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Abstract: The bidirectional gated recurrent unit (BiGRU) method based on dissolved gas analysis
(DGA) has been studied in the field of power transformer fault diagnosis. However, there are still
some shortcomings such as the fuzzy boundaries of DGA data, and the BiGRU parameters are
difficult to determine. Therefore, this paper proposes a power transformer fault diagnosis method
based on landmark isometric mapping (L-Isomap) and Improved Sand Cat Swarm Optimization
(ISCSO) to optimize the BiGRU (ISCSO-BiGRU). Firstly, L-Isomap is used to extract features from
DGA feature quantities. In addition, ISCSO is further proposed to optimize the BiGRU parameters to
build an optimal diagnosis model based on BiGRU. For the ISCSO, four improvement methods are
proposed. The traditional sand cat swarm algorithm is improved using logistic chaotic mapping, the
water wave dynamic factor, adaptive weighting, and the golden sine strategy. Then, benchmarking
functions are used to test the optimization performance of ISCSO and the four algorithms, and the
results show that ISCSO has the best optimization accuracy and convergence speed. Finally, the
fault diagnosis method based on L-Isomap and ISCSO-BiGRU is obtained. Using the model for fault
diagnosis, the example simulation results show that using L-ISOMP to filter and downscale the model
inputs can better improve model performance. The results are compared with the SCSO-BiGRU,
WOA-BiGRU, GWO-BiGRU, and PSO-BiGRU fault diagnosis models. The results show that the fault
diagnosis rate of ISCSO-BiGRU is 94.8%, which is 11.69%, 10.39%, 7.14%, and 5.9% higher than that
of PSO-BiGRU, GWO-BiGRU, WOA-BiGRU, and SCSO-BiGRU, respectively, and validate that the
proposed method can effectively improve the fault diagnosis performance of transformers.

Keywords: power transformer; fault diagnosis; landmark isometric mapping; bidirectional gated
recurrent unit; improved sand cat swarm optimization algorithm

1. Introduction

The power transformer is a key piece of equipment in the power grid [1,2], and its
working stability has a great impact on the safety of the grid. Once a transformer fails, it
will cause great damage to the country’s economy and property. In order to ensure safe
and stable operation of the power system, it must be accurately diagnosed [3].

