
A Power Estimation Methodology for SystemC Transaction
Level Models

Nagu Dhanwada
IBM Electronic Design Automation,
Systems and Technology Group,

Hopewell Junction, NY
nagu@us.ibm.com

Ing-Chao Lin
Dept of Computer Science,

Pennsylvania State University,
University Park, PA
ilin@cse.psu.edu

Vijay Narayanan
Dept of Computer Science,

Pennsylvania State University,
University Park, PA

vijay@cse.psu.edu

ABSTRACT
Majority of existing works on system level power estimation have
focused on the processor, while there are very few that address
power consumption of peripherals in a SoC. With the presence of
complex cores in current day embedded system-on-chip devices,
the problem of complete system level power estimation is gaining
significance. Transaction level models for SoCs are gaining
increasing attention with emerging architectural modeling
standards like SystemC. In this paper we present a methodology
for performing system power estimation for different scenarios or
applications being executed on these transaction level models. We
describe techniques and a setup for transaction level power
characterization, and an approach to augment SystemC transaction
level models to perform transaction level power estimation. We
also present experimental results to validate the accuracy and
speed of our approach.

Categories and Subject Descriptors: J.6
[Computer-aided design]; B.7.2 [Integrated circuits]: Design
I.6.5 [Simulation and Modeling]: Model Development;

General Terms: Performance, Design, Experimentation

Keywords: SystemC, Transaction Level Models, Power
Analysis, CoreConnect, PowerPC

1. INTRODUCTION
Transaction level models and simulation platforms composed of
such models for IP cores are increasingly being used for SoC
architecture analysis and early embedded software development.
These are gaining more relevance with emerging standard
architecture modeling languages like SystemC. Power
consumption has emerged as an important design metric for
electronic systems. Increasing design complexity is making it
imperative to address power consumption at the system-level,
where the benefit of performing power optimizing design changes
is the greatest.
Consider the following scenario to serve as a motivation for

peripheral power estimation in a system context. Let’s take the
case of voltage and frequency scaling algorithms executing on a
wireless system-on-chip, to save dynamic power. Lets assume that
the CPU is bandwidth limited and the DVFS algorithm suggests
increasing clock frequency and voltage for the CPU – to recover
performance (improve the bandwidth). In reality, this bandwidth
saturation can be because of a peripheral that is getting some
wireless data or transferring files over the network. So any
increase in CPU frequency and voltage suggested by the DVFS
algorithm would not improve system performance because the
bottleneck is the peripheral. Therefore, in order to
comprehensively evaluate the root cause of power-performance
tradeoffs in a SoC, there is a clear need for having comprehensive
power models for peripherals that go along with
performance/functional simulation models.
SystemC and Transaction Level Modeling (TLM) [4] has been
gaining significant traction and IP core providers are beginning to
provide such models for the purpose of embedded software
development and early architecture analysis. These models are
typically at a level where they do not capture all power related
aspects of the cores in order to optimize the simulation
performance. To enable power estimation for a system composed
of such transaction level models, we propose to incorporate power
estimation techniques into a SystemC functional model designed
to run embedded software. One of the basic assumptions in earlier
works on instruction based estimation, was that the core
performance models/functional models are developed after power
related transactions or instructions have been identified. This
meant that all of the power related transactions/instructions in a
core are used in the SystemC functional model, thus considering a
one - one mapping between all instructions identified from the
detailed model and its corresponding systemC model.
In this paper, we address the problem of system level power
estimation with transaction level models (TLMs), focusing on the
case where the TLMs would not have been originally developed
with the objective of power estimation in mind. We use an
industry strength PowerPC/CoreConnect TLM simulation
platform as a basis for our work. We present in detail the
characterization methodology adopted for generating power
models that can be used within a transaction level simulation, and
a simple approach for augmenting TLMs with these transaction
level power models. The characterization methodology itself has
been dealt cursorily in most of the other works on system level
estimation. One of the areas we focus in this paper is the setting
up of a characterization methodology that considers all aspects of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

142

a detailed model in the process of generating an abstract
transaction level power model.
The paper is structured as follows: the next section gives an
overview of related work, and highlights our contributions.
Section 3 presents an overview of the transaction level simulation
platform – and discusses the organization of transaction level
models in systemC. Section 4, presents the overall flow of our
transaction level power modeling and estimation approach with an
example. Sections 5 and 6, describe the power characterization
approach and our system level transaction based power estimation
technique. Finally section 7, presents experimental results
followed by a section that discusses conclusions and future work.

