
A Power Optimized Method for Mode Switching in
Android Systems
Bo Chen1,∗, Xiaofan Shen2

1School of Software Engineering, University of Science and Technology of China, Hefei, Anhui
2Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University(XJTLU), Suzhou, Jiangsu

Abstract

How the Suspend/Resume mechanism of smartphone influences the power consumption is examined in
the dissertation. Specifically, various unimportant and not so urgent network packets keep awakening the
operating system (OS) at the time it is under suspend mode, and switch it from suspend to resume mode
continually, which results in more power consumption. Accordingly, an innovative optimization technique
was suggested in this paper in order that the awakening of OS can be postponed and the lasting hour of
suspendmode can be lengthened to decrease power consumption. Some experiments are also carried out, with
the result data suggesting that such technique is an effective way to reduce power consumption by greater than
7.63%. It proves that this technique is workable.

Received on 08 May 2019; accepted on 26 July 2019; published on 06 August 2019
Keywords: Android, Power Save Mode, Suspend/Resume Mode
Copyright © 2019 Bo Chen et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.9-10-2017.159797

1. Introduction

Nowadays, as mobile network communications
develop, people cannot live without smartphone.
As battery-powered personal mobile devices grow
mature, low consumption of power is more popular
and accepted in smartphone designing. There is
an increasing demand for low power consumption,
attracting extensive attention from research workers
and experts from different fields[1][2][3]. In
the opinion of power management[4][5], power
consumption is under control by two main techniques:
Dynamic Voltage and Frequency Scaling (DVFS),
and Suspend/Resume (or sleep/active) technique.
DVFS technique is a hardware-based and power-
efficient mechanism which makes dynamic adjustment
in processor implementation voltage to decrease
the power consumption. In Suspend/Resume (or
Sleep/Active) mechanism, CPU stays in different states
of low power consumption without arranged system

∗Corresponding author. Email: chenbo2008@ustc.edu.cn

activities. Take android OS as an example. For lower
power consumption, Suspend/Resume method enables
the suspend of the kernel of android, and consequently
every part (including DSP/bluetooth/Radio) is paused
at the same time.
Normally, the smartphone will be switched to resume

mode due to certain outer activities like background
application message, pushnews, etc., when the android
OS has stayed in suspend mode for some time. Based
on some experimental facts, it was observed that the
transmission of a few trivial network packets are able
to activate the system continually and the smartphone
will be turned to resumemode. In this way, for receiving
these packets, the WiFi component will be switched to
resume mode, so more power is consumed. As a matter
of fact, it is feasible to postpone the awaking of the OS
and delay the transmission of such less urgent packets.
In this paper, an optimization method was proposed

to postpone the system activation when the smartphone
is in suspend mode. It can postpone the awakening
of the system intermittently and can deal with all
the paused and postponed transmission of network
packets for one time. Therefore, the power consumption
expended by smartphone can be decreased largely.

1

EAI Endorsed Transactions
on Collaborative Computing Research Article

This is an extended version of a paper presented at CollaborateCom 2018 -
14th EAI International Conference on Collaborative Computing:
Networking, Applications and Worksharing

EAI Endorsed Transactions on

Collaborative Computing

10 2017 - 06 2020 | Volume 4 | Issue 13 | e3

http://creativecommons.org/licenses/by/3.0/
http://doc.eai.eu/publications/transactions/latex/
mailto:<chenbo2008@ustc.edu.cn>

Bo Chen, Xiaofan Shen

2. Suspend & Resume Mechanism

Suspend & Resume method [6] is a big function
provided by Android kernel to lower the power
consumption expended by mobile devices. Under such
method, the system will be switched to suspend mode
in a rapid manner without running any tasks to reduce
power consumption.
In the other respect, under suspend mode, the

system will be activated to deal with relevant tasks
by the transmission of network packets of WiFi
component. Under such situation, the system will be
activated continually by simple and not important
events/network messages from the outside, to the
suspend mode finally, which will consume more power.

