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Abstract

Due to the enhanced price of electricity, the gradual depletion of fossil fuels,

and the global warming concerns, power loss minimization through deploy-

ment of distributed generators (DGs) has attracted significant attention in

recent decades. This paper proposes a genetic algorithm (GA) based strategy

for minimization of active and reactive power losses through optimal location

and size of DGs. It also quantifies and tallies the total network power losses for

the cases with random as well as optimal allocation of DGs. To validate the

accuracy of the obtained results from GA, another nature-inspired optimiza-

tion algorithm, cuckoo search, is also deployed. The simulation results on

IEEE 30 and 118 bus systems indicate that the proposed strategy not only can

effectively reduce the total network active and reactive power losses but also

lead to the improvement of network voltage profile.

KEYWORD S

cuckoo search algorithm, distributed generator, genetic algorithm, power loss
minimization

1 | INTRODUCTION

Aspiration for the economic operation of the electric networks has invigorated numerous researches on the efficiency
of power systems. As the market price of goods is substantially influenced by the energy cost, industries prefer to use
cheaper sources of electricity. Due to this reason, mitigation of power loss is critical to all stakeholders for better finan-
cial gains. Regarding ecological hazards, such as climate change and the increasing concerns about pollution caused by
fossil fuels, the distributed generators (DGs) based on renewable sources have attracted more engrossment in recent
decades.1,2 Pertaining to the necessity of electrification in the rural areas, governments are also eager to harness distrib-
uted energy resources. DGs also offer significant advantages in terms of power loss mitigation, and voltage drop reduc-
tion.3,4 Due to such numerous advantages proffered by DGs via the use of local resources, their popularity is rising. In
the pursuit of reliable energy, distributed generation is usually favored near large load centers and isolated places to
supply electricity at an affordable price while making optimum use of the locally abundant resources and reducing the
transmission losses.4 Generally, this implies on-site production of electricity, thus avoiding the necessity of long-
distance transmission of power. DGs promulgate diversification of energy while reducing the emission of greenhouse
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gases.5,6 Therefore, refinement of voltage profile, enhancement in power quality, reduction of operating costs, better
security of the critical loads, development of sustainable energy systems, relief of transmission congestion, etc. are all
achievable via deployment of DGs.1,2,7

Regarding the efficiency of power system, researches have revealed that more than 10% of the generated power is
wasted in the existing radial distribution systems.8 As each unit of energy has a production cost, such huge losses of
power mean an immense economic loss to the power companies. The traditional approach for remediating power loss
is to add reactive power compensation devices, particularly the shunt capacitors. However, frequent variation of loads
limits the effectiveness of such methods. In order to overcome such limitations, a large number of modern approaches
for the minimization of power losses have been recently devised. In Reference [9], a power loss mitigation approach
based on reducing the number of transformer tap changings and capacitor regulators is proposed. The proposed method
is suitable for minimizing the necessity of frequent changing of taps and regulators; however, it does not encompass
any mechanism to optimally allocate the DGs. Reference [7] proposes indices like voltage profile improvement index,
DG benefit index, line loss reduction index, and environmental impact reduction index to gauge the technical merits of
DGs. In addition, it analyzes various merits and challenges related to the deployment of distributed resources. Nonethe-
less, the size of DGs and their allocation for loss mitigation are not discussed. For the similar objective of mitigating
power loss, the use of step size DGs is discussed in Reference [10]. In the study, a radial distribution system is consid-
ered and the power flow solution based on Bus Injection to Branch Current (BIBC) matrix formulation is adopted.
However, the performed analysis is based on the mathematical approach, which is not very effective as compared to the
optimization algorithms due to the continuously varying parameters of large distribution networks. The study con-
ducted in Reference [11] discusses control of reactive power in distribution networks to reduce the active power loss
and enhance the load voltage profile. To achieve this, the role of distributed reactive power regulators is elaborated in
terms of various aspects. Nonetheless, this method focuses more on the control coordination among reactive power reg-
ulators. Moreover, no mechanism for optimal allocation and sizing of distributed generations is considered in this
study. In Reference [12] mitigation of real power losses is discussed employing the interior point method. Even though
the proposed method has a higher execution speed, it uses an approximation approach to locate the optimal solutions,
thereby reducing the accuracy of the results. Reference [13] employs the decomposition method in order to minimize
the real power losses via reactive power optimization in a large network. In the research, adaptation of transformer
taps, generator voltages, capacitors, and inductors is implemented to fulfill the objective. However, in the presented
strategy, the allocation of DGs is not properly entailed. Reference [14] renders a comparative review of evolutionary
strategy, evolutionary programming, and GA for reactive power planning so that the losses and operating costs are min-
imized. In the study, first, the main optimization problem is disintegrated into active and reactive power sub-problems,
and subsequently, the sub-problems are analyzed employing linear programming algorithm. Nonetheless, the allotment
of DGs for loss minimization is not discussed. In Reference [15], a Fuzzy multi-objective formulation is proposed with
the objective of power loss mitigation. The proposed method can satisfactorily minimize the losses but its fully auto-
matic decision-making structure precludes grid managers from allocating weights to the active and reactive power
losses. Reference [16] employs particle swarm optimization (PSO) for reactive power planning and encompasses
computer-aided optimization for power loss minimization. However, PSO algorithm is vulnerable to being trapped in
local optima while searching for the global optimum value. In Reference [17], a combined approach is proposed to find
optimal setting values of transformer taps and capacitor banks to control the reactive power and lower the power sys-
tem losses. To fulfill the intended purpose, successive linear programming (SLP) technique is adopted to control the
capacitor switching, whereas transformer tap changing is governed via a simplified non-analytical approach. Nonethe-
less, the adopted technique focuses more on the control coordination. Apart from that, allocation of DGs is not consid-
ered in this study. In Reference [18], a network configuration method based on GA is proposed in order to alleviate the
power loss of distribution systems. However, in the presented approach, only reconfiguration of the network is concen-
trated, and optimal location and size of DGs are not considered.