2. RELATED WORK
Work on power estimation, modeling and optimization has

been done at different levels of abstraction. In this section we
limit the discussion to mainly some of the system level approaches
to power estimation. Instruction based power analysis for
peripheral cores were first presented in [4]. This work presented a
core power evaluation technique that divided the function of the
cores into instructions and performed estimation using instruction
level power models. The assumption made in this approach was
that the core performance simulation model would be developed
based on the instructions that were identified during the
characterization process. In contrast, the work being presented in
this paper considers the case where there are existing legacy
performance or architecture analysis models (and does not assume
that the architecture models are developed based on pre-defined
power related instructions) and proposes an approach for power
characterization and augmenting these models to permit system
level power estimation. Our work also presents a detailed
transaction level analysis-friendly characterization method and
data organization structures for use with SystemC transaction
level models. Integration of power models for certain components
of the AMBA AHB bus into a transaction-level modeling
framework was explored in [2].

Some of the other works on high-level estimation include
[5], where a function based power estimation method was
presented for embedded software executing on microprocessors.
A state based power analysis method for SoCs was presented in
[6] where the interactions between various coarse grained core-
states like idle, active, sleep were considered. This would not be
adequate for a transaction level simulation paradigm where, a
finer level of granularity would clearly be required. Another
recent effort [11] develops a technique for power estimation from
cycle-accurate functional descriptions. Their approach identifies
the correlation between the cycle accurate functional description
and the corresponding RTL implementation for power estimation.
Our approach is similar in that we also create correlations, but we
operate at a higher transaction boundary accurate level of
abstraction as opposed to cycle accurate descriptions. To the best
of the authors’ knowledge this is one of the first works to address
in detail the aspect of power characterization for SystemC
transaction level models, and interfacing power characterization
models with SystemC TLMs.

3. TRANSACTION LEVEL SIMULATION
for POWERPC/CORECONNECT SYSTEMS

Transaction level modeling is a high- level approach to
modeling digital systems where details of inter-module
communication are separated from details of communication
architecture implementation [10]. In this paradigm, a transaction
is basically a mechanism for communicating between cores. E.g.,
bus_write(), interrupt_request(), etc. Correct amount of time is
associated with each atomic transaction and added up to the total
simulation time (faster than ticking at every clock). This makes it
efficient, enabling execution of real software (in an embedded
system) on models written at this level of abstraction.

The organization of a SystemC transaction level simulation
model for a CoreConnect based system is shown in Figure 1. This
is used as a platform for the techniques presented in this work.

Elements of the CoreConnect architecture include the processor
local bus (PLB), on-chip peripheral bus (OPB), a bus bridge, and
a device control register (DCR) bus. High-performance
peripherals connect to the high-bandwidth, low-latency PLB.
Slower peripheral cores connect to the OPB, which reduces traffic
on the PLB, resulting in greater overall system performance [7].
The busses in the CoreConnect complex are represented as
hierarchical channels, and the masters and slaves are SystemC
modules. Basic communication mechanism between SystemC
modules is through ports that are bound to interfaces. Referring to
the PLB subsystem in the Figure 1, a PLB master has ports of
interface type plb_bus_if, through which transactions are issued to
the bus. These requests are sent to the arbiter through an arbiter
port that is present in the PLB bus, after arbitration when the bus
is granted to the requesting master, the PLB slave port present on
the bus (which is bound to the PLB slave interface), is used to
issue the request to the addressed slave.
In this work, we use a transaction level model based simulation
platform consisting of PowerPC processor, CoreConnect bus
complex and peripheral models. These are at a level of abstraction
equivalent to the Programmer’s view with timing (PV+T) level as
described in [9]. This is the highest level of abstraction which can
include some amount of micro-architectural detail. The bus
models are bus cycle accurate, with respect to transaction clock
boundaries. Transactions are modeled as occurring over
communication channels. The computation (inside a core) may
not be modeled on a cycle-by-cycle basis, as long as the input-
output delays are cycle-approximate. The transactions occurring
within the system can be blocking or non-blocking. A transaction
that is executing sequentially after another and needs to wait till
the first transaction is complete before starting other is a blocking
transaction. One that is executing concurrently with another is

plb bus PLB2O
PB

PLB
Master

PLB Bus

PLB

Arbiter

PLB
Slave

OP
B

Bus
OPB2P

LB

OPB

Arbiter

OPB

Slave

DCR Bus

PLB
Master

DCR

Arbiter

UIC

OPB

Master
opb bus

dcr bus

plb_arbiter_if plb slav

opb_arbiter_if

opb_slav
e_if

dcr_arbiter_if

dcr slav

intrpt_req_if intrpt ctr

Figure 1: CoreConnect TL Simulation Platform

143

referred to as a non-blocking transaction. In this work here, all the
communication within the TLM platform use blocking
transactions.