2.1. Impact of network transmission on power
consumption

From the results of many experiments, it can be found
that the transmission of network packets impacts the
power consumption greatly under the suspend mode of
Android OS. It is obvious from the Fig.1 that, the lower
part indicates the network packets transmission, and
the other part indicates the mode switching resulted
from the packets transmission of Android OS. As the
figure shows, at the time the network packets arrived at
Access Point(AP), the system was activated by the WiFi
module to receive the packets (which is marked by the
shape of oval in Fig.1), and returned to suspend mode
after some time.

0 20 40 60 80
0

5000

10000

15000

p
a

c
k

e
ts

 t
ra

n
s

m
is

s
io

n

0 20 40 60 80
0.0

0.5

1.0

1.5

M
o
d
e

 s
w

it
c

h

suspend mode

resume mode

mode switch

Figure 1. Impact of network transmission behavior on

suspend/resume mode switching

We can observe that power consumption is strongly
influenced by the frequent transmission of trivial
network packets, according to which an optimization
method was put forward to postpone the activation
of all hardware components, to reduce the power
expended by WiFi component, and in the meanwhile,
to decrease the power expended by the whole device.

2.2. IEEE PS-POLL mechanism

When it comes to WiFi component, attention was paid
to if the original network communication protocol
would be influenced when the transmission of packets
was postponed.

As to WiFi network, from IEEE 802.11 protocol,
to reduce power consumption, part of the transceiver
devices will be switched off for a certain period if Power
Save mode is chosen by a client station (smartphone).
Regarding communication behaviors, smartphone will
receive the beacon frame from Access Point(AP) in
a periodic manner which shows any data that has
reached AP within the frame if PS mode is set on WiFi
component. When no packets arrive, the TIM field is
set to zero (TIM=0). It will be set to 1 (TIM=1) if
any packets have been received. After that, AP will
receive PS-Poll frame from smartphone to indicate its
activation for data receiving, which can be seen in Fig.2.

AP Smartphone

Beacon TIM=0

Beacon response

Beacon TIM=1

PS-Poll

Data

ACK

Beacon TIM=0

Beacon response

Beacon TIM=0

Beacon response

sleep state

active state

Figure 2. The behavior of router retrieves network packets

In fact, the PS-POLL (which indicates that the OS has
been waken up and ready to receive packets) beacon
will also be delayed when being sent to AP through the
delay of the activation of the android OS. The figure
shows that the original network protocol will not be
influenced when the sending of the PS-POLL frame is
delayed.

2.3. Related Works

During the last ten years, there have been many inves-
tigations into the field of lower power consumption
of smartphone. For instance, Niranjan [6] presented a
study of the power consumption features of WiFi, 3G,
and GSM by means of classical measurement, with a
result of a model for the energy consumed by network
activity regarding different techniques. Then TailEn-
der was designed which was a protocol to lower the
power consumption by commonly seen mobile devices.
Reviewing one that belongs to the most integrated WiFi
power models[7], Swetank made a re-assessment on the
smartphones of the latest generation with both 802.11g
and 802.11n NICs. Results came that they were still
valid on certain component and network kinds, in spite
of the fact that their parameters presented a different
picture from those recorded in the original paper.
Another interesting works aimed at optimizing

network protocol to lower power consumption
[8][9][10][11]. For example, in paper [8], they studied
the influence of network protocol on the energy
expended. Concretely, the TCP and UDP protocols

2
EAI Endorsed Transactions on

Collaborative Computing

10 2017 - 06 2020 | Volume 4 | Issue 13 | e3

were checked in both on-and-off-power conditions of
the screen, as packets were being transmitted to an AP
by the smartphone. These results were attained with
802.11n/ac wireless NICs. It is also a valuable guidance
to us.

3. Delay Wake-Up Mechanism

Based on the discussion above, the expenditure of
energy will be influenced by network packets that
are less urgent. Consequently, an optimization method
was put forward in the paper to postpone the system
activation as well as postpone the switch of the Android
OS to resume mode. From Fig.3 the postponing of three
beacon intervals can be found in the response beacon.