Increasing the number of DGs in a network can reinforce the power system performance through power loss reduc-
tion and voltage profile improvement. However, if they are not properly allotted, their incorporation in the power sys-
tem may even lead to the further enhancement of total network losses or voltage profile aggravation.19 In this paper, a
power loss minimization strategy based on GA is proposed, in which both active and reactive power losses are mitigated
through optimal location and size of DGs. In addition, the effect of adding new DGs on the network voltage profile is
investigated.

The remainder of this paper is organized as follows: Section 2 describes the mechanism of GA and discusses the
main parts of this algorithm including selection, crossover, mutation, as well as the stop criterion; Section 3 formulates
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the optimization problem for active and reactive power loss mitigation through optimal allocation of DGs; in Section 4,
the efficacy of the proposed simulation results is appraised; and finally, Section 5 delineates the conclusion.

2 | MECHANISM OF GENETIC ALGORITHM

Genetic Algorithm (GA) was initially proposed in 1992 by Holland.20 However, nowadays there are multiple modified
versions of GA. This algorithm is considered as one of the most powerful optimization algorithms, which is based on
the principles of genetics and natural selection.21 This algorithm has a much higher speed in searching for the optimal
solution in comparison with traditional methods.22 Compared to other metaheuristic algorithms, the GA is much more
robust,23 requires a few mathematical models,24 and has a lower chance of trapping in the local optima while searching
for the global optimum.

A typical GA consists of a random population of individuals, which are the possible solutions to that problem. Sub-
sequently, these individuals undergo selection, crossover, and mutation processes in a large number of iterations so that
the optimal solution is found.25,26 In this algorithm, for each individual, a fitness value is assigned, and finally, all indi-
viduals are sorted based on their fitness values. In the process of optimization, a chromosome is assigned for each indi-
vidual in the random population. Chromosomes consist of one or more gene(s), which are specific data about the
solution in codified form. The genes can be of real or integer type, as per the requirement of the optimization objective.
In the first iteration (generation), each individual is generated randomly, whereas in the next iterations, individuals are
selected among the ones with better fitness values. The selection process is such that the individuals with better fitness
values are given a higher chance to procreate, whereas the candidates with worse fitness values have a lower chance. In
this paper, the Boltzmann method is applied for selecting the best individuals among the population. Following the
selection process by the Boltzmann method, different types of crossover and mutation are applied to the individuals to
search for more possible solutions by creating new individuals. Therefore, in each iteration, three different populations
are created after applying selection, crossover, and mutation processes; the first population is pop which represents the
original population in the first generation and it is updated by the selection process in the next iterations; the second
population is popc which includes the children produced by the parents on which crossover is applied; and the third
population is popm which includes the new individuals formed after the mutation process. After creation of populations
pop, popc, and popm in each iteration (generation), the best Npop individuals among all populations which have better
fitness values are selected as pop for the next generation. Such procedure continues until the stop criterion is met.
Finally, the individual which has the best possible fitness value is considered as the solution of the optimization
problem.

2.1 | Selection process using Boltzmann and roulette wheel selection methods

As mentioned above, the selection process should be performed such that only individuals with better fitness values
have the chance to be parents and create a new generation. To fulfill the purpose, in this paper, the Boltzmann method
is deployed which provides a higher chance of selection for the individuals with better fitness values. According to the
Boltzmann method, the selection probability of the ith individual, Pi, is calculated as:

Pi ¼ e�β
Zi

ZworstPNpop

n¼1Pn

, ð1Þ

where Pi has a value between 0 and 1, and sum of the probabilities of all individuals is equal to 1; Pn represents the
selection probability of the nth individual; β denotes the pressure constant; Zi is the fitness value of the ith individual;
and Zworst is the worst fitness value in each iteration.