4. OVERALL IDEA
Typical TLMs capture the functional tasks associated with the
behavior of an IP Core, but would not necessarily contain a lot of
the non-functional tasks related to the core. These non-functional
tasks would be quite important from a power consumption point
of view. Since TLMs as defined in the above section, are not
developed with the view of capturing all power related tasks, this
leads to a unique problem of having to map from the set of tasks
(functional and non-functional) identified during the transaction
level power characterization method to the set of tasks present in
the current transaction level model. This is one of the unique
features of the transaction level power modeling approach being
explored in this work.

Figure 2, shows the overall flow of the transaction level power
modeling flow being presented in this paper. The two main
portions of this flow are the TL power characterization module,
which generates a hierarchical transaction level power (HTLP)
tree structure which captures transaction level power information
for a particular core. This information is used by the mapping or
power model interface portion of the flow in augmenting the
SystemC TLM simulation platform with power information.
The impact of granularity of characterization on system level
estimation is also explored in this work. Results of the
characterization process is structured hierarchically – the lowest
level being the address and data phases of an individual
transaction, the highest being compositions of various
transactions. We define a Hierarchical Transaction Level Power
model tree structure (HTLP-tree) to organize the transaction level
power characterization data. This structure is used by the SystemC
power estimation module (through the mapping/power model
interface) in conjunction with the transaction level simulation
platform to generate system level power estimates for the
scenarios being executed.

Figure 3, shows the overall structure of the HTLP-tree structure. It
is organized into four different levels. As we move from the lower
levels to higher levels, the granularity increases helping in
improved simulation speed at the cost of reduced accuracy. In
this structure, the nodes represent a power model that can be used
within the transaction level simulation platform, and the edges
denote containment relationships between the nodes. Level 1, is
the individual transaction level – where each node represents a
simple transaction. These transactions have an attribute associated
with them that indicates if a particular transaction is a primary one
or a secondary one. A primary transaction is one that can be
directly called from the transaction level simulation platform – i.e
it can be seen as a state that is captured within the systemC TLM.
A secondary transaction is one which does not have a direct
equivalent in the SystemC TLM.
 The transactions in Level 1 are reads, write, initialize, burst mode
transactions which when used in a simple sequence like a back to
back read, and a back to back write comprise Level 2 of this tree.
The individual transactions in Level 1 can be simple or complex
transactions. A complex transaction like a burst read or write
consists of a set of simple individual transactions. The complex
transactions are attributed to indicate whether the pattern of
simple transactions that make up the complex transaction are
either overlapping or non-overlapping. The non-overlapping
attribute is useful for capturing communication paths that
represent a single point of control. The overlapping attribute is
used to represent cases where there can be multiple points of
control, like a complex bus structure that is modeled by multiple
finite-state machines controlling multiple communication paths.
At the highest level of the structure are function based transaction
sequences which denote a more complex sequence of level 2 or

Level 3: Function
Based Transaction

Sequences

Level 2: Simple
Transaction
Sequences

Level 1: Individual
Transactions

Level 0:
Transaction

Phases

PLB Mem
- Mem

PCI Mem
-- Mem

Back to
Back Read

Back to
Back Write

Simple
Read PLB

32

Simple
Write PLB

Simple
Read OPB

Simple
Write OPB

Addr Data

Idle

OPB Mem
- Mem

Burst
Read 32

(Complex)

Read Write

PLB Mem-

OPB mem

Figure 3: Sample HTLP-tree structure

TL Power Model

Characterization

TL Simulation Model

Scenario/Application

TestcasesCore Netlist

TL

Power

Model

Interface

(Mapping)

