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ABSTRACT 
Majority of existing works on system level power estimation have 
focused on the processor, while there are very few that address 
power consumption of peripherals in a SoC. With the presence of 
complex cores in current day embedded system-on-chip devices, 
the problem of complete system level power estimation is gaining 
significance. Transaction level models for SoCs are gaining 
increasing attention with emerging architectural modeling 
standards like SystemC. In this paper we present a methodology 
for performing system power estimation for different scenarios or 
applications being executed on these transaction level models. We 
describe techniques and a setup for transaction level power 
characterization, and an approach to augment SystemC transaction 
level models to perform transaction level power estimation. We 
also present experimental results to validate the accuracy and 
speed of our approach.  

Categories and Subject Descriptors: J.6 
[Computer-aided design]; B.7.2 [Integrated circuits]: Design 
I.6.5 [Simulation and Modeling]: Model Development; 

General Terms: Performance, Design, Experimentation 

Keywords: SystemC, Transaction Level Models, Power 
Analysis, CoreConnect, PowerPC 

1. INTRODUCTION 
Transaction level models and simulation platforms composed of 
such models for IP cores are increasingly being used for SoC 
architecture analysis and early embedded software development. 
These are gaining more relevance with emerging standard 
architecture modeling languages like SystemC. Power 
consumption has emerged as an important design metric for 
electronic systems. Increasing design complexity is making it 
imperative to address power consumption at the system-level, 
where the benefit of performing power optimizing design changes 
is the greatest.  
Consider the following scenario to serve as a motivation for 

peripheral power estimation in a system context. Let’s take the 
case of voltage and frequency scaling algorithms executing on a 
wireless system-on-chip, to save dynamic power. Lets assume that 
the CPU is bandwidth limited and the DVFS algorithm suggests 
increasing clock frequency and voltage for the CPU – to recover 
performance (improve the bandwidth). In reality, this bandwidth 
saturation can be because of a peripheral that is getting some 
wireless data or transferring files over the network. So any 
increase in CPU frequency and voltage suggested by the DVFS 
algorithm would not improve system performance because the 
bottleneck is the peripheral. Therefore, in order to 
comprehensively evaluate the root cause of power-performance 
tradeoffs in a SoC, there is a clear need for having comprehensive 
power models for peripherals that go along with 
performance/functional simulation models.  
SystemC and Transaction Level Modeling (TLM) [4] has been 
gaining significant traction and IP core providers are beginning to 
provide such models for the purpose of embedded software 
development and early architecture analysis. These models are 
typically at a level where they do not capture all power related 
aspects of the cores in order to optimize the simulation 
performance. To enable power estimation for a system composed 
of such transaction level models, we propose to incorporate power 
estimation techniques into a SystemC functional model designed 
to run embedded software. One of the basic assumptions in earlier 
works on instruction based estimation, was that the core 
performance models/functional models are developed after power 
related transactions or instructions have been identified. This 
meant that all of the power related transactions/instructions in a 
core are used in the SystemC functional model, thus considering a 
one - one mapping between all instructions identified from the 
detailed model and its corresponding systemC model. 
In this paper, we address the problem of system level power 
estimation with transaction level models (TLMs), focusing on the 
case where the TLMs would not have been originally developed 
with the objective of power estimation in mind.  We use an 
industry strength PowerPC/CoreConnect TLM simulation 
platform as a basis for our work. We present in detail the 
characterization methodology adopted for generating power 
models that can be used within a transaction level simulation, and 
a simple approach for augmenting TLMs with these transaction 
level power models. The characterization methodology itself has 
been dealt cursorily in most of the other works on system level 
estimation. One of the areas we focus in this paper is the setting 
up of a characterization methodology that considers all aspects of 
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a detailed model in the process of generating an abstract 
transaction level power model.  
The paper is structured as follows: the next section gives an 
overview of related work, and highlights our contributions. 
Section 3 presents an overview of the transaction level simulation 
platform – and discusses the organization of transaction level 
models in systemC. Section 4, presents the overall flow of our 
transaction level power modeling and estimation approach with an 
example. Sections 5 and 6, describe the power characterization 
approach and our system level transaction based power estimation 
technique. Finally section 7, presents experimental results 
followed by a section that discusses conclusions and future work. 