In the event of a transformer fault, there is a large amount of H2, CH4, C2H6, and
other gases present in the insulating oil, and the composition of these gases has a strong
non-linear relationship with the type of fault [4]. Therefore, dissolved gas analysis (DGA)
techniques are widely used in transformer fault monitoring and diagnosis [5]. Traditional
fault diagnosis methods mainly include the ratio method [6], key gas method, triangle
method [7], and pentagon method [8]. Although they are simple and effective, these
methods still have many problems, such as inconsistent diagnostic results and low accuracy,
which reduce the reliability of fault analysis. In recent years, artificial intelligence techniques
based on neural networks [9], support vector machines [10,11] (SVM), extreme learning
machines (ELM), etc., combined with DGA analysis have become a research hotspot
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for experts at home and abroad. Although these methods can improve the accuracy of
fault diagnosis to a certain extent, there are still some shortcomings. For example, the
SVM-based fault diagnostic model [12] is constrained by the multiclassification problem
constraints of the SVM itself, and therefore, does not function effectively in the presence
of complex high-dimensional data. Bazan et al. [13] proposed a two-stage approach for
three-phase induction motor diagnosis based on mutual information measures of the
current signals, principal component analysis, and intelligent systems. This offers the
possibility of reducing the amount of information required, but with reduced accuracy.
Although Yu [14]’s developed KNN fault diagnosis model increases the work efficiency
of the KNN algorithm, it does not address the issues of the poor fault tolerance rate
of the KNN to training data and is easily prone to dimension disaster, which results
in weak generalization of the model. Accuracy and stability in the medium- and long-
term prediction of fault data cannot be guaranteed by the fault diagnosis method based
on the hidden Markov model (HMM) presented by Jiang [15]. Compared with other
artificial intelligence methods, artificial neural networks (ANN) can significantly improve
the accuracy of fault diagnosis. The connection weights and biases (significant parameters)
of the network model are continuously adjusted during the training process to ultimately
establish the corresponding mapping relationship between specific fault features and fault
types for ANN-based fault diagnosis models for power transformers [16]. Researchers are
integrating neural network-based, deep learning methods with transformer fault diagnosis
techniques. An evolving neural network method for power transformer defect diagnostics
was put out by Huang et al. [17]. The neural network automatically modifies the network
parameters (connection weights and deviation terms) based on the suggested evolutionary
strategy to produce the optimal model. Meng and Dong et al. [18] proposed a radial basis
function neural network (RBFNN) based on a hybrid adaptive training method for the
fault diagnosis of power transformers. This method is able to generate RBFNN models
based on fuzzy cmeans (FCM) and quantum-inspired particle swarm optimization (QPSO),
which allows for automatic configuration of the network structure and the acquisition of
model parameters. Compared to conventional neural networks, using these methods, the
number of neurons, the center and radius of the hidden layer activation function, and the
output connection weights can be automatically calculated. The classification accuracy of
RBFNN is significantly improved. This offers the possibility of reducing the amount of
information required, but with reduced accuracy. Burriel et al. [19] proposed an automatic
system based on neural networks for generating optimized expert diagnostic systems
for fault detection when the machine works under transient conditions. Dai et al. [20]
proposed a deep belief network (DBN)-based transformer fault diagnosis method. By
analyzing the relationship between dissolved gas in transformer oil and fault type, the
noncoding ratio of gas is determined as the feature parameter of the DBN model. The DBN
adopts a multilayer multidimensional mapping method to extract more detailed fault-type
differences and proves, through experiments, that this method can effectively improve
the accuracy of fault diagnosis. In order to improve the hybrid kernel extreme learning
machine (KELM), Huang et al. [21] proposed a transformer fault diagnosis method based
on the gray wolf optimization (GWO) algorithm. The GWO algorithm can be used to
optimize the parameters of the hybrid kernel function, and logistic chaos mapping can be
used to generate the initial population parameters of the GWO algorithm to prevent the
negative effects of convergence that is too fast on the optimization results and effectively
improve the classifier performance. Although Huang [17]’s evolutionary neural network
model can automatically update the network parameters, the evolutionary algorithm’s
capacity to converge is limited, and it is easy to fall into the local optimum, which reduces
the classification model’s accuracy; Meng [18]’s proposal of quantum-inspired particle
swarm optimization (QPSO) can address the issue of PSO’s delayed convergence. However,
RBFNN’s complex structure and extensive calculation are disadvantages when the data
sample is large; the classification accuracy of the fault diagnosis model based on DBN is
very high [20], but it needs a lot of fault data for network training, and the classification
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performance is not stable in the case of small amounts of data; the method proposed in the
literature [21] is very effective for KELM optimization, but its efficiency and accuracy need
to be improved.

Recurrent neural networks (RNN) have achieved good performance in diagnostic
models based on intelligent computing. The long short-term memory neural network
(LSTM) improves the structure of the recurrent neural network. LSTM is a special kind of
RNN which is used to solve the problem of gradient vanishing and gradient exploding.
The principle of BiGRU is similar to that of LSTM, which simplifies the gating structure by
combining the forget gate and the input gate into an ‘update gate’, has fewer parameters
than LSTM, and can achieve functions equivalent to LSTM in some applications. BiGRU
combines the unit state and the hidden state. The BiGRU network has a simpler structure
than LSTM, so it needs less parameter adjustment, and has faster training speed and better
prediction performance than LSTM. Therefore, BiGRU is used in this paper to construct a
transformer fault diagnosis model. The inaccurate setting of hyperparameters in BiGRU
can cause inefficiencies in transformer fault identification. The manual finding of hyperpa-
rameters, on the other hand, requires extensive expertise and a lot of experimentation and
can therefore be optimized by intelligent optimization algorithms [22].

As a non-linear dimensionality reduction algorithm, Isomap is a good solution to
non-linear problems. However, the increase in the number of samples greatly increases the
computational complexity of the Isomap algorithm. Therefore, Silva and Tenenbaum et al.
proposed the landmark equidistant mapping (L-Isomap) algorithm. Compared with the
Isomap algorithm, L-Isomap has a faster computational speed and wider application range
and can represent the low-dimensional features of high-dimensional data well.