AP

delayed

process

response

Smartphone
Beacon TIM=0

Beacon response

Beacon TIM=1

Beacon TIM=1

Beacon TIM=1

PS-Poll

Data

Figure 3. The dealy transmission behavior of router retrieves

network packets based on PS-Poll mechanism

3.1. Suspend & Resume operation of Android OS

Under suspend mode, a large loop program will be
conducted by the kernel awaiting the interrupt event
(WiFi interrupt) or signal (screen unlock signal), etc.
from the outside. With the coming of such an event,
every sub-component will be activated by the system,
and relevant interrupt handler will also be activated to
deal with it. It can be seen below how the resume mode
is switched to suspend mode (Fig.4):

Figure 4. Switch operation flow of Suspend mode

It can be seen from Fig.4 that nearly every hardware
component is paused successively at the beginning. As
observed the last few columns of execution are to switch
off the CPU (not including CPU0), and a large loop task
will be conducted to deal with such event/signal etc. It
is how the android OS is paused.

Analogously, with the arrival of an interrupt event
from the outside (irq name:GPIO26, actually it is a WiFi
interrupt which means AP has received packets), it
will activate the system. The complete pause period is
approximately 7.27 (282.20-274.94) seconds.
It can be seen in Fig.5 that every component will be

awakened after that in the system (first the CPU1-CPU7
and then the rest hardware components).

Figure 5. Switch operation flow of Resume mode

The mechanism will postpone the activation of the
system at the detection of outer interrupts (an example
is the interrupt caused by the WiFi component), so as to
lengthen the time Android OS stays in suspend mode.

3.2. Resume operation of Android OS API

We have demonstrated where the function call goes
after an outer interrupt event was detected in the sys-
tem. It can be seen from Fig.6 that when the interrupt
reached, the interrupt handler (Dhd_dpc_thread()) was
called first (see Fig.6). Eventually, netif_rx was called
to submit the network packets to the upper network
protocol layer by the driver.

Dhd_dpc_thread() Dhd_bus_dpc() Dhdsdio_dpc() Dhdsdio_readframes()

Dhd_rx_frames()netif_rx()

AP

Interrupt controller

Processor

processor interrupts

the kernel

Do_IRQ()

Figure 6. Trace of API for Resume operation

3.3. Implementation of delayed wake-up operation

The optimization approach postpones the response to
the WiFi interrupt, and thus delay the transmission of
PS-POLL frame as well as the restart of the CPU, etc.,
for the purpose of postponing the switch from suspend
mode to resume mode.

3

A Power Optimized Method for Mode Switching in Android Systems

EAI Endorsed Transactions on

Collaborative Computing

10 2017 - 06 2020 | Volume 4 | Issue 13 | e3

Bo Chen, Xiaofan Shen

Below shows how to set up the WiFi interrupt
processor:

Algorithm 1 /bcm/wifi/driver/bcmdhd/dhd_linux.c

Dhd_dpc_thread(void *data)

unsigned long delay = jiffies + 3*HZ;
while 1 do //Run until signal received

if !binary_sema_down(tsk) then //When
external event is received

if responese_number > 0 then
if dhd->pub.sus ==1 then

my_flag_s = 1;
ssleep(3); //Delay 3 seconds
my_flag = 1; // Setting the flag of

my_flag
wake_up_interruptible(&my_queue);

//wake up the queue
end if

end if
end if

end while

When the interrupt signal reaches, there is a period
before the system is activated. To realize the delay,
we use the function of wait_queue() method, which
is provided by Linux kernel. During such process,
CPUs will be restarted immediately after the period
postponed runs out (see below).

