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This article presents selected results of analyses and simulations carried out as part of research performed 
at the Central Institute of Labor Protection – the National Research Institute (CIOP-PIB) in connection with 
the development of a system for active reduction of noise emitted by high power electricity transformers. This 
analysis covers the transformer as a source of noise as well as a mathematical description of the phenomenon 
of radiation of vibroacoustic energy through a transformer enclosure modeled as a vibrating rectangular 
plate. Also described is an acoustic model of the transformer in the form of an array of loudspeakers.
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Figure 1. An example of a spectrum of power transformer noise

1. IntroductIon

Power transformers are a source of low-frequency 
noise, with the most important spectrum 

components, in view of the noise level, in the 

frequency range below 400 Hz. The noise is of 

stationary nature with a spectrum with clearly 

visible components for frequencies which are a 

multiple of the double frequency of the power grid. 

An example of a power transformer noise spectrum 

with a power of 630 kVA is shown in Figure 1.
The level of noise emitted by transformers 

depends to a large extent on their power, size and 

load [1, 2, 3, 4]. In practice it can be assumed 

that the flow of vibroacoustic energy in an oil-
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immersed transformer, the most common power 

transformer type, is as shown in Figure 2.
Research carried out, among others, at the 

Central Institute of Labor Protection – the 
National Research Institute (CIOP-PIB) 
indicates that in transformers working in real-life 
conditions the sources of vibroacoustic energy are 

as follows: the vibrating core, magnetostriction, 
vibrating winding, vibrating structural 

components, etc. This energy is carried over 

mainly to the transformer enclosure. Therefore, 

it can be assumed that the vibroacoustic energy 

emitted (radiated) into the surroundings is created 

first of all as a result of enclosure vibrations. 

Transformer enclosures, due to material, design 

and operational considerations, come in different 

shapes. For the purposes pertaining to research on 
the possibility of using active methods in order to 

control transformer noise it can be assumed that 

the enclosure is cubicoid.

Research on using active methods to control 
noise emitted by transformers has been carried 

out in Poland and abroad for several dozen years. 

As part of research carried out at CIOP-PIB, a 
system for active control of transformer noise 

(ACTN) was developed and verified in real-
life conditions after laboratory tests. Each stage 
of the development of ACTN showed that the 

mathematical modeling stage as well as laboratory 

investigations based on the transformer acoustic 

model are of key importance for the selection of 

design solutions and the attained parameters of 

designed systems and the final cost. The results 

of research on modeling a transformer as a source 

of noise are presented in a later part of the article.

2. ModelIng a transforMer 
as a source of noIse

The development of a mathematical model 

of a power transformer as a source of noise 

is primarily justified for two reasons: (a) a 
description of acoustic wave emissions of a power 

transformer makes it possible to perform various 

computer calculations and simulations (Matlab® 

suite version 5 was used); (b) on the basis of 

the developed mathematical description of the 

phenomenon of emission of vibroacoustic energy 

and the calculations and simulations performed, 

it is possible to develop an acoustic model of a 

power transformer as a source of noise. This 

model can be used successfully in laboratory 

investigations of the use of active methods of 

noise control in power transformers. Performing 

such research on an actual transformer is 

troublesome (e.g., due to restricted access) and 

often dangerous.

In the development of a computational and 

mathematical model of a power transformer the 

following assumptions were made.

•	 An actual power transformer is the reference 

point.

•	 The nature of the phenomena which are the 

main sources of noise in power transformers 

indicate that the acoustic power is emitted in 

very narrow bands around even-numbered 
harmonics of the power grid frequency. 

Therefore, it can be assumed that the 

transformer emits acoustic energy into the 

environment only at frequencies which are 

even-numbered harmonics of the standard 
power grid. Because in Poland the frequency 
is 50 Hz, transformer noise can be described 

with vibrating surface sounds with harmonic 

frequencies of 100 and 200 Hz. Here, we 

ignore all sources of noise of a different nature 

Mechanical

vibrations of the

core and

windings

Propagation of

the acoustic

wave in oil

Mechanical

vibrations of the

enclosure walls

Propagation of

the acoustic

wave in the

surrounding air

Figure 2. A diagram of vibroacoustic energy flow in an oil-immersed transformer.
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(such as fans) and the deviations from the 

standard frequency of 50 Hz, which can occur 

in natural conditions.

•	 Acoustic energy is emitted only through the 

vibrating walls of the enclosure (an oil vat) of 

the transformer.