Three shortcomings of transformer fault diagnosis based on BiGRU are summarized:
(1) a single fault diagnosis model cannot greatly improve the fault diagnosis performance;
(2) the noise of the transformer fault data will reduce the stability of the model; (3) research
on optimization algorithms is not targeted and cannot significantly improve optimization
performance. Thus, a transformer fault diagnosis method based on the L-Isomap and
ISCSO-BiGRU methods is proposed in this paper. It is noteworthy that the innovations and
contributions of this paper are mainly divided into the following five improved methods.
First, L-Isomap is used to extract the features of DGA data to reduce the influence of noise
on the diagnosis results. In addition, SCSO can be improved by the following four methods
to obtain the ISCSO. A logistic is proposed to improve the initial diversity of the sand cat
population. A strategy with improved water wave dynamics factors, adaptive weights,
and golden sine is introduced to improve the SCSO. Then, it is noteworthy that ISCSO
can be obtained from the above four improved methods, and the benchmark functions
are used to test the optimization performance of ISCSO and the other algorithms. The
results show that ISCSO has the best optimization performance. Finally, ISCSO is used to
optimize the relevant hyperparameters of BiGRU. The important feature quantities selected
by the L-ISOMP algorithm are input to the BiGRU optimized by the ISCSO algorithm for
transformer fault identification and compared with the conventional DGA method to verify
the enhancement effect of L-ISOMP on model performance. Finally, by comparing the
analysis with other transformer fault diagnosis models, it is verified that the model in this
paper has a higher accuracy rate.

2. Landmark Isomap Feature Mapping Algorithm

The Isomap algorithm is based on Multidimensional Scaling (MDS) analysis. Its basic
idea is to use the geodesic distance between data points to describe the geometric properties
between data, and on this basis, it establishes a mapping relationship between the geodesic
and downscaled data and the original data, so as to downscale the high-dimensional
data [23,24]. The Isomap-based L-Isomap algorithm, which is faster, can better express the
low-dimensional characteristics of the high-dimensional data. Let the number of samples be
N and Landmarks be n (n << N); if the target dimensionality reduction is d, then Landmarks
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is only larger than d + 1. The calculation steps of L-Isomap are as follows (the flow of data
processing is shown in Figure 1).
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(1) Construct the k-nearest neighbor graph G.
(2) Randomly select n samples as Landmarks.
(3) Calculate the shortest path between the distance of sample points N to Landmarks n

to obtain the matrix.
(4) Apply LMDS to reduce the dimensionality of the sample set. The d-dimensional

embedding coordinates of the Landmarks n are first calculated using MDS as follows.
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3. Sand Cat Swarm Algorithm

Sand Cat Swarm Optimization [25,26] (SCSO) is a new meta-heuristic algorithm
proposed by Amir Seyyedabbasi and Farzad Kiani in 2022, and is an intelligent optimization
algorithm that mimics the survival behavior of sand cats in nature.

The sand cat is able to detect low-frequency noise to locate prey either above or
below ground. The algorithm considers the optimal value in the exploration space as
the prey, and the search agent continuously explores the search space through location
updates, eventually moving closer to the area where the optimal value is located. The
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SCSO algorithm is designed with a prey search mechanism and a prey attack mechanism.
The search prey mechanism can simulate the process of sand cats searching for prey.

During the exploration phase, the sand cat can sense low frequencies below 2 kHz. In
the mathematical model, rG represents a general range of sensitivity that decreases linearly
from 2 to 0, according to the working principle of the algorithm. SM models the auditory
properties of the dune cat with an assumption of 2, defined as follows.