2. RELATED WORK 
Work on power estimation, modeling and optimization has 

been done at different levels of abstraction. In this section we 
limit the discussion to mainly some of the system level approaches 
to power estimation. Instruction based power analysis for 
peripheral cores were first presented in [4]. This work presented a 
core power evaluation technique that divided the function of the 
cores into instructions and performed estimation using instruction 
level power models. The assumption made in this approach was 
that the core performance simulation model would be developed 
based on the instructions that were identified during the 
characterization process. In contrast, the work being presented in 
this paper considers the case where there are existing legacy 
performance or architecture analysis models (and does not assume 
that the architecture models are developed based on pre-defined 
power related instructions) and proposes an approach for power 
characterization and augmenting these models to permit system 
level power estimation. Our work also presents a detailed 
transaction level analysis-friendly characterization method and 
data organization structures for use with SystemC transaction 
level models. Integration of power models for certain components 
of the AMBA AHB bus into a transaction-level modeling 
framework was explored in [2].  

Some of the other works on high-level estimation include 
[5], where a function based power estimation method was 
presented for embedded software executing on microprocessors. 
A state based power analysis method for SoCs was presented in 
[6] where the interactions between various coarse grained core-
states like idle, active, sleep were considered. This would not be 
adequate for a transaction level simulation paradigm where, a 
finer level of granularity would clearly be required. Another 
recent effort [11] develops a technique for power estimation from 
cycle-accurate functional descriptions. Their approach identifies 
the correlation between the cycle accurate functional description 
and the corresponding RTL implementation for power estimation. 
Our approach is similar in that we also create correlations, but we 
operate at a higher transaction boundary accurate level of 
abstraction as opposed to cycle accurate descriptions. To the best 
of the authors’ knowledge this is one of the first works to address 
in detail the aspect of power characterization for SystemC 
transaction level models, and interfacing power characterization 
models with SystemC TLMs. 

3. TRANSACTION LEVEL SIMULATION 
for POWERPC/CORECONNECT SYSTEMS 

Transaction level modeling is a high- level approach to 
modeling digital systems where details of inter-module 
communication are separated from details of communication 
architecture implementation [10]. In this paradigm, a transaction 
is basically a mechanism for communicating between cores. E.g., 
bus_write(), interrupt_request(), etc. Correct amount of time is 
associated with each atomic transaction and added up to the total 
simulation time (faster than ticking at every clock). This makes it 
efficient, enabling execution of real software (in an embedded 
system) on models written at this level of abstraction.  

The organization of a SystemC transaction level simulation 
model for a CoreConnect based system is shown in Figure 1. This 
is used as a platform for the techniques presented in this work. 

 
Elements of the CoreConnect architecture include the processor 
local bus (PLB), on-chip peripheral bus (OPB), a bus bridge, and 
a device control register (DCR) bus. High-performance 
peripherals connect to the high-bandwidth, low-latency PLB. 
Slower peripheral cores connect to the OPB, which reduces traffic 
on the PLB, resulting in greater overall system performance [7]. 
The busses in the CoreConnect complex are represented as 
hierarchical channels, and the masters and slaves are SystemC 
modules. Basic communication mechanism between SystemC 
modules is through ports that are bound to interfaces. Referring to 
the PLB subsystem in the Figure 1, a PLB master has ports of 
interface type plb_bus_if, through which transactions are issued to 
the bus. These requests are sent to the arbiter through an arbiter 
port that is present in the PLB bus, after arbitration when the bus 
is granted to the requesting master, the PLB slave port present on 
the bus (which is bound to the PLB slave interface), is used to 
issue the request to the addressed slave.  
In this work, we use a transaction level model based simulation 
platform consisting of PowerPC processor, CoreConnect bus 
complex and peripheral models. These are at a level of abstraction 
equivalent to the Programmer’s view with timing (PV+T) level as 
described in [9]. This is the highest level of abstraction which can 
include some amount of micro-architectural detail. The bus 
models are bus cycle accurate, with respect to transaction clock 
boundaries. Transactions are modeled as occurring over 
communication channels. The computation (inside a core) may 
not be modeled on a cycle-by-cycle basis, as long as the input-
output delays are cycle-approximate. The transactions occurring 
within the system can be blocking or non-blocking. A transaction 
that is executing sequentially after another and needs to wait till 
the first transaction is complete before starting other is a blocking 
transaction. One that is executing concurrently with another is 
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referred to as a non-blocking transaction. In this work here, all the 
communication within the TLM platform use blocking 
transactions. 