H

T

L

P

Figure 2: Overall TL Power Estimation Method

INIT

PLL

DCR CFG

DMA
channel cfg
& transfer

CPU WRITE
to PLB MEM

CPU Read
from PLB

MEM

Figure 4: Power Simulation:DMA PLB to PLB

144

Transaction Inspector

Test Case Description

Execute TOS
simulation and

Generate vectors

Execute Gate Level Power
Estimation

VCD

SoC System Netlist
With Core

Instantiated

Power
Simulation

Data

Populate
HTLP-tree
with power

data

HTLP-
tree

Place,
Route,

Extract

Parasitics

Core
Gate
Level

Netlist

Core
Databook

Transaction
Definition

 Map/Create
HTLP tree at
right Level
granularity

Figure 5: Power Characterization: HTLP-tree

level 1 transactions that indicate a particular operation of the core.
These can be a scatter-gather operation of a DMA controller, or
an OPB/PLB memory-memory transfer. At the lowest level are the
individual phases of a transaction – the address and data phases.

The reasons for such a hierarchical organization of the TL
characterization data can be explained using the power simulation
data for a high level test – that consists of a DMA memory to
memory transfer through the PLB. This power simulation data is
shown in Figure 3. If we are observing the entire time interval for
which this high level transaction sequence is executing – and
represent this entire sequence as a transaction then we can clearly
see that the variation in power numbers can be quite high. This
would correspond to a level 4 or even a higher node in the HTLP,
where clearly the accuracy of a transaction level model using such
a high level transaction sequence would clearly be dependent on
the point of time within this transaction sequence when the overall
power is being estimated. So, if we delve down into a particular
portion of this transaction sequence, and identify individual
transactions then, the variation can be contained quite a bit, which
is why we even organize the HTLP-tree to contain even lowest
level nodes that represent individual phases of even a single
transaction. Power models are associated with each of the nodes
in the HTLP-tree. The tree can also exist as a set of disjoint nodes
at any particular level – i.e. there can just be level 3 of a tree for
which the characterization process generates power models. The
key requirement is that the SystemC TLM simulation platform
should be able to make use of the available levels of the HTLP in
coming up with power estimates. In this work, we have
augmented the TLMs with power models at level 1 of the HTLP –
with the consideration of whether the instruction is primary or
secondary.

The overall methodology for transaction level power estimation
can be briefly described as follows:
• Identify transactions or instructions from the core

description,
• Characterize power consumption of each task or instruction

from low-level implementation,
o Generate vectors corresponding to these

instructions or tasks executing on the IP core
o Place, route and extract parasitics for these cores,
o Use power simulation tools with the parasitics, to

generate power characterization information
• Create macromodels based on various IP core parameters:

o Parameters can be bit-width, switching activity of
data, buffer size

• Augment the TLM to extract the parameters for macro-model
during the transaction level simulation step and make calls to
the appropriate power macro-models, thus deriving energy
measures for each of the cores for that particular simulation.

o This can be done dynamically at run-time to derive
information during simulation (tradeoff between
simulation accuracy and speed should be taken into
account)

In the next sections, we describe the individual constituents of the
power characterization methodology – the characterization and
SystemC TL power estimation that uses the power model
interface/mapping function.

5. POWER CHARACTERIZATION
In this section the transaction level power characterization

methodology is described. This is a key component of the overall
transaction level power estimation approach. In the earlier section
we described the HTLP-tree structure to capture the power
characterization information. The power characterization
methodology described in this section, generates this structure. In
the rest of this section, we describe the details of the
characterization methodology being proposed in this paper. Figure
5, shows the overall power characterization approach.
The characterization process for a peripheral core has to be done
considering the spatial context of the system in which it is present,
which is why we use a pre-composed gate level SoC sub-system
with the core instantiated as an input to the characterization
process. In addition to the netlist, we use the gate level netlist of
the core to obtain parasitic data – by executing the steps of
placement, routing and capacitance extraction. This information is
used during the gate level power simulation. In our setup we have
a basic clock tree constructed till the splitter level for the core
being characterized. The accuracy of the process can be increased
by constructing a complete clock tree and using it in the
characterization process. In the rest of this section, we describe
each of the steps of the characterization approach shown in Figure
5 with the help of a DMA controller core as an example. The
characterization process uses TOS, which is described below.
Test Operating System (TOS)
TOS [8] is an operating system designed to be executed on an
embedded processor in a system-on-a-chip integrating several
different hardware cores. TOS can exercise a number of core-
specific test cases to verify the connectivity and interaction among
the cores on the chip. It basically is a software based method for
verifying SOC designs. TOS controls a digital simulator to
complete groups of testcases in order to verify system
functionality. TOS provides for both system concurrency and
interconnect testing. TOS testcases use real Core IP functions to
exercise system (Ethernet packets, DMA transfers and the like)
functionality. Many test cases are created as part of the TOS
environment for the chip under test. Each is designed and written
for the particular core it is to test, and is divided into two distinct
parts: the application (or task) and the device driver. TOS testing
can find bugs when a core is used in a system in an unanticipated
way. TOS execution is intended to emulate chip usage in a system
environment.