→
rG = sM −

(
SM × iterc

itermax

)
(4)

The main parameter for the transition between the exploration and development
phases is R, which is defined as follows:

→
R = 2× →rG × rand(0, 1)− →rG (5)

The search space is randomly initialized between the defined boundaries. During the
search step, each current search agent’s position is updated based on a random position. In
this way, the search agent is able to explore new spaces in the search space. To avoid falling
into a local optimum, the sensitivity range for each sand cat is different, defined as:

→
r =

→
rG × rand(0, 1) (6)

In the SCSO algorithm, the sand cat updates its position based on the optimal solution,
its current position, and its sensitivity range; searches for other possible best prey positions;
and can find a new local optimum in a new search area, obtaining a position that lies
between the current position and the prey position, while the randomness ensures that the
algorithm has low running costs and complexity. The mathematical modeling of the above
search process is as follows:

→
Pos(t + 1) =

→
r · (

→
Posb(t)− rand(0, 1) ·

→
Posc(t)) (7)

where: Posb is the optimal solution, Posc is one’s current position, and r is the sensitivity
range. The SCSO algorithm attacks prey at the end of the prey search, and the prey attack
mechanism for the sand cat population is described as:

→
Posmd =

∣∣∣∣rand(0, 1) ·
→

Posb(t)−
→

Posc(t)
∣∣∣∣ (8)

→
Pos(t + 1) =

→
Posb(t)−

→
r ·

→
Posmd · cos(θ) (9)

where: Posb is the best position, Posc is the current position, and Posmd is the random position.

→
Pos(t + 1) =


→

Posb(t)−
→

Posrnd · cos(θ) ·→r |R| ≤ 1
→
r ·
( →

Posb(t)− rand(0, 1) ·
→

Posc(t)
)
|R| > 1

(10)

Equation (10) represents the update to each sand cat’s position during the exploration
and exploitation phase. When R≤ 1, the sand cats are guided to attack their prey; otherwise,
the sand cats are tasked with finding new possible solutions in the global area.

4. Improved Sand Cat Swarm Optimization
4.1. Logistic Chaos Mapping

The initial position of the individuals in the population plays a key role in the opti-
mization effect of the population intelligence algorithm itself [27]. Commonly used chaotic
mappings are logistic mapping, tent mapping, Henon mapping, Chebyshev mapping, and
combinatorial chaos mapping. In this paper, the logistic mapping is chosen because it has
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better ergodicity, autocorrelation, and mutual correlation than other chaotic mappings. For
this reason, the population is initialized using a logistic chaos mapping [28], which allows
for a more balanced distribution of the population, thus improving the convergence and
optimization accuracy of the algorithm. The formula is as follows.

xk+1 = µxk(1− xk) (11)

where µ ∈ (0, 4], k is the number of iterations, and x ∈ (0, 1). With the initial value of x0, the
premise of the chaotic state is that µ takes [3.5699, 4.0] and the sequence of chaotic states is
randomly non-convergent. As µ varies, the distribution of the logistic chaotic sequence is
shown in Figure 2.
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In Figure 2, it can be seen that the population randomness is best when µ = 4. Therefore,
the logistic chaotic sequence at µ = 4 was chosen to initialize the population, and the number
of iterations was set to 300. The spatial distribution of the logistic chaotic sequence is shown
in Figure 3.
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4.2. Water Wave Dynamic Factor

The SCSO algorithm, in which rG decreases linearly from 2 to 0 as the iterative process
proceeds, does not adapt well to complex multi-peaked multivariate functions and is prone
to low accuracy. Therefore, a water wave dynamic evolution factor is introduced to take
advantage of the uncertainty of the water wave dynamics so that the algorithm can better
adapt to complex functions and improve the probability of finding a good solution. The
uncertainty of using the dynamics of water waves allows the population to search over a
wider area, reducing the blindness of other individuals following, enhancing in-formation
exchange and learning between populations, maintaining population diversity, effectively
avoiding convergence, and thus, improving the ability of the algorithm to jump out of
the local optimum. At the same time, a control factor k is added to control the decreasing
magnitude of rG, and the mathematical model is described as shown in Equation (12):

rG = 2 · s · exp
(
−t
T

)k
· r (12)

where: s is a random integer and s ∈ [−1, 1]; r is a random function of r; r ∈ [0, 1]; and
k ∈ [1, 3]. The larger k is, the smaller the decreasing rG, and the opposite is true when
k is larger. A comparison of the original rG and the water wave dynamic factor with the
number of iterations is shown in Figures 4 and 5:
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4.3. Adaptive Weights