4. OVERALL IDEA 
Typical TLMs capture the functional tasks associated with the 
behavior of an IP Core, but would not necessarily contain a lot of 
the non-functional tasks related to the core. These non-functional 
tasks would be quite important from a power consumption point 
of view. Since TLMs as defined in the above section, are not 
developed with the view of capturing all power related tasks, this 
leads to a unique problem of having to map from the set of tasks 
(functional and non-functional) identified during the transaction 
level power characterization method to the set of tasks present in 
the current transaction level model. This is one of the unique 
features of the transaction level power modeling approach being 
explored in this work.  

 

Figure 2, shows the overall flow of the transaction level power 
modeling flow being presented in this paper. The two main 
portions of this flow are the TL power characterization module, 
which generates a hierarchical transaction level power (HTLP) 
tree structure which captures transaction level power information 
for a particular core. This information is used by the mapping or 
power model interface portion of the flow in augmenting the 
SystemC TLM simulation platform with power information.  
The impact of granularity of characterization on system level 
estimation is also explored in this work.  Results of the 
characterization process is structured hierarchically – the lowest 
level being the address and data phases of an individual 
transaction, the highest being compositions of various 
transactions. We define a Hierarchical Transaction Level Power 
model tree structure (HTLP-tree) to organize the transaction level 
power characterization data. This structure is used by the SystemC 
power estimation module (through the mapping/power model 
interface) in conjunction with the transaction level simulation 
platform to generate system level power estimates for the 
scenarios being executed.  

 
Figure 3, shows the overall structure of the HTLP-tree structure. It 
is organized into four different levels. As we move from the lower 
levels to higher levels, the granularity increases helping in 
improved simulation speed at the cost of reduced accuracy.  In 
this structure, the nodes represent a power model that can be used 
within the transaction level simulation platform, and the edges 
denote containment relationships between the nodes. Level 1, is 
the individual transaction level – where each node represents a 
simple transaction. These transactions have an attribute associated 
with them that indicates if a particular transaction is a primary one 
or a secondary one. A primary transaction is one that can be 
directly called from the transaction level simulation platform – i.e 
it can be seen as a state that is captured within the systemC TLM. 
A secondary transaction is one which does not have a direct 
equivalent in the SystemC TLM. 
 The transactions in Level 1 are reads, write, initialize, burst mode 
transactions which when used in a simple sequence like a back to 
back read, and a back to back write comprise Level 2 of this tree. 
The individual transactions in Level 1 can be simple or complex 
transactions. A complex transaction like a burst read or write 
consists of a set of simple individual transactions. The complex 
transactions are attributed to indicate whether the pattern of 
simple transactions that make up the complex transaction are 
either overlapping or non-overlapping. The non-overlapping 
attribute is useful for capturing communication paths that 
represent a single point of control. The overlapping attribute is 
used to represent cases where there can be multiple points of 
control, like a complex bus structure that is modeled by multiple 
finite-state machines controlling multiple communication paths. 
At the highest level of the structure are function based transaction 
sequences which denote a more complex sequence of level 2 or  
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level 1 transactions that indicate a particular operation of the core. 
These can be a scatter-gather operation of a DMA controller, or 
an OPB/PLB memory-memory transfer. At the lowest level are the 
individual phases of a transaction – the address and data phases.  
 
The reasons for such a hierarchical organization of the TL 
characterization data can be explained using the power simulation 
data for a high level test – that consists of a DMA memory to 
memory transfer through the PLB. This power simulation data is 
shown in Figure 3. If we are observing the entire time interval for 
which this high level transaction sequence is executing – and 
represent this entire sequence as a transaction then we can clearly 
see that the variation in power numbers can be quite high. This 
would correspond to a level 4 or even a higher node in the HTLP, 
where clearly the accuracy of a transaction level model using such 
a high level transaction sequence would clearly be dependent on 
the point of time within this transaction sequence when the overall 
power is being estimated. So, if we delve down into a particular 
portion of this transaction sequence, and identify individual 
transactions then, the variation can be contained quite a bit, which 
is why we even organize the HTLP-tree to contain even lowest 
level nodes that represent individual phases of even a single 
transaction. Power models are associated with each of the nodes 
in the HTLP-tree. The tree can also exist as a set of disjoint nodes 
at any particular level – i.e. there can just be level 3 of a tree for 
which the characterization process generates power models. The 
key requirement is that the SystemC TLM simulation platform 
should be able to make use of the available levels of the HTLP in 
coming up with power estimates. In this work, we have 
augmented the TLMs with power models at level 1 of the HTLP – 
with the consideration of whether the instruction is primary or 
secondary. 
 