145

DMA
SI_MEM_MEM_TX

MEM_DPM_TX

PERIPHERAL_TX

RD_FROM_PLB

RD FROM OPB

WR_TO_OPB

WR_TO_PLB

Power
parameter

Power
parameter

RD_FROM_OPB

WR_TO_OPB

RD FROM OPB

Power
parameter

Power
parameter …

Power
parameter

Power
parameter

Power
parameter

PLB_BUS

READ_ACTION

WRITE_ACTOIN

READ_TRANSFER

WRITE_TRANSFER

Power
parameter

Power
parameter

DDRMC2PLB4

READ

WRITE

Power
parameter

Power
parameter

Figure 6: Power Model calls in a TLM

First step is to write test cases (application) in the test operating
system that would exercise various features of the core in the
context of the system within which it is present. This involves
exercising the core with different system level tests that exercise

the core under different scenarios; these test cases are executed by
setting the core to operate with different parameter settings. For
example, in a DMA controller like core these can be: Interrupt
Enable, Transfer type (Memory-Memory, Peripheral-Memory,
etc), Destination data width (Byte, Half-Word, Word), Buffer
Enable, Channel priority, Source location (PLB or OPB memory
space), Destination location (PLB or OPB memory space),
Prefetch enabled, Terminal count enable. In this step, a set of tests
are written with different parameter settings. These tests involve
software initiated memory to memory on different buses (PLB,
OPB), device paced transfers, scatter gather transfers. These
testcases can be decomposed into a series of transactions, which
are defined from the databook. The next step is determining the
structure of the HTLP tree, whether to maintain characterization
data at the highest level – subsets of tests that would be carried
forward to be used in the power estimation.
Once the structure is setup, the test operating system is used to
execute the testcases and VCD (Value Change Dump) files are
generated to be used in the power simulation. The resulting power
simulation data in conjunction with the HTLP tree structure are
used by the transaction inspector module to derive average power
numbers, corresponding to each node in the HTLP tree. The
transaction inspector module, serves two important purposes, the
first is setting up of the initial HTLP-tree at the right level of
granularity.

For this step, information from
the test operating system in
terms of transaction boundary
points, vcd files, and testcase
descriptions are used in
defining the initial HTLP-tree.
The parasitics from the place
and route step are fed to the
gate level power estimation
tool that generates the power
numbers. The second purpose
of the transaction inspector is

to populate the HTLP-tree structure with the power data derived
from the gate level power simulation. The above table lists the set
of instructions for the ddr memory controller; the ones tagged

with P represent primary instructions and the S represent
secondary instructions.
6. TL POWER ESTIMATION – MAPPING
To perform power estimation during SystemC simulation, we
integrate the HTLP-tree based power data into the SystemC TLM
based simulation environment. Transaction level power model
calls are directly inserted into the appropriate functions of the
SystemC descriptions. The HTLP-tree structure is used along with
the function structures defined in the SystemC TLM. The primary
instructions in level 1 would correspond to the bus API calls of
the master/slave/arbiter components and would involve a call to
the corresponding primary instruction power models.
In the DMA controller TLM, "dma_transfer" function is used to
handle the actual transfer performed by the controller. Four kinds
of operations are supported in TLM model: software_initialized
memory_to_memory transfer, memory_and_device_paced, and
peripheral_transfer.
For software initialization memory_to_memory, four kinds of
primary instruction can be executed in this transfer: read from plb
mem space, write to plb mem space, read from opb mem space,
and write to opb mem space. The power estimation parameter is
derived from HTLP-tree and is inserted into these TLM functions.
The instruction to set up DMA controller channel is through DCR
bus and is considered as secondary instruction. By using power
parameter from HTLP, energy consumed by a specific transfer can
be calculated. Since a core is not always active throughout the
testcase execution, and its power consumption is lower when is in
idle. To improve the accuracy of SystemC TLM power estimation,
we take each core’s idle time into consideration. Figure 7, shows
the calculation of a core’s idle time which is used in addition to
the transaction based power models to improve the accuracy of
the overall energy estimates. During simulation, active time for
each core is registered with a system level monitor.
The maximum active time among these cores involved in the
simulation of a scenario is calculated. A core’s idle time is
computed to be the difference between the overall execution time
for a scenario and the core’s active time, this idle time number is
used to augment the core power model in addition to the
transaction level power model instantiations. The following
equation shows the total energy computation function