After the selection probability for each individual is assigned by the Boltzmann method, the individuals are selected
by deployment of the roulette wheel selection (RWS) method. The RWS is a stochastic method that randomly selects
the individuals according to their assigned probability. To understand the operating principle of this method, an actual
roulette wheel can be considered. The circular wheel can be divided into n pies (like a pie chart), where n represents
the number of individuals in the population. Since the selection process considers the selection probability of these
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individuals, the ones with better fitness values occupy larger spaces on the wheel, and therefore, they have higher
chances to be selected as parents by the roulette wheel selector. However, in order to preserve the diversity, a chance is
also considered for selecting the individuals with worse fitness values. In other words, the majority of the selected indi-
viduals are among those who have better fitness values, and only a small number of them are with worse fitness values.
Considering random number r in the range between 0 and 1 as the selected value by the selector of roulette wheel, the
ith individual is chosen as a parent if the following condition is met:

P i
i¼1PiPNpop

n¼1Pn

< r ≤
P iþ1

i¼1PiPNpop

n¼1Pn

, ð2Þ

where Pi and Pn are selection probabilities of the ith and nth individuals, respectively.

2.2 | Crossover

Crossover is the partial exchange of information between two individuals, similar to the real chromosomes in biology.
Depending on the requirement of objective function, crossovers can be of real type or integer type. Real type crossover
can be represented as:

y1i ¼ αix1iþ 1�αið Þx2i
y2i ¼ αix2iþ 1�αið Þx1i,

ð3Þ

where x1i and x2i represent the ith gene of first and second parent, respectively; similarly, y1i and y2i represent the ith
gene of first and second child, respectively; and α is a random real number between 0 and 1.

Figure 1 illustrates the process of different types of integer crossovers including single-point, double-point, and uni-
form crossovers. As can be seen from the figure, in the single-point crossover, a crossover point on the parent chromo-
somes is selected, and then all data beyond that point in the chromosome is swapped between the two parent
organisms; in the double-point crossover, two random points are chosen on the parent chromosomes and the genetic
material is exchanged between these points; and for the uniform crossover, each gene is selected randomly from one of
the corresponding genes of the parent chromosomes. Since each of the above-mentioned crossover types has its own
merits, in order to take advantage of all of them, the crossover type can be randomly selected in every crossover process
through the RWS method.

FIGURE 1 Process of different types of integer crossovers
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2.3 | Mutation

Mutation is a random change in the gene(s) of a chromosome within a prescribed limit. Mutations increase diversity in
a population and provide completely new solutions which may not be produced via crossover process. Therefore, it
enhances the exploration feature of the GA and it has been proved essential during convergence. However, a low muta-
tion probability, Pm, is usually applied to the algorithm. Otherwise, the excessive exploration of algorithm prevents the
convergence of the algorithm; on the contrary, in case Pm is selected too low, then the exploration feature is signifi-
cantly limited and the algorithm may be trapped in the local optima.

Figure 2 demonstrates the process of different types of mutation including random resetting, swap mutation, scram-
ble mutation, and inversion mutation. As can be seen in the figure, in the strategy of random resetting, a random per-
missible value is assigned to the chosen gene; in case of swap mutation, two genes of the chromosome are selected
randomly, and their values are interchanged; in scramble mutation, a subset of genes is chosen from the entire chromo-
some and their values are shuffled randomly; and in the inversion mutation type, a selected subset of the genes is
inverted. Similar to the crossover process, different mutation types can be randomly selected in each mutation process
through the RWS method.

2.4 | Stop criterion

The GA requires a large number of iterations to find the optimal solution. Therefore, an appropriate stop strategy must be
devised such that it neither terminates the algorithm prior to reaching the global optimum point nor continues it after the
solution is already found. There are three prevalent strategies for designing the stop criterion of GA which are as follows:

1. Setting a maximum number of iterations such that the algorithm automatically stops once it completes the last itera-
tion. The advantage of this strategy is that the GA terminates after a specific number of iterations in various com-
puters with different execution times. Nonetheless, for various optimization problems, different numbers of
iterations should be set in order to ensure that the optimal solution is found.

2. Setting a maximum run time such that the algorithm automatically stops once the execution time reaches
it. However, the main disadvantage of this strategy is that if the execution speed is not rapid enough, then the algo-
rithm stops before reaching the optimal point, thereby producing inaccurate results.

3. The third strategy is to stop the algorithm when no better result is found after n iterations or Δt time period. This strat-
egy has the highest reliability among all the stop criterion strategies, as it can ensure finding the global optimal point.

3 | POWER LOSS MINIMIZATION USING GENETIC ALGORITHM

In recent decades, DGs have been extensively utilized around the world as an effective way to reduce the envi-
ronmental impacts in energy production. Even though DGs provide numerous benefits, their inappropriate

FIGURE 2 Process of different types of mutations
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utilization may lead to excessive power losses in the distribution networks. In order to address this issue, this
paper proposes a power loss minimization strategy based on GA in which the size and location of DGs are opti-
mally allocated.