•	 In the simulation process a rectangular plate 

was adopted as a model of the transformer 

enclosure wall. This assumption makes it 

possible to describe mathematically the 

phenomenon of emission of vibroacoustic 

energy through a vibrating, rectangular plate 

(see, e.g., Rdzanek, Rdzanek Engel, et al. 
[5]). The vibrating plate can be treated as a 

surface made of small components that emit 

an acoustic wave. These components must 

be small enough for the assumption that all 

points of such a component vibrate with the 

same amplitude and phase to be true. This 

means that the dimensions of the component 

must be much smaller than the length of 

the shortest structural wave of the plate 

under consideration. Using this approach, 

the vibrating plate can be replaced with an 

array of loudspeakers playing the role of 

the aforementioned components. Through 

individual control of the amplitude and phase 

of each loudspeaker in the array it is possible 

to obtain very different distributions of the 

sound field.

3. sound eMIssIon through 
the enclosure (plate) of 
the transforMer

Adopting the aforementioned assumptions, the 

amplitudes and phases of individual components 

of which the plate is comprised can be 

determined from the plate vibration equation. In 

order to obtain all data required in the simulation 

process a theoretical analysis was performed of 

the vibroacoustic properties of a flat, rectangular 

plate with articulated support and with fixed 

mounting. Following are the results of analyses, 
which have been presented in more detail in, 

e.g., Zawieska [6], Leissa [7], Meirovitch [8], 
Wallace [9], Davies [10]. 

Let us assume that a flat plate with dimensions 

of a × b satisfies the homogeneous equation of 

free vibration, which can be formulated for mode 

(m, n) as follows:

(1)

where x, y—co-ordinates of a point located on the 
plate surface; —a stru c-
tural wave number pertaining to the mode of free 

vibration (m, n);  

biharmonic operator in Cartesian co-ordinates.
The form of free vibration of the plate for a 

pair of modal numbers of m, n = 1, 2, 3, ... can be 

written down as

(2)

where a, b—geometric size of the plate.
The Amn constant was calculated from the

normalization condition, obtaining

Amn = 2.

The boundary conditions of the plate are as 

follows:

(3)

where W(x, y) is the function describing the 

transversal transfer of the plate points. The 

natural frequencies of the vibrating system are as 

follows:

(4)

where m, n = 1, 2, 3, ... ; ρ—plate density, 
h—plate thickness, D—plate rigidity.

The acoustic potential of the surface source in 

the Fraunhofer zone can be written down as [11, 
12]

(5)

where

—field point radial vector in spherical co-
ordinates;                    —plate surface point ra dial 
vector in Cartesian co-ordinates (Figure 3).
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In the event of processes harmonically variable 

in time the following relationships can be written 

down for the distribution of vibration speed of an 

acoustic particle and the sound radiation:

(6)

for any field point described with the radial 

vector of .r


The sound radiation pressure in the 

Fraunhofer zone can be written down as

(7)

The sound pressure amplitude pmn(R, θ, φ) 

based on Equation 7 and the conversions which 
are not discussed here can be written down as an 

elementary formula:

The Pmn(θ, φ) modal index of directivity is 

defined as the value of sound pressure module 

from Equation 8, standardized by the value of this 
module along the (θ0, φ0) direction, along which 

this quantity takes the maximum proper value in 

the Fraunhofer zone:

(9)

The numerical analysis of the modal index of 

directivity of sound radiation through the tested 

acoustic system was performed on the basis of 

Equations 8 and 9. Directivity of radiation for 
several symmetrical modes m = n is presented 

in Figure 4a. The shape of curves shown in it 
indicates that the radiated sound pressure reaches 

b
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Figure 3. A rectangular plate in Cartesian and (x, y, z) spherical co-ordinates (r, θ, φ).
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Figure 4. The modal index of radiation directivity for the selected four forms of free vibration of 
a rectangular plate with free articulated support for different values of plate parameters. Notes. 
a—m = n = 1, 2, 3, 4; ω = ω33; φ  = π/2; h = 4 mm; b—m = n = 3; ω = ω11, ... ,  ω44; φ  = π/2; h = 4 mm; 
c—m = n = 3; ω = ω44; φ  = π/2; h = (2, 4, 8) mm; d—m = n = 4; ω = ω44; φ  = π/2; h = (2, 4, 8) mm.

Figure 5. Loudspeakers arranged in the spatial co-ordinates system (i, j, l).