Algorithm 2 /kernel/net/core/dev.c

void __ref enable_nonboot_cpus(void)

int cpu, error;
int my_f, my_f_s;
my_f = get_my_flag(0); //Get the value of

the global variable my_f
my_s=get_my_flag_s(0); //Get the value of

the global variable my_flag_s
if my_f_s == 1 then

if (thenwait_event_interruptible(my_queue,
my_flag!= 0)) //When 3 seconds expires, the
variable of my_flag will be set to 1

return 0;
end if

end if
my_flag = 0; /Reset the variable my_f
my_flag_s = 0; /Reset the variable my_flag_s
printk(KERN_INFO "Enabling non-boot CPUs

...");
arch_enable_nonboot_cpus_begin();

3.4. Formal description of optimization Approach

We describe the dynamic behavior of optimization
approach by automata[12], which is shown in Fig.7.
We can see from the figure that the WiFi component
works for the transmission of network packets, after
a period (idle_time > threadhold_1) when there is no
data transmission, then theWiFi component will switch
from Resume state to Suspend state. When AP receives
data which will be sent to the smartphone, the WiFi
component will receive an interrupt to wake up the OS.
Based on our optimization approach, WiFi component
will switch from Suspend Mode to Delayed Mode.
Finally, after dealyed_time seconds, WiFi will switch to
Resume mode and is ready to receive network packets.

Figure 7. The automata model of optimization approach

3.5. Delay time Setting

User experience should be considered when using
optimization approach, for the purpose of getting a
proper delay time. If it is comparatively large, power
efficiency can be better improved at the expense of
worse user experience. But the corresponding, network
packets might even be lost, or even re-transmission
might be needed for several times if the delay time is
set to be too large. But how to get a proper postponing
time? We have conducted many experiments to analyze
the communication behaviors of various applications
like WeChat, QQ, Microblog, especially the interval
between the interrupts caused by WiFi components (as
shown in the bottom line of Table 1). The statistics are
assessed and analyzed as below:

Table 1. Time distribution of the interval between the packet’s

arrival

APP 1-6(s) 6-10(s) >10(s)

MicroBlog 30.45% 8.69% 60.86%
Wechat 30.59% 15.78% 53.63%
QQ 39.39% 12.13% 48.48%

QQ+Webchat+MicroBlog 56.53% 15.21% 28.26%

The above table shows that WiFi components will
arrive within 1-6s about 56.53% in all cases, and causes
the android OS to switch to resume mode, when related

4
EAI Endorsed Transactions on

Collaborative Computing

10 2017 - 06 2020 | Volume 4 | Issue 13 | e3

A Power Optimized Method for Mode Switching in Android Systems

WeChat+QQ+MicroBlog are all in operation. But when
it comes to the single behavior of theMicroBlog app (see
the top line of the table), over 30.45% will switch the
Android OS to resumemode after staying in suspension
less than 6 seconds.
To balance the performance with the experience

and experience of user, the postponing period of
separately1/3/5/10 seconds can always obtain the
optimal performance.

4. Evaluation

The proposed approach was implemented on the
Huawei-P8 mobile devices with the rooted Android 6.0
OS, with the WiFi connector of BCM4334 chipset.

4.1. Power Model of Smartphone

We obtain the file of power_profile.xml via Apktool
from the kernel category of /framwork-res/res/xml/.
in the format of < item name="wifi.on">0.06</item>,
<item name="wifi.scan "> 100 </item>, etc.. In this
way, we can measure the power expenditure through
the hardware parameter when the operation system is
under both modes.
The suspend mode of the operation system leads

to the pause of almost all hardware components, not
including one CPU core, which demonstrates that
improved energy efficiency is not limited to WiFi
module. It is workable for the rest components as well.
The following equation can be adopted to measure the
energy consumption.
The energy consumption can be measured for all the

components separately when the expenditure of the
whole smartphone is separated into 5 parts.

Etotal = Ecpu + Ebluetooth + EWiFi + EDsp + ERadio (1)

1. CPU parameters relevant to energy consumption
Under suspend mode, merely one CPU core imple-

ments tasks necessary for the kernel. For instance, peri-
odic activities are conducted to activate the system. It
will also check whether there are outer interrupt events.
Consequently, the energy expenditure of both modes
should be measured respectively. Below is the rough
calculation for the energy expenditure of CPU:

{

Ecpu_resume = T imecpu_resume × Powercpu_resume × 8
Ecpu_suspend = T imecpu_suspend × Powercpu_suspend

(2)
2. WiFi parameters relevant to energy consumption
Regarding WiFi component, we measure the con-

sumption of power by means of <item name=
"wifi.on">0.06</item> under suspend mode, and mea-
sure the energy parameter of WiFi by means of <item
name="wifi.active">97</item>.