The current flowing from bus k to bus n and from bus n to bus k in branch kn of the network can be respectively cal-
culated by:

I
!
kn ¼ y

a2
þ j

b
2

� �
V
!

kþ �y
a

� �
V
!

n

I
!
nk ¼ �y

a

� �
V
!

kþ yþ j
b
2

� �
V
!

n,
ð4Þ

where y denotes the total series admittance of line or transformer kn; b represents the shunt susceptance of line kn; a is
the turns ratio of transformer kn; and, V

!
k and V

!
n are respectively the voltage phasors of busses k and n, which are cal-

culated by the power flow algorithm. The complex power loss in branch kn can be determined as:

S
!

loss,kn ¼ S
!
k,knþ S

!
n,nk ¼V

!
k I
!

kn

�
þV

!
n I
!�
nk , ð5Þ

where S
!

k,kn and S
!
n,nk are respectively the transferred complex power from bus k to bus n, and from bus n to bus k.

Therefore, the total active and reactive power losses in a network comprising N busses are respectively computed as:

Ploss,tot ¼Re S
!
loss,tot

� �
¼Re

XN
k¼1

XN
n¼1

n≠ k

V
!

k I
!�
knþV

!
n I
!�
nk

0
BBBBB@

1
CCCCCA

Qloss,tot ¼ Im S
!

loss,tot

� �
¼ Im

XN
k¼1

XN
n¼1

n≠ k

V
!

k I
!�

knþV
!

n I
!�

nk

0
BBBBB@

1
CCCCCA:

ð6Þ

In this paper, since the mitigation of both network active and reactive power losses is considered, the optimization
problem includes two objectives. However, it can be converted to a single-objective problem through Weighted Sum
Method (WSM) so that it can be solved using GA as:

Z¼ Ploss,tot

jPloss,tot,org jWPþ Qloss,tot

jQloss,tot,org j
WQ|{z}
1�WPð Þ

, ð7Þ

where Z is the fitness function; Ploss,tot,org and Qloss,tot,org are respectively the original total active and reactive power
losses of the network before adding new DGs; and WP and WQ respectively denote weights of the active and reactive
power losses which sum of them equals 1.

In order to implement the optimization problem using GA, first, the type, number, and range of genes (deci-
sion variables) must be determined. For the mitigation of power losses by adding m DGs, 2m genes are required
for each chromosome. The first m genes represent the decision variables for the placement of each DG. Since new DGs
are only connected to PQ busses, these genes can only take positive integers and their maximum value is the number of
PQ busses in the power system, that is, NPQ. The second m genes denote the decision variables for the capacity of each
DG. According to the definition of DGs, these genes can take real numbers between 0 and 150MW. As a result, the
power loss minimization problem can be formulated by GA as follows:
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Minimize ZðxÞ
where

x¼ xint,1,xint,2,xint,3,…,xint,m,xreal,1,xreal,2,xreal,3,…,xreal,m½ �
subject to :

1≤ xint,i ≤NPQ; i¼ 1,2,3,…,m
0≤ xreal,i ≤ 150; i¼ 1,2,3,…,m

8>>>>>>>><
>>>>>>>>:

, ð8Þ

where x is the vector of decision variables, and Z xð Þ is the fitness function. Figure 3 depicts the flowchart of the pro-
posed strategy. As can be seen from the figure, in this strategy, the fitness function is calculated for different
weights of active power, WP. To fulfill this, WP is set to 1 in the first iteration, and it decreases by 0.05 in each
iteration until it reaches zero. After setting WP, the GA parameters and stop criterion are set, and then popula-
tion pop including Npop random individuals is created. In the next stage, selection, crossover, and mutation processes
are applied so that populations popc and popm are formed as well. Afterward, the information of each individual's chro-
mosome is sent to the Newton–Raphson power flow program. The power flow program interprets the information of
the chromosomes, and then reconfigure the network structure accordingly. Finally, the fitness values for all individuals
are computed by the power flow program and sent back to the main algorithm. In the main algorithm, the fitness
values are sorted in ascending order, and then the best Npop individuals are taken to the next iteration (generation).
This procedure continues until the GA stop criterion is met. Finally, after execution of the last iteration, the best
scheme including the location and capacity of DGs and their corresponding active and reactive power losses are
determined.

4 | SIMULATION RESULTS

In order to verify the effectiveness of the proposed strategy, several simulations have been performed in MATLAB soft-
ware on both IEEE 30 and 118 bus systems under different conditions, i.e. random allocation of DGs, optimal allocation
of DGs using GA, and optimal allocation of DGs using CS algorithm, as follows:

4.1 | Simulation results obtained from random allocation of DGs

As mentioned earlier, DGs are basically added to the distribution networks to generate additional power and improve
the reliability of the grid. However, in case the DGs are not properly allocated, the total power losses emanating from
the network may even increase. This can be explained using Figures 4 and 5 in which two DGs (of capacity 0–150 MW)
are randomly allocated to two PQ busses of test networks IEEE 30 and 118 bus systems, respectively. According to the
figures, it can be seen that improper allocation of DGs significantly affects the total network active and reactive power
losses, and it may even lead to the further increment of their values.