∑+= ntransactiontransactioidleidle durationPowerPowerdurationEnergy **

And the average power,
duration
EnergyPower =

7. EXPERIMENTAL RESULTS
In order to analyze the effectiveness of the proposed techniques,
we compared the accuracy and efficiency of the transaction level

Instruction Dyna
(mW)

Total
(mW)

READ (P) 32.9 41.18

WRITE (P) 28.9 37.18

BURST READ(P) 51.61 59.89

BURST WRITE (P) 46.42 54.7

Initialization (P) 29 37.28

Self Refreshing (S) 28.46 36.74

Charge all Bank (S) 28.77 37.05

Standby (S) 28.82 37.1

Idle time for MC = PLB active time – MC active time

Idle time for DMA = PLB active time – DMA active time

DDRMC

Mem Controller
received write
instruction, and
become active.

Testcase
started, CPU
write data into
PLB mem

CPU setup
DMA
channel
and DMA
start

DMA
Transfr
Compl

CPU Read data
from PLB mem,
and check if the
transferred data is
correct

Figure 7: Idle time calculation

DMA

PLB Arbiter

I ACTIVE I

ACTIVE

ACTIVE I I

I ACTIVE I ACTIVE

I :idle

ACTIVE ACTIVE I I

146

power estimation technique relative to a base case that is a gate
level representation of the same SoC sub-system. Since TLMs are
used for early exploration of design space, we consider various
scenarios of transactions in a TLM to get an idea of their power
consumption behavior. Our work is also applicable to other
platforms than those considered in this paper. However, the
complexity of running gate-level simulation for validation
purposes for other entire platforms such as the system considered
here is too time consuming to include in this work. A SoC sub-
system consisting of a PLB, OPB, EBCO, PLB2OPB Bridge,
DDRMC, Memory, and DMA was used. Several scenarios
representing different application behaviors were executed on the
SoC sub-system. The scenarios were described using a generic
processor model that acts as a traffic generator for the rest of the
cores on the sub-system, the total energy for each of the scenarios
was collected from the power-model augmented systemC TLM
simulation. The average energy numbers for the TLM platform
represent the energy estimate of the sub-system represented by all
the cores. The base case against which the comparison was made
consists of a gate-level representation of the same SoC sub-
system. The scenarios that were executed by the generic processor
model on the TLM platform were executed on this gate level
version of the platform using the Test Operating System setup,
which converts these high level test cases representing the
scenarios into vectors that drive the gate level model of the sub-
system. The rows in Table 1 show the different scenarios, Column
2 shows the power estimate for the gate level model and the
following column shows the run-time (in minutes) on a 1GHz
dual CPU Linux workstation.

 GLM
Power
(mw)

GLM
Run time
(min)

TLM
Power
(mw)

TLM
Run time
(min)

Error

Scenario-1 57.89 22.3 56.145 0.005 -3.01%
Scenario-2 58.74 25.4 56.1194 0.01 -4.46%
Scenario-3 58.595 26.8 57.071 0.02 -2.6%
Scenario-4 22.744 35 21.975 0.02 -3.38%
Scenario-5 57 45 63.35 1 11.19%