The overall methodology for transaction level power estimation 
can be briefly described as follows:  
• Identify transactions or instructions from the core 

description, 
• Characterize power consumption of each task or instruction 

from low-level implementation, 
o Generate vectors corresponding to these 

instructions or tasks executing on the IP core 
o Place, route and extract parasitics for these cores, 
o Use power simulation tools with the parasitics, to 

generate power characterization information 
• Create macromodels based on various IP core parameters: 

o Parameters can be bit-width, switching activity of 
data, buffer size 

• Augment the TLM to extract the parameters for macro-model 
during the transaction level simulation step and make calls to 
the appropriate power macro-models, thus deriving energy 
measures for each of the cores for that particular simulation. 

o This can be done dynamically at run-time to derive 
information during simulation (tradeoff between 
simulation accuracy and speed should be taken into 
account)  

In the next sections, we describe the individual constituents of the 
power characterization methodology – the characterization and 
SystemC TL power estimation that uses the power model 
interface/mapping function.  

5.  POWER CHARACTERIZATION 
In this section the transaction level power characterization 

methodology is described. This is a key component of the overall 
transaction level power estimation approach. In the earlier section 
we described the HTLP-tree structure to capture the power 
characterization information. The power characterization 
methodology described in this section, generates this structure. In 
the rest of this section, we describe the details of the 
characterization methodology being proposed in this paper. Figure 
5, shows the overall power characterization approach.  
The characterization process for a peripheral core has to be done 
considering the spatial context of the system in which it is present, 
which is why we use a pre-composed gate level SoC sub-system 
with the core instantiated as an input to the characterization 
process. In addition to the netlist, we use the gate level netlist of 
the core to obtain parasitic data – by executing the steps of 
placement, routing and capacitance extraction. This information is 
used during the gate level power simulation. In our setup we have 
a basic clock tree constructed till the splitter level for the core 
being characterized. The accuracy of the process can be increased 
by constructing a complete clock tree and using it in the 
characterization process. In the rest of this section, we describe 
each of the steps of the characterization approach shown in Figure 
5 with the help of a DMA controller core as an example. The 
characterization process uses TOS, which is described below.  
Test Operating System (TOS) 
TOS [8] is an operating system designed to be executed on an 
embedded processor in a system-on-a-chip integrating several 
different hardware cores. TOS can exercise a number of core-
specific test cases to verify the connectivity and interaction among 
the cores on the chip. It basically is a software based method for 
verifying SOC designs. TOS controls a digital simulator to 
complete groups of testcases in order to verify system 
functionality. TOS provides for both system concurrency and 
interconnect testing. TOS testcases use real Core IP functions to 
exercise system (Ethernet packets, DMA transfers and the like) 
functionality. Many test cases are created as part of the TOS 
environment for the chip under test. Each is designed and written 
for the particular core it is to test, and is divided into two distinct 
parts: the application (or task) and the device driver. TOS testing 
can find bugs when a core is used in a system in an unanticipated 
way. TOS execution is intended to emulate chip usage in a system 
environment. 
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First step is to write test cases (application) in the test operating 
system that would exercise various features of the core in the 
context of the system within which it is present. This involves 
exercising the core with different system level tests that exercise 

the core under different scenarios; these test cases are executed by 
setting the core to operate with different parameter settings. For 
example, in a DMA controller like core these can be: Interrupt 
Enable, Transfer type (Memory-Memory, Peripheral-Memory, 
etc), Destination data width (Byte, Half-Word, Word), Buffer 
Enable, Channel priority, Source location (PLB or OPB memory 
space), Destination location (PLB or OPB memory space), 
Prefetch enabled, Terminal count enable. In this step, a set of tests 
are written with different parameter settings. These tests involve 
software initiated memory to memory on different buses (PLB, 
OPB), device paced transfers, scatter gather transfers. These 
testcases can be decomposed into a series of transactions, which 
are defined from the databook. The next step is determining the 
structure of the HTLP tree, whether to maintain characterization 
data at the highest level – subsets of tests that would be carried 
forward to be used in the power estimation.  
Once the structure is setup, the test operating system is used to 
execute the testcases and VCD (Value Change Dump) files are 
generated to be used in the power simulation. The resulting power 
simulation data in conjunction with the HTLP tree structure are 
used by the transaction inspector module to derive average power 
numbers, corresponding to each node in the HTLP tree. The 
transaction inspector module, serves two important purposes, the 
first is setting up of the initial HTLP-tree at the right level of 
granularity.  