4.2 | Simulation results obtained from optimal allocation of DGs using GA

For optimal allocation of DGs using GA, a random population with 100 individuals is considered, and the cross-
over and mutation percentages are set to 80% and 30%, respectively. For each individual on which mutation is
applied, a mutation rate of 5% is considered, implying that only 5% of the genes are changed during the mutation
process. Also, the pressure constant of β = 0.8 is considered, which is used for the Boltzmann method in the
selection process.

Figures 6 and 7 indicate the mitigation of total network active and reactive power losses through optimal allocation
of two DGs using GA under different values of WP in IEEE 30 and 118 bus systems, respectively. The corresponding
data for each solution in Figures 6 and 7 are respectively listed in Tables 1 and 2. From both tables, it can be seen that
the proper allotment of DGs can considerably reduce the active and reactive power losses. To be more precise, for IEEE
30 bus test system with Ploss,tot,org ¼ 8:0714 MW and Qloss,tot,org ¼ 5:8099 MVAR, among 21 optimization results obtained
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under different values of WP, the minimum and maximum total network active power losses are 3.5068 and
3.9178MW, and the total network reactive power losses range from �16.4091MVAR to �11.8936 MVAR. In terms of
the location of DGs, the obtained optimal solutions can be classified into four clusters, i.e. (bus 7, bus 9), (bus 7, bus
21), (bus 7, bus 22) and (bus 7, bus 24). Similarly, for IEEE 118 bus system with Ploss,tot,org ¼ 133:5305 MW and
Qloss,tot,org ¼�570:2474 MVAR, the minimum and maximum total network active power losses are 111.7246MW and
114.9223MW, and the total network reactive power losses range from �691.1399 MVAR to �687.7827 MVAR. In addi-
tion, the optimal locations for installation of DGs are clusters (bus 41, bus 53) and (bus 41, bus 37). The results shown
in Tables 1 and 2 also indicate that the average values of bus voltage magnitude in IEEE 30 and 118 bus networks are
significantly improved from their original values, that is, 1.0012 and 0.9879 p.u., respectively.

FIGURE 3 Flowchart of the proposed strategy
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(A) (B)

FIGURE 4 Impact of random allocation of two distributed generators (of capacity 0–150 MW) to two PQ busses of IEEE 30 bus system

on: (A) total network active power losses, and (B) total network reactive power losses

(A) (B)

FIGURE 5 Impact of random allocation of two distributed generators (of capacity 0–150 MW) to two PQ busses of IEEE 118 bus system

on: (A) total network active power losses, and (B) total network reactive power losses

FIGURE 6 Mitigation of total network active and reactive power losses through optimal allocation of two distributed generators using

genetic algorithm under different values of WP in IEEE 30 bus system
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4.3 | simulation results obtained from optimal allocation of DGs using CS algorithm

In this paper, in order to validate the accuracy of obtained results from GA, another nature-inspired optimization algo-
rithm, cuckoo search (CS), is deployed which has attracted much attention in recent years due to its excellent

FIGURE 7 Mitigation of total network active and reactive power losses through optimal allocation of two distributed generators using

genetic algorithm under different values of WP in IEEE 118 bus system

TABLE 1 Corresponding data for each solution in Figure 6

Wp Ploss (MW) Qloss (Mvar) Z (p.u.)

DG1 DG2

Vavg (p.u.)Location Capacity (MW) Location Capacity (MW)