Suitable inertia weights can effectively coordinate the transition between the global
search and local exploitation of the algorithm, and can improve the convergence speed
and the accuracy of the algorithm’s search for the objective optimization function. The
sand cat performed a local search according to Equation (7) when performing a local
search for the optimum. In this region, when the sand cat searches according to the
vicinity of Equation (7), it can only search for an optimum near the optimal solution and
cannot perform better optimization. For this reason, a new weighted adaptive algorithm is
introduced in this paper, which enhances the local optimization of the sand cat using the
minimum adaptive weighting to adjust the current best sand cat position as it approaches
the target. The adaptive weighting formula is shown in Equation (13) and the improved
formula of Equation (7) is shown in Equation (14). Figure 6 shows a function image of the
inertia weight before and after improvement.

w = sin
(

π · t
2 · itermax

+ π

)
+ 1 (13)

→
Pos(t + 1) = w ·→r · (

→
Posbc(t)− rand(0, 1) · Posc(t)) (14)
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4.4. Golden Sine

The golden sine algorithm (goldenSA) is a new intelligent algorithm proposed by
Tanyildizi et al. [29] in 2017 based on an idea related to the sine function, and has the
advantages of fast search speed, simple tuning parameters, and good robustness. The
golden-SA algorithm uses the special relationship between the sine function and the unit
circle combined with the golden partition coefficient for iterative search; by scanning the
sine function, the unit circle simulation algorithm explores the search space. The concept of
the golden mean was first introduced by the ancient Greek mathematician Eudoxus in the
fourth century B.C. The golden mean does not require gradient information and requires
only one iteration per step, while the contraction step of the golden mean is fixed. Therefore,
a combination of the sine function and the golden mean can be used to find the maximum
or minimum value of the function more quickly. At the same time, the iterative nature of
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the golden sine search strategy prevents the algorithm from falling into local optimum. The
mathematical model of the Golden-SA strategy is described in Equation (15):

Xt+1
i = Xt

i · |sin(R1)|+ R2 · sin(R1) ·
∣∣x1 · Pt

i − x2 · xt
i
∣∣ (15)

where t is the number of iterations; R1 and R2 are random numbers with values of [0, 2π]
and [0, π], respectively, which represent the distance and direction of the next generation
of individuals; x1 and x2 are the golden section coefficients, which are used to narrow the
search space and lead individuals to converge to the optimal value; and Pt

i is the position
of the current optimal individual. The golden section coefficients x1 = a · (1− τ) + b · τ,
x2 = a · τ + b · (1− τ), a, and b are the search intervals, and τ is the golden section ratio,
which takes a value of about 0.618033.

4.5. ISCSO Implementation Steps

In summary of the improvements described above, the specific implementation steps
for ISCSO in this paper are as follows.

Step 1: Initialize the relevant parameters of the sand cat swarm algorithm: population
size N, spatial dimension dim, upper and lower bounds ub, lb, and the maximum number
of iterations Tm.

Step 2: Initialize the population with logistics according to Equation (11).
Step 3: Calculate the fitness value of each individual.
Step 4: Replace the original Equations (4) and (7) with Equations (12) and (14).
Step 5: Update the position according to Equations (9) and (14).
Step 6: Update the position according to Equation (15).
Step 7: Determine whether the maximum number of iterations is reached. If so, output

the global optimal individual position; otherwise, return to step 3.

4.6. Algorithm Performance Testing

Two single-peak test functions and one multi-peak test function were selected for sim-
ulation experiments to validate the optimization search effect of the ISCSO algorithm. The
algorithms were compared with the standard SCSO algorithm, the whale optimization al-
gorithm (WOA) [30], the grey wolf optimizer (GWO) [31], and particle swarm optimization
(PSO) [32]. The number of iterations for all algorithms was 500, each group of algorithms
performed 30 independent optimization tests for each test function, and the optimal value,
the worst value, the mean, and the standard deviation were calculated separately. The
experimental results are shown in Table 1. The test functions are shown in Figures 7–9,
with the following equations.