386 W.M. ZAWIESKA

JOSE 2007, Vol. 13, No. 4

the maximum value along the main direction 

of the θ = 0 plate for modes with odd numbers 

m = n = 1, 3, … and along a direction other than 
the main θ ≠ 0 direction for modes with even 

numbers m = n = 2, 4, ... . 

Calculations were performed for the follow-
ing values of parameters of the vibroacoustic 

system containing a vibrating rectangular 

plate: a homogeneous steel plate with density 
ρ = 7 700 kg/m3 and dimensions a × b (a = 1.04 m, 

b = 0.52 m), plate thickness h = {2, 4, 8} × 10–3 m, 

Poisson’s ratio for steel v = 0.3, acoustic wave 

propagation speed in air c = 340 m/s, air density 

ρ0 = 1 293 kg/m3,  Young’s modulus for steel 
E = 205.0  × 109 N/m2.

4. acoustIc Model of a poWer 
transforMer

As mentioned earlier the vibrating plate can be 

simulated with an acoustic system comprised 

of an array of loudspeakers, each of which can 

be treated as a source of a spherical wave (the 

analysis is performed for the far field of the 

Fraunhofer zone).

In order to perform simulations and computer 

calculations, the problem subject to analysis must 

be digitized in time and space. As regards the 

steady state under consideration, time variability 

can be disregarded in the calculations. Figure 5 
shows the arrangement of an array loudspeakers 

with dimensions of (M, N) treated as point 

sources in the co-ordinate system (i, j, l).
The calculations take into account a digitized 

space with dimensions of (I, J, L). The spatial 

grid is cubical, with a side of d. The acoustic 

pressure in a complex form at point P(i, j, 
l), originating from an array of sources with 

dimensions of (M, N) is expressed with the 

following formula [13]:

(10)

for i = 1, 2, ... , I; j = 1, 2, ... , J; l = 2, ... , L; 

where

(11)

and d—resolution (side of the digitization 

grid), m.
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Figure 6. A model of a plate (enclosure wall) as an array comprised of four sources.
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For the far field condition in the case under 
consideration to be satisfied, the following 

relationship must be fulfilled:

l >> kd 
2.                            (12)

The plate model in the form of an array 

comprised of four point sources is presented 

in Figure 6, and the acoustic model of a power 
transformer developed on the basis of the 

presented approach is shown in Figure 7. For the 
results of laboratory studies using the model of a 

power transformer see Zawieska [14].

5. sIMulatIng studIes

The results of sample simulations of acoustic 

wave emission by a plate simulated in such a 

way are presented as pressure curves in Figure 8. 
Simulations were performed for two different 

source arrangements using Matlab® suite 

version 5.

Column A in Figure 8 shows the results for an 
arrangement of four sources placed on vertices 

of a square with sides of 0.75 m; two sources 

at opposite corners have phases shifted by π 

relative to the other two. The volume velocity 

of all sources was equal to 0.05 m3/s. Column B 
shows the results for an analogous arrangement 

of sources, with the phase matched in all sources. 

Column C shows the scale of tones, in dB/20 
µPa, for the presented charts.

Row 1 presents diagrams of the level of 
acoustic pressure complex modulus in the OXY 

plane at a distance of 2.25 m (10 kd 2) from the 

source plane. Row 2 illustrates diagrams of the 
level of complex modulus of acoustic pressure 

in the OXY plane at a distance of 10 m from the 

source plane. Row 3 shows diagrams of the level 
of complex modulus of acoustic pressure in the 

OXZ plane horizontally (fixed co-ordinate y) of 

the first pair of sources.

Figure 7. An acoustic model of a power transformer.
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Figure 8. Results of simulation calculations of noise control in a transformer simulated by an array of 
loudspeakers.
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6. conclusIons

The research and numerical simulations discussed 

in this paper showed that a power transformer 

as a source of noise can be simulated with good 

approximation as an array of point sources. 

With specific geometric conditions satisfied, 

these sources can be put into effect (in a certain 

frequency range) with appropriately selected 

loudspeakers. By controlling the amplitude and 
phase of each loudspeaker, the desired directional 

characteristics of the source can be obtained.

The mathematical simulation performed and 

the actual acoustic model of the transformer 

in the form of an array of loudspeakers made 

it possible to perform several simulations and 

laboratory investigations pertaining to the use of 

active methods for the control of noise emitted 

by transformers. Particularly valuable are the 

possibilities open by the use of developed models 

in designing active systems for use in actual 

conditions first of all during the phase of tuning 

the circuit controlling operation of the system and 

initial adjustment of the developed system in its 

final form.
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