1.00 3.5068 �11.8936 0.43447 Bus 7 59.6215 Bus 9 44.7747 1.0075

0.95 3.6214 �16.0346 0.28825 Bus 7 66.6777 Bus 21 34.8167 1.0110

0.90 3.6810 �16.0202 0.13472 Bus 7 63.5745 Bus 22 37.2663 1.0106

0.85 3.7171 �16.1821 �0.02633 Bus 7 65.2611 Bus 21 40.4557 1.0104

0.80 3.6658 �16.2961 �0.19762 Bus 7 66.6093 Bus 21 40.2296 1.0107

0.75 3.6793 �16.3315 �0.36085 Bus 7 65.6193 Bus 21 41.5950 1.0107

0.70 3.6910 �16.3538 �0.52432 Bus 7 65.5323 Bus 21 42.4662 1.0106

0.65 3.7013 �16.3694 �0.68803 Bus 7 65.4697 Bus 21 43.1838 1.0106

0.60 3.7105 �16.3805 �0.85191 Bus 7 65.4241 Bus 21 43.7845 1.0105

0.55 3.7188 �16.3885 �1.0159 Bus 7 65.2059 Bus 21 44.3512 1.0105

0.50 3.7681 �16.2612 �1.166 Bus 7 66.2066 Bus 22 43.4826 1.0102

0.45 3.7327 �16.3987 �1.3443 Bus 7 65.3457 Bus 21 45.1161 1.0105

0.40 3.7789 �16.2692 �1.4928 Bus 7 66.2297 Bus 22 44.0636 1.0101

0.35 3.8371 �16.2515 �1.6518 Bus 7 70.8063 Bus 24 36.8662 1.0127

0.30 3.8480 �16.2553 �1.8154 Bus 7 70.7374 Bus 24 37.2264 1.0126

0.25 3.9178 �16.2526 �1.9767 Bus 7 67.5923 Bus 24 39.7111 1.0123

0.20 3.6770 �16.2984 �2.1531 Bus 7 69.3697 Bus 21 40.0245 1.0108

0.15 3.7613 �16.4086 �2.3307 Bus 7 65.2958 Bus 21 46.6546 1.0104

0.10 3.8121 �16.3958 �2.4925 Bus 7 63.3349 Bus 21 49.5678 1.0102

0.05 3.7681 �16.4091 �2.6597 Bus 7 65.2910 Bus 21 46.9916 1.0104

0.00 3.7704 �16.4091 �2.8243 Bus 7 65.0571 Bus 21 47.1773 1.0103

10 of 15 MIRSAEIDI ET AL.



performance in dealing with large, complex and dynamic real-world optimization problems. CS algorithm is a meta-
heuristic optimization algorithm which is inspired by the obligate brood parasitism of some cuckoo species by laying
their eggs in the nests of host birds of other species. Some host birds can engage direct conflict with the intruding
cuckoos. To be more precise, in case the host bird discovers the eggs are not their own, it will either throw these
alien eggs away or simply abandon its nest and build a new nest elsewhere. CS algorithm is based on the following

TABLE 2 Corresponding data for each solution in Figure 7

WP Ploss (MW) Qloss (Mvar) Z (p.u.)

DG1 DG2

Vavg (p.u.)Location Capacity (MW) Location Capacity (MW)

1.00 111.7250 �687.7860 0.8367 Bus 41 149.9490 Bus 53 130.6560 0.9892

0.95 111.7256 �687.7827 0.7346 Bus 41 149.9109 Bus 53 130.4405 0.9892

0.90 111.7251 �687.7906 0.6324 Bus 41 149.9466 Bus 53 130.2235 0.9892

0.85 111.7249 �687.7925 0.5303 Bus 41 149.9555 Bus 53 130.0626 0.9892

0.80 111.7251 �687.7951 0.4281 Bus 41 149.9539 Bus 53 129.9326 0.9892

0.75 111.7248 �687.8008 0.3260 Bus 41 149.9733 Bus 53 129.7356 0.9892

0.70 111.7246 �687.8046 0.2239 Bus 41 149.9890 Bus 53 129.6578 0.9892

0.65 111.7255 �687.8008 0.1217 Bus 41 149.9552 Bus 53 129.3181 0.9892

0.60 111.7259 �687.8000 0.0196 Bus 41 149.9447 Bus 53 129.1602 0.9892

0.55 111.7248 �687.7978 �0.0826 Bus 41 149.9677 Bus 53 128.9360 0.9892

0.50 111.7268 �687.7978 �0.1847 Bus 41 149.9226 Bus 53 128.8324 0.9892

0.45 111.7268 �687.8002 �0.2868 Bus 41 149.9305 Bus 53 128.6868 0.9892

0.40 111.7274 �687.7994 �0.3890 Bus 41 149.9199 Bus 53 128.4404 0.9892

0.35 111.7275 �687.8029 �0.4911 Bus 41 149.9327 Bus 53 128.2250 0.9892

0.30 111.7274 �687.8057 �0.5933 Bus 41 149.9450 Bus 53 128.1531 0.9892

0.25 111.7272 �687.8100 �0.6954 Bus 41 149.9650 Bus 53 128.0574 0.9892

0.20 111.7276 �687.8114 �0.7975 Bus 41 149.9683 Bus 53 127.8376 0.9892

0.15 114.9221 �691.1371 �0.9011 Bus 41 149.9057 Bus 37 149.9853 0.9888

0.10 114.9222 �691.1379 �1.0047 Bus 41 149.9477 Bus 37 149.9630 0.9888

0.05 114.9223 �691.1341 �1.1083 Bus 41 149.9123 Bus 37 149.9387 0.9888

0.00 114.9221 �691.1399 �1.2120 Bus 41 149.9625 Bus 37 149.9789 0.9888

FIGURE 8 Mitigation of total network active and reactive power losses through optimal allocation of two distributed generators using

cuckoo search algorithm under different values of WP in IEEE 30 bus system
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idealized rules, i.e. (a) Each cuckoo lays only one egg at a time and places it in a randomly selected nest (b) Best nest
with high quality of eggs will carry over to the next generation, and (c) The number of available host nests is fixed;
host bird discovers cuckoo eggs with probability of Pa � 0,1½ �. In this case, the host bird either throws the egg away or
leaves its nest and builds a new one.