In contrast, below are the energy consumption for all
components (see table 2).

Table 2. Different Power Consumption under suspend/resume

mode

CPU WiFi DSP Bluetooth Radio

Suspend(mAh) 348.3 97 91 116 117
Resume(mAh) 3 0.06 0 2.8 37.5

4.2. Experimental Setting and Experimental Result
Analysis

At the end, we conductedmany experiments to compare
between the impact of postponing time on performance
and that on loss of packets, to check whether the
proposed approach is useful.
Preparations include the development of a C/S-

architecture-based network application, the gathering
of time used in sending and receiving the packets
separately, and the measurement of packet postponing
and loss of packets. The former is the end-to-end
postponing between specified packets within the flow
where there is loss of packets, and the latter is that some
packets cannot reach their designated place during the
transfer. Below are the results (100 times of packets
transfer were conducted at random intervals).
The postponing period was made 1s, 3s, 5s and 10s

separately. After that is the collection of the time used
in sending and receiving packets, and the lasting hours
of both modes. The assessment of the method put
forward was made in the following three facets: (a) the
lasting time of both modes; (b) the postponing of packet
transmission; (c) the improvement of performance.
Below are the results in details:

1 3 5 10 12
0

75

85

90

95

delay time setting(s)

p
e
rc

e
n
ta

g
e
 o

f
O

S
 in

 s
u
s
p
e
n
d
 m

o
d
e
(%

)

80

100

Figure 8. Percentage of OS spend in suspend mode

For the first facet, as indicated in Fig.8, if the
postponing period was not set, the android OS will stay
in suspend mode for almost 76.38% of time during the
overall communication process. If the delay time was
set to 1s, it occupied 85.31% of the total; if the period
was set to 10s, the percentage increased to 91.75%.

5
EAI Endorsed Transactions on

Collaborative Computing

10 2017 - 06 2020 | Volume 4 | Issue 13 | e3

Bo Chen, Xiaofan Shen

Regarding the second facet, as can be found in Fig.9,
if the delay time was not set, no delay would be caused.
If the delay time was set to 1s, there would be a 0.12s
delay in transmitting packets. If the time was set to 10s,
the delay climbed to nearly 7.86s.

0
0

2

4

6

8

1 3 5 10 12

delay time setting(s)

p
a
c
ke

t
tr

a
n
s
m

is
s
io

n
 d

e
la

y
(s

)

Figure 9. Packet transmission delay after using new mechanism

As with the third facet, experiments were conducted
on every single application and the combination of the
three (see Fig.10).

1 3 5 10

0.0

40

delay time setting(s)

p
e
rf

o
rm

a
n
c
e

(%
)

30

20

10

Figure 10. Percentage of power saving after using proposed

mechanism

If the delay time was set to 1s, the power was reduced
by lower than 6.92%; if the delay time was set to 3s, the
power reducing rate was between 4.72% and 15.32%;
if the period was 10s, the rate fell between 30.19% and
37.96%.

Figure 11. Picture of the experimental platform

The experimental platform is shown as Fig.11, and
we use wildpackets 802.11n usb wireless LAN card

as wireless Access Point(AP). Meanwhile, we obtaining
the statistical data of the network communication
behaviors by the Packet sniffing tool.

5. Conclusion and Prospect

When android OS is in suspend mode, non-urgent
external network packets transmission will cause the
system to switch from suspend mode to resume mode,
and thus leads to more energy consumption. For this
reason, an optimization mechanism was proposed in
this study to delay receiving WiFi packets, and prolong
the duration of WiFi component in suspend mode.
According to the experimental data, it can be known
that the proposed mechanism can effectively reduce the
power consumption with high feasibility.
Acknowledgments. This work was supported by the

Suzhou Scientific Research Program (No.: SYG201731),
and the National Natural Science Foundation of China
(No.:61772482, 61303206).