For this step, information from 
the test operating system in 
terms of transaction boundary 
points, vcd files, and testcase 
descriptions are used in 
defining the initial HTLP-tree. 
The parasitics from the place 
and route step are fed to the 
gate level power estimation 
tool that generates the power 
numbers.  The second purpose 
of the transaction inspector is 

to populate the HTLP-tree structure with the power data derived 
from the gate level power simulation. The above table lists the set 
of instructions for the ddr memory controller; the ones tagged 

with P represent primary instructions and the S represent 
secondary instructions. 
6. TL POWER ESTIMATION – MAPPING 
To perform power estimation during SystemC simulation, we 
integrate the HTLP-tree based power data into the SystemC TLM 
based simulation environment. Transaction level power model 
calls are directly inserted into the appropriate functions of the 
SystemC descriptions. The HTLP-tree structure is used along with 
the function structures defined in the SystemC TLM. The primary 
instructions in level 1 would correspond to the bus API calls of 
the master/slave/arbiter components and would involve a call to 
the corresponding primary instruction power models.  
In the DMA controller TLM, "dma_transfer" function is used to 
handle the actual transfer performed by the controller.  Four kinds 
of operations are supported in TLM model: software_initialized 
memory_to_memory transfer, memory_and_device_paced, and 
peripheral_transfer. 
For software initialization memory_to_memory, four kinds of 
primary instruction can be executed in this transfer: read from plb 
mem space, write to plb mem space, read from opb mem space, 
and write to opb mem space. The power estimation parameter is 
derived from HTLP-tree and is inserted into these TLM functions. 
The instruction to set up DMA controller channel is through DCR 
bus and is considered as secondary instruction. By using power 
parameter from HTLP, energy consumed by a specific transfer can 
be calculated.  Since a core is not always active throughout the 
testcase execution, and its power consumption is lower when is in 
idle. To improve the accuracy of SystemC TLM power estimation, 
we take each core’s idle time into consideration. Figure 7, shows 
the calculation of a core’s idle time which is used in addition to 
the transaction based power models to improve the accuracy of 
the overall energy estimates. During simulation, active time for 
each core is registered with a system level monitor.  
The maximum active time among these cores involved in the 
simulation of a scenario is calculated. A core’s idle time is 
computed to be the difference between the overall execution time 
for a scenario and the core’s active time, this idle time number is 
used to augment the core power model in addition to the 
transaction level power model instantiations. The following 
equation shows the total energy computation function                                            

∑+= ntransactiontransactioidleidle durationPowerPowerdurationEnergy **  

And the average power, 
duration
EnergyPower =  

 

7. EXPERIMENTAL RESULTS 
In order to analyze the effectiveness of the proposed techniques, 
we compared the accuracy and efficiency of the transaction level 

Instruction Dyna 
(mW) 

Total 
(mW) 