FIGURE 9 Mitigation of total network active and reactive power losses through optimal allocation of two distributed generators using

cuckoo search algorithm under different values of WP in IEEE 118 bus system

TABLE 3 Corresponding data for each solution in Figure 8

WP Ploss (MW) Qloss (Mvar) Z (p.u.)

DG1 DG2

Vavg (p.u.)Location Capacity (MW) Location Capacity (MW)

1.00 3.4932 �11.5381 0.4328 Bus 7 55.1837 Bus 9 52.5816 1.0075

0.95 3.6213 �16.0325 0.2882 Bus 7 66.8490 Bus 21 34.7408 1.0111

0.90 3.6376 �16.1784 0.1271 Bus 7 66.2703 Bus 21 37.4863 1.0109

0.85 3.6407 �16.1928 �0.0347 Bus 7 65.0170 Bus 21 38.1346 1.0108

0.80 3.6720 �16.3126 �0.1976 Bus 7 66.6071 Bus 21 40.7341 1.0107

0.75 3.6820 �16.3352 �0.3608 Bus 7 65.6159 Bus 21 41.5000 1.0107

0.70 3.6908 �16.3536 �0.5244 Bus 7 65.5392 Bus 21 42.4537 1.0106

0.65 3.7008 �16.3687 �0.6881 Bus 7 65.4694 Bus 21 43.1516 1.0106

0.60 3.7099 �16.3798 �0.8519 Bus 7 65.4219 Bus 21 43.7483 1.0105

0.55 3.7129 �16.3713 �1.0157 Bus 7 65.2030 Bus 21 44.3588 1.0105

0.50 3.7188 �16.3882 �1.1800 Bus 7 64.8663 Bus 21 44.4428 1.0105

0.45 3.7314 �16.3979 �1.3443 Bus 7 65.3445 Bus 21 45.0451 1.0105

0.40 3.7254 �16.3912 �1.5081 Bus 7 64.0127 Bus 21 45.0436 1.0105

0.35 3.7340 �16.3992 �1.6728 Bus 7 64.9138 Bus 21 45.3144 1.0104

0.30 3.7386 �16.4016 �1.8372 Bus 7 64.8985 Bus 21 45.5731 1.0104

0.25 3.7460 �16.4047 �2.0017 Bus 7 64.9318 Bus 21 45.9617 1.0104

0.20 3.7443 �16.4031 �2.1659 Bus 7 64.3624 Bus 21 46.0245 1.0104

0.15 3.7502 �16.4049 �2.3304 Bus 7 64.2946 Bus 21 46.3546 1.0103

0.10 3.7549 �16.4063 �2.4949 Bus 7 64.3349 Bus 21 46.5899 1.0102

0.05 3.7618 �16.4072 �2.6595 Bus 7 64.2345 Bus 21 46.9736 1.0102

0.00 3.7652 �16.4073 �2.8240 Bus 7 64.0979 Bus 21 47.1764 1.0102
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In this algorithm, for each iteration, t, a cuckoo egg, i, is randomly selected using Lévy flights and new solutions,
xtþ1
i , are generated. The Lévy flights are a kind of random walk in which the steps are defined in terms of the step
lengths, which have a certain probability distribution, with isotropic and random step directions. The general equation
for the Lévy flight is expressed as:

xtþ1
i ¼ xti þα⊕Levy λð Þ, ð9Þ

where α represents the step size, and symbol ⊕ denotes the entry-wise multiplication. The transition probability of the
Lévy flights in this equation is modulated by the Lévy distribution as:

Levy λð Þ¼ t�λ, 1 < λ≤ 3ð Þ: ð10Þ

From the computational point of view, the generation of random numbers using Lévy flights is comprised of two
main steps, that is, the choice of a random direction and the generation of step which obeys the chosen Lévy distribu-
tion. In this paper, Mantegna's algorithm for symmetric distributions is deployed. This approach calculates the factor:

bϕ¼ Γ 1þ β̂
� �

sinπβ̂
2

β̂Γ 1þβ̂
2

� �
2
β̂�1
2

0
B@

1
CA

1
β̂

, ð11Þ

where Γ denotes the Gamma function. In addition, the value of 1.5 is considered for factor β̂. This factor is used in Man-
tegna's algorithm for calculation of step length ζ as:

TABLE 4 Corresponding data for each solution in Figure 9

WP Ploss (MW) Qloss (Mvar) Z (p.u.)