F1(x) =
n

∑
i=1
|xi|+

n

∏
i=1
|xi| (16)

F2(x) =
n

∑
i=1

ix4
i + random[0, 1) (17)

F3(x) = 0.1


sin2(π3x1)+

n
∑

i=1

(xi − 1)2[1 + sin2(3πxi+1)
]
+

(xn − 1)2[1 + sin2(2πxn)
]

+
n

∑
i=1

u(xi, 5, 100, 4) (18)
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Table 1. Test Results for The Five Optimization Algorithms.

Function Algorithm Best Worst Ave Std

F1

SCSO 4.68 × 10−66 1.06 × 10−58 4.35 × 10−60 1.96 × 10−59

ISCSO 0 0 0 0
WOA 2.63 × 10−58 1.15 × 10−47 3.86 × 10−49 2.09 × 10−48

GWO 2.25 × 10−17 4.91 × 10−16 1.07 × 10−16 1.04 × 10−16

PSO 6.99 38.4 15.1 7.21

F2

SCSO 8.19 × 10−8 1.18 × 10−3 1.89 × 10−4 2.82 × 10−4

ISCSO 3.79 × 10−7 2.55 × 10−4 6.92 × 10−5 6.36 × 10−5

WOA 1.16 × 10−4 2.95 × 10−2 4.82 × 10−3 5.98 × 10−3

GWO 1.11 × 10−3 5.77 × 10−3 2.31 × 10−3 1.11 × 10−3

PSO 0.0423 8.19 0.661 1.62

F3

SCSO 1.43 2.8 2.45 0.388
ISCSO 7.62 × 10−6 1.13 × 10−2 8.39 × 10−4 2.84 × 10−3

WOA 0.105 1.48 0.545 0.352
GWO 0.441 1.13 0.703 0.201
PSO 7.87 2980 121 540
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As can be seen in Table 1, for the single-peak test function F1, ISCSO finds the the-
oretical optimum and outperforms the other four algorithms in every respect. For the
single-peak test function F2, ISCSO is slightly inferior to the native SCSO in terms of opti-
mal values, but outperforms the SCSO and the other four algorithms in all other aspects.
For the multi-peak test function F3, ISCSO outperforms the other four algorithms in all
four criteria.

As can be seen in Figures 10–12, ISCSO requires the smallest number of iterations
for several algorithms to converge to the same accuracy. It shows that the introduction of
multiple methods increases the proportion of high-quality individuals in the population
and improves the convergence speed of the algorithm. The convergence curves of the WOA,
GWO, and PSO algorithms flatten out with increasing iterations, with varying degrees of
stagnation and relatively low accuracy in the search for optimal solutions.
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In summary, the ISCSO algorithm has better local extremum escape capability, overall
optimization seeking synergy, and convergence performance than the standard SCSO,
WOA, GWO, and PSO algorithms.

5. BiGRU Diagnostic Model Optimized by ISCSO Algorithm
5.1. Gated Recurrent Unit Neural Networks

In early 2014, the gated recurrent unit neural network [33] (GRU) was proposed by
Cho et al. In the development and improvement of RNN-LSTM-GRU, GRU inherited
the advantages of the RNN model in time series computation and of the LSTM model
in correlation fusion between data. It also combines the forgetting and input gates in
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LSTM into an “update gate”, which shortens the computation time and improves the
computation efficiency by simplifying the model structure and reducing the training
parameters, avoiding the problem of gradient explosion during LSTM computation. The
network structure of the GRU model is shown in Figure 13, where A represents the sigmoid
activation function.
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The updated equation for the parameters of the GRU model is
rt = sigmoid(WrXt + Urht−1 + br)
zt = sigmoid(WzXt + Uzht−1 + bz)

h∗t = tanh(WXt + rtUht−1 + b)
ht = (1− z)h∗t + ztht−1

(19)

where: Xt denotes the input at moment t; sigmoid and tanh are the activation functions
used to calculate the output of the hidden layer neurons; r and z denote the reset gate
and update gate, respectively; W and U are both the weight matrices of GRU; b denotes
the bias; h∗t denotes the candidate hidden layer; ht denotes the hidden layer; rt denotes a
moment in time when the reset gate allows the previously hidden state ht−1 to control the
influence of the candidate state h∗t so that any irrelevant information found in the future can
be effectively discarded; and zt denotes a moment in time when the update gate controls
how much information in the previously hidden state ht−1 can be passed to the currently
hidden state ht.