References

[1] Ding N, Hu Y C. GfxDoctor: A Holistic Graphics Energy
Profiler for Mobile Devices[C] //Proceedings of the Twelfth
European Conference on Computer Systems. ACM, 2017:
359-373

[2] Chen B, Li X, Zhou X, et al. Towards Energy Optimization
Based on Delay-Sensitive Traffic for WiFi Network[C]//
Ubiquitous Intelligence and Computing, 2014 IEEE, Intl
Conf on and IEEE, Intl Conf on and Autonomic and Trusted
Computing, and IEEE, Intl Conf on Scalable Computing
and Communications and ITS Associated Workshops.
IEEE, 2015:252-259

[3] Chen B, Li X, Zhou X. PowerSensor: A method for power
optimization of smartphone through sensing wakelock
application[C]//2017 9th International Conference on
Wireless Communications and Signal Processing (WCSP).
IEEE, 2017: 1-6.

[4] Chen B, et al. A low-power transmission approach of WiFi
network in smartphone. (2017): 3-5.

[5] Li H, Chen L. RSSI-aware energy saving for large file
downloading on smartphones[J]. IEEE Embedded Systems
Letters, 2015, 7(2): 63-66.

[6] Balasubramanian N, Balasubramanian A, Venkataramani
A. Energy consumption in mobile phones: a measurement
study and implications for network applications[C]
//Proceedings of the 9th ACM SIGCOMM Conference on
Internet Measurement. ACM, 2009: 280-293.

[7] Saha S K, Malik P, Dharmeswaran S, et al. Revis-
iting 802.11 power consumption modeling in smart-
phones[C]//2016 IEEE 17th International Symposium on.
IEEE, 2016: 1-10.

[8] P. Serrano, A. Garcia-Saavedra, A. Banchs, G. Bianchi,
and A. Azcorra, Per-frame energy consumption anatomy of
802.11 devices and its implication on modeling and design,
IEEE/ACM Transactions on Networking (ToN), vol. 23, no.
4, pp. 1243ĺC1256, 2014.

[9] Andrew Rice and Simon Hay. Decomposing power
measurements for mobile devices. In Eighth Annual IEEE

6
EAI Endorsed Transactions on

Collaborative Computing

10 2017 - 06 2020 | Volume 4 | Issue 13 | e3

International Conference on Pervasive Computing and
Communications (PerCom), Page(s):70-78, Mar 2010.

[10] Kim, S., Kim, H.. An event-driven power management
scheme for mobile consumer electronics. Consumer
Electronics, IEEE Transactions on, Page(s): 259- 266
,59(1),2013.

[11] S. K. Saha, P. Deshpande, P. P. Inamdar, R. K. Sheshadri,
and D. Koutsonikolas, Power-throughput tradeoffs of

802.11n/ac in smartphones, in Proc. of IEEE INFOCOM,
2015.

[12] Chen B, Li X, Zhou X. Model checking of MARTE/CCSL
time behaviors using timed I/O automata[J]. Journal of
Systems Architecture, 2018, 88: 120-125.

7

A Power Optimized Method for Mode Switching in Android Systems

EAI Endorsed Transactions on

Collaborative Computing

10 2017 - 06 2020 | Volume 4 | Issue 13 | e3

	1 Introduction
	2 Suspend & Resume Mechanism
	2.1 Impact of network transmission on power consumption
	2.2 IEEE PS-POLL mechanism
	2.3 Related Works

	3 Delay Wake-Up Mechanism
	3.1 Suspend & Resume operation of Android OS
	3.2 Resume operation of Android OS API
	3.3 Implementation of delayed wake-up operation
	3.4 Formal description of optimization Approach
	3.5 Delay time Setting

	4 Evaluation
	4.1 Power Model of Smartphone
	4.2 Experimental Setting and Experimental Result Analysis

	5 Conclusion and Prospect