DG1 DG2

Vavg (p.u.)Location Capacity (MW) Location Capacity (MW)

1.00 111.7240 �687.7960 0.8367 Bus 41 150.0000 Bus 53 130.6571 0.9892

0.95 111.7240 �687.7986 0.7346 Bus 41 150.0000 Bus 53 130.4399 0.9892

0.90 111.7240 �687.8012 0.6324 Bus 41 150.0000 Bus 53 130.2154 0.9892

0.85 111.7241 �687.8033 0.5303 Bus 41 150.0000 Bus 53 130.0212 0.9892

0.80 111.7242 �687.8053 0.4281 Bus 41 150.0000 Bus 53 129.8120 0.9892

0.75 111.7244 �687.8074 0.3260 Bus 41 150.0000 Bus 53 129.5846 0.9892

0.70 111.7246 �687.8093 0.2238 Bus 41 150.0000 Bus 53 129.3687 0.9892

0.65 111.7248 �687.8110 0.1217 Bus 41 150.0000 Bus 53 129.1521 0.9892

0.60 111.7250 �687.8125 0.0196 Bus 41 150.0000 Bus 53 128.9365 0.9892

0.55 111.7253 �687.8138 �0.0826 Bus 41 150.0000 Bus 53 128.7241 0.9892

0.50 111.7257 �687.8150 �0.1847 Bus 41 150.0000 Bus 53 128.5046 0.9892

0.45 111.7260 �687.8160 �0.2869 Bus 41 150.0000 Bus 53 128.2887 0.9892

0.40 111.7264 �687.8169 �0.3890 Bus 41 150.0000 Bus 53 128.0725 0.9892

0.35 111.7269 �687.8176 �0.4912 Bus 41 150.0000 Bus 53 127.8566 0.9892

0.30 111.7274 �687.8182 �0.5933 Bus 41 150.0000 Bus 53 127.6469 0.9892

0.25 111.7278 �687.8185 �0.6955 Bus 41 150.0000 Bus 53 127.4246 0.9892

0.20 111.7284 �687.8188 �0.7976 Bus 41 150.0000 Bus 53 127.2105 0.9892

0.15 114.9219 �691.1435 �0.9011 Bus 41 150.0000 Bus 37 150.0000 0.9888

0.10 114.9219 �691.1435 �1.0047 Bus 41 150.0000 Bus 37 150.0000 0.9888

0.05 114.9219 �691.1435 �1.1084 Bus 41 150.0000 Bus 37 150.0000 0.9888

0.00 114.9219 �691.1435 �1.2120 Bus 41 150.0000 Bus 37 150.0000 0.9888
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ζ¼ u

vj j1β̂
, ð12Þ

where u and v are normal distributions of zero mean and variances σ2u and σ2v , respectively. Here, σu obeys the Lévy dis-
tribution given by (11), and σv ¼ 1. Subsequently, the step size, η, is determined as:

η¼ 0:01ζ xi�xbestð Þ: ð13Þ

In this paper, in order to simulate the proposed strategy using CS algorithm, parameters η and Pa are set to 100 and
0.25, respectively. Figures 8 and 9 indicate the mitigation of total network active and reactive power losses through opti-
mal allocation of two DGs using CS algorithm under different values of WP in IEEE 30 and 118 bus systems, respec-
tively. The corresponding data for each solution in Figures 8 and 9 are respectively listed in Tables 3 and 4. From
Table 3, it can be seen that the minimum and maximum total network active power losses after optimal allotment of
DGs in IEEE 30 bus system using CS algorithm are 3.4932 and 3.7652MW; also, the total reactive power losses range
from �16.4073 to �11.5381MVAR. This table also depicts that the optimal places for allocation of DGs are clusters
(bus 7, bus 9) and (bus 7, bus 21). Likewise, for IEEE 118 bus system, Table 4 shows that the minimum and maximum
total network active power losses are 111.7240 and 114.9219MW; and the total network reactive power losses range
from �691.1435 to �687.7690MVAR. In addition, the optimal locations for installation of DGs are clusters (bus 41, bus
53) and (bus 41, bus 37). Moreover, the obtained results in both Tables 3 and 4 illustrate that the average values of bus
voltage magnitude in both test networks are remarkably enhanced.

5 | CONCLUSION

Escalation in power demand and ecological hazards has motivated research studies to seek disparate power loss mitiga-
tion techniques. Deployment of DGs is among these approaches which can significantly lead to the reduction in total
network active and reactive power losses. However, improper allotment of DGs may lead to excessive power losses in
the distribution networks. In this paper, a power loss reduction strategy based on the optimal allocation of DGs is
devised, in which the location and size of DGs are determined by deploying the genetic algorithm. In addition, to verify
the accuracy of the obtained results using GA, another optimization algorithm, i.e. CS algorithm, is applied. Lastly, to
validate the adequacy of the developed strategy, several simulations were undertaken on IEEE 30 and 118 bus systems.
The obtained results indicate that the proposed approach can be effective in mitigation of total network power losses,
as well as enhancement of the network bus voltage magnitudes.
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