READ (P) 32.9 41.18 

WRITE (P) 28.9 37.18 

BURST READ(P) 51.61 59.89 

BURST WRITE (P) 46.42 54.7 

Initialization (P) 29 37.28 

Self Refreshing (S) 28.46 36.74 

Charge all Bank (S) 28.77 37.05 

Standby (S) 28.82 37.1 
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power estimation technique relative to a base case that is a gate 
level representation of the same SoC sub-system. Since TLMs are 
used for early exploration of design space, we consider various 
scenarios of transactions in a TLM to get an idea of their power 
consumption behavior. Our work is also applicable to other 
platforms than those considered in this paper. However, the 
complexity of running gate-level simulation for validation 
purposes for other entire platforms such as the system considered 
here is too time consuming to include in this work. A SoC sub-
system consisting of a PLB, OPB, EBCO, PLB2OPB Bridge, 
DDRMC, Memory, and DMA was used. Several scenarios 
representing different application behaviors were executed on the 
SoC sub-system. The scenarios were described using a generic 
processor model that acts as a traffic generator for the rest of the 
cores on the sub-system, the total energy for each of the scenarios 
was collected from the power-model augmented systemC TLM 
simulation. The average energy numbers for the TLM platform 
represent the energy estimate of the sub-system represented by all 
the cores. The base case against which the comparison was made 
consists of a gate-level representation of the same SoC sub-
system. The scenarios that were executed by the generic processor 
model on the TLM platform were executed on this gate level 
version of the platform using the Test Operating System setup, 
which converts these high level test cases representing the 
scenarios into vectors that drive the gate level model of the sub-
system. The rows in Table 1 show the different scenarios, Column 
2 shows the power estimate for the gate level model and the 
following column shows the run-time (in minutes) on a 1GHz 
dual CPU Linux workstation.  

  GLM 
Power  
(mw) 

GLM 
Run time 
(min) 

TLM 
Power 
(mw) 

TLM 
Run time 
(min) 

Error 

Scenario-1 57.89 22.3 56.145 0.005 -3.01%
Scenario-2 58.74 25.4 56.1194 0.01 -4.46%
Scenario-3 58.595 26.8 57.071 0.02 -2.6% 
Scenario-4 22.744 35 21.975 0.02 -3.38%
Scenario-5 57 45 63.35 1 11.19%

Scenario1: PLB TO PLB: This scenario represents a software 
initiated memory-to-memory transfer on the PLB bus. The three 
main steps are 1) CPU writes data to PLB address A. 2) DMA 
transfers data from PLB address A to B. The number of 128 bit 
transfers is 32. 3) CPU reads data from PLB address B and 
compares data with original data. Scenario 2: PLB TO OPB: 
This is a software initiated memory-to-memory transfer between 
the PLB, OPB memories. OPB memory is connected to OPB BUS 
through External Bus Controller (EBCO). The PLBOPBBRIDGE, 
OPB and EBC are all required to be active in order to read or 
write OPB memory. This involves the following steps: 1) original 
data to PLB address A 2) DMA transfer data from PLB address A 
to OPB address B . The number of 32 bit transfers is 32, and can 
be adjusted if needed.  3) CPU reads data from OPB address B 
and compares it with original data. Scenario 3: EBC (OPB) TO 
PLB The transfer is from the memory on the OPB bus to the 
memory on the PLB bus.  CPU writes data to OPB address A 
DMA transfer data from OPB address A to PLB address B. The 
number of 32 bit transfers is 32, and Third, CPU reads data from 
PLB address B and compares with original. Scenario 4: EBC 
(OPB) TO EBC (OPB): test performs a software initiated 

memory-to-memory transfer between memories on the OPB. CPU 
first writes data to OPB address A DMA transfer data from OPB 
address A to B The number of 32 bit transfers is 32. Third, CPU 
reads data from OPB address B and compares with original.  
Scenarios 1 through 4 are cases where there is a high degree of 
correlation between the transaction level power models used and 
the transactions generated by the scenarios. The scenarios are 
simple transaction sequences generated by the cores involved with 
inter-transaction limited inter-transaction interaction. Although 
the overall system average power number error margin is 
considerably low, the individual core average power estimates are 
slightly higher. For example, in Scenario-1 the difference between 
the gate level and transaction level core energy estimates for PLB, 
DMA, and DDRMC s is 13%, -20%, and 4% respectively. The 
reason for the DMA controller showing a high difference is 
because certain mode of operation of the controller (pre-fetch 
buffer enabled) was not captured in the HTLP-tree, which was 
being used by the scenario being executed. The individual core 
average power data when combined together with idle times gives 
acceptable accuracy for the estimation. Scenario – 5 is a more 
complex example with interleaved DMA transfer operations that 
give a higher error than the rest of the test cases because of the 
potential interaction between transactions. 

8. CONCLUSION 
In this paper, we presented a methodology for power estimation of 
SystemC transaction level models. The main constituents of this 
include a power characterization approach, a hierarchical 
representation of transaction level data, and a power model 
interface/mapping mechanism to augment TL simulation models 
with power information. These techniques were implemented for 
IBM CoreConnect based architectures. The experimental results 
demonstrate validity of the approach, providing a starting point 
for further exploration of transaction level power estimation. 
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