Scenario1: PLB TO PLB: This scenario represents a software
initiated memory-to-memory transfer on the PLB bus. The three
main steps are 1) CPU writes data to PLB address A. 2) DMA
transfers data from PLB address A to B. The number of 128 bit
transfers is 32. 3) CPU reads data from PLB address B and
compares data with original data. Scenario 2: PLB TO OPB:
This is a software initiated memory-to-memory transfer between
the PLB, OPB memories. OPB memory is connected to OPB BUS
through External Bus Controller (EBCO). The PLBOPBBRIDGE,
OPB and EBC are all required to be active in order to read or
write OPB memory. This involves the following steps: 1) original
data to PLB address A 2) DMA transfer data from PLB address A
to OPB address B . The number of 32 bit transfers is 32, and can
be adjusted if needed. 3) CPU reads data from OPB address B
and compares it with original data. Scenario 3: EBC (OPB) TO
PLB The transfer is from the memory on the OPB bus to the
memory on the PLB bus. CPU writes data to OPB address A
DMA transfer data from OPB address A to PLB address B. The
number of 32 bit transfers is 32, and Third, CPU reads data from
PLB address B and compares with original. Scenario 4: EBC
(OPB) TO EBC (OPB): test performs a software initiated

memory-to-memory transfer between memories on the OPB. CPU
first writes data to OPB address A DMA transfer data from OPB
address A to B The number of 32 bit transfers is 32. Third, CPU
reads data from OPB address B and compares with original.
Scenarios 1 through 4 are cases where there is a high degree of
correlation between the transaction level power models used and
the transactions generated by the scenarios. The scenarios are
simple transaction sequences generated by the cores involved with
inter-transaction limited inter-transaction interaction. Although
the overall system average power number error margin is
considerably low, the individual core average power estimates are
slightly higher. For example, in Scenario-1 the difference between
the gate level and transaction level core energy estimates for PLB,
DMA, and DDRMC s is 13%, -20%, and 4% respectively. The
reason for the DMA controller showing a high difference is
because certain mode of operation of the controller (pre-fetch
buffer enabled) was not captured in the HTLP-tree, which was
being used by the scenario being executed. The individual core
average power data when combined together with idle times gives
acceptable accuracy for the estimation. Scenario – 5 is a more
complex example with interleaved DMA transfer operations that
give a higher error than the rest of the test cases because of the
potential interaction between transactions.

8. CONCLUSION
In this paper, we presented a methodology for power estimation of
SystemC transaction level models. The main constituents of this
include a power characterization approach, a hierarchical
representation of transaction level data, and a power model
interface/mapping mechanism to augment TL simulation models
with power information. These techniques were implemented for
IBM CoreConnect based architectures. The experimental results
demonstrate validity of the approach, providing a starting point
for further exploration of transaction level power estimation.

9. ACKNOWLEDGMENTS
Authors would like to acknowledge Reinaldo Bergamaschi,
William Dungan, William Dougherty and Paul Sulva from IBM
Corporation for their suggestions.

10. REFERENCES
[1] R. A. Bergamaschi, Y. Shin, N. Dhanwada, S. Bhattacharya, W E. Dougherty,

I. Nair, J. Darringer, S. Paliwal “SEAS: A System for Early Analysis of SoCs”,
Proc. CODES/ISSS 2003

[2] M. Caldari, M. Conti, M. Coppola, P. Crippa, S. Orcioni, L. Pieralisi, and C.
Turchetti, “System-Level Power Analysis Methodology Applied to the AMBA
AHB Bus”, DATE 2003.

[3] “The Open SystemC Initiative.” http://www.systemc.org.
[4] T.D. Givargis, F. Vahid, and J. Henkel, “Instruction-based system-level power

evaluation of system-on-a-chip peripherals”, Proc. Of 13th ISSS.
[5] G. Qu, N. Kawabe, K, Usame, M. Potkonjak, Function-level power estimation

methodology for microprocessors, Proceedings of the 37th DAC, 2000.
[6] R. Bergamaschi, Y.W. Jiang, “State-based power analysis for systems-on-

chip”, Proceedings of the 40th Design Automation Conference, 2003.
[7] “The CoreConnect Bus Architecture”, available at

http://www.chips.ibm.com/products/coreconnect.
[8] R. Devins, “SoC Verification Software – Test Operating System”, IEEE/DATC

Electronic Design Processes Workshop, April 2001
[9] M. Burton, A. Donlin, “Transaction-Level Modeling: Above RTL Design and

Methodology”, http://www.systemc.org.
[10] T. Grötker, S. Liao, G. Martin, S. Swan, “System Design with SystemC”,

Kluwer Academic Publishers, 2002.
[11] L. Zhong, S. Ravi, A. Raghunathan, N. K. Jha.”Power Estimation for Cycle-

Accurate Functional Descriptions of Hardware”, ICCAD 2004.

147

