts, a finding that is unsurprising given the
overhead of the tableaux/hypertableaux algorithms. Another interesting finding
is that while Jena was unable to perform OWL entailments on LUBM due to
memory limitations, when executed with its RDFS transitivity rule set, it was
able to answer some of the queries completely and others partially. This high-
lights how important it is for developers to identify essential queries and ontology
expressivities to improve reasoning performance and reduce energy consumption.

Furthermore, we found a nearly linear relationship between energy required to
complete an inference and the amount of computational time needed to perform
the inference. This is due to the single-threaded nature of the design of the
reasoners tested, but as our data show, there may be additional effects on power
consumption outside of CPU runtime and we expect to see further differences
as parallel and distributed techniques come to fruition.
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8.1 Future Work

This benchmark lacks coverage for the complete OWL 2 semantics. Our exami-
nation focused on RDFS and OWL DL inference, primarily to exercise existing,
well-known benchmarks used for evaluating reasoners in other contexts. A suite
of different T-boxes and A-boxes providing coverage for all of the constructs in
OWL 2 would allow us to more easily stress different parts of the reasoners and
further research into parallelization techniques will enable us to gain a better
understanding of the effects of communications on energy consumption.

We would also like to test parallel and distributed reasoning techniques such as
those presented in [3,27,30,17,23]. Our findings in this work validate existing as-
sumptions that power consumption for traditional RETE rule engines, tableaux,
and hypertableaux reasoners will be linear in the compute time, but distributed
algorithms will provide a richer execution strategy and power analysis that will
benefit from the methodology we have outlined.

Due to the physical setup complexity and to ease adoption of power analysis of
mobile semantic web applications, we intend to use a combination of factor anal-
ysis, clustering, and linear regression to build models that can consume power
profiles of various devices, ontologies, and queries to generate expectations of en-
ergy consumption. This will eliminate the hardware barrier to entry by enabling
an approximation of energy use. Furthermore, if the appropriate programming
interfaces are available, we intend to build a reasoner that can take advantage
of knowing the available energy remaining for computation to optimize its use
of local versus remote resources.

Using the experiment metadata published by our framework, we intend to
provide a portal of experimental conditions and evaluations with publicly acces-
sible URIs. This portal will enable researchers to replicate results by providing
a experiment URI to the benchmarking suite, which would download all the
necessary resources and execute the experiment on a target device.

We plan to investigate more reasoners, such as those presented by [31], as
well as those written in other languages, e.g. C or C++, to evaluate a wider
breadth of technologies and to motivate extension of this work to other mobile
platforms. In particular, we would like to provide a solution for phones without
removable batteries, such as the Apple iPhone, so that practitioners can also as-
sess performance characteristics of reasoners and ontologies for a greater breadth
of devices. One possible approach may involve capturing battery level informa-
tion from the operating system and running queries repeatedly and observing
the reported drain. One challenge with this approach is the effective of battery
degradation due to age.
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