The transmission state of the GRU is unidirectional from front to back and is usually
used to solve the problem of the output at the current moment only being related to a
single previous state variable. However, changes in the dissolved gas content of a given oil
are often influenced by other gas components, as well as by external conditions and other
factors. Therefore, using a bidirectional GRU model to solve the problem of interfering
influencing factors will make transformer fault diagnosis more effective.

5.2. The BiGRU Model

The BiGRU is composed of two unidirectional GRUs superimposed on the top and
bottom together, and the output is determined by the states of these two GRUs together.
The model network structure is shown in Figure 14.

In Figure 14, Xi indicates the dissolved gas content in the oil and the external conditions

input data; ei indicates the vector of the input data Xi;
→
hi indicates the hidden layer state in

the forward direction; and
←
hi indicates the hidden layer state in the reverse direction.
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5.3. Steps for the Sand Cat Swarm Algorithm to Find the Optimal BiGRU Parameters

To improve the classification of BiGRU, the ISCSO method was used to optimize it
for more accurate application in practice. There are many hyperparameters in the BiGRU
model [34] which have a great impact on the accuracy of fault diagnosis in transformers:
batch size (batsize), alpha, and the number of hidden layers of structural parameters and
number of layer neurons (num). The search intervals for the relevant hyperparameters of
BiGRU are shown in Table 2.

Table 2. BiGRU Hyperparameter Optimization Intervals.

Parameter Scope of the Search for Excellence

batsize [0, 300]
alpha [0.001, 0.05]
num [1, 100]

The steps for the sand cat swarm algorithm to find the optimal BiGRU parameters are
as follows.

Step 1: Set the size of the sand cat colony to N, the dimension of the search space to D,
and the maximum number of iterations to Tmax. Use the logistic chaos mapping together
with the initialization method of the original SCSO algorithm to generate the initial position
of the sand cat colony. Set the BiGRU training parameters batch size (batsize) and learning
rate (alpha) to take a range of values. Set the range of values for the structural parameters
of the number of hidden layers and number of layer neurons (num). Notate the parameter
set of η = {batsize, alpha, [num1, . . . , numn]}.

Step 2: Use the L-ISOMP method to extract features from the transformer fault data,
and divide the dimensionality reduction into a training set and a testing set.

Step 3: Construct the L-ISOMP-ISCSO-BIGRU transformer fault diagnosis model.
Calculate the transformer fault discrimination accuracy and define it as the fitness function
of the individual sand cat swarm. The accuracy of the transformer fault model is the ratio
of the number of correct classifications n to the total number of samples m.

Step 4: When |R| < 1, update the position according to Equation (9). When |R| > 1,
update the position according to Equation (14). Then, update the position of individuals
with better fitness according to the golden sine strategy in Equation (15).

Step 5: Calculate the fitness value of the updated sand cat group individuals again.
Determine whether the current fitness value is the highest value or reaches the maximum
number of iterations. If the condition is satisfied, assign the optimal parameter set ηbest to
BiGRU. Otherwise, return to step 3.
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Step 6: Construct the L-ISOMP-ISCSO-BiGRU transformer fault diagnosis model
based on the optimal parameters after ISCSO optimization. After obtaining the optimal
parameters, BiGRU will starts the fault diagnosis and output the results, including the
algorithm running time, fault classification, and accuracy.

The process of building the L-ISOMP-ISCSO-BIGRU transformer fault diagnosis model
is shown in Figure 15 and the implementation framework is shown in Figure 16. The
experimental parameters were set as in Table 3.
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Table 3. Parameters Settings.

Algorithm Parameters Settings

SCSO The sensitivity range rG changes from 2 to 0 and R changes
from −2rG to 2rG, N = 30, T = 100

ISCSO k = 3, N = 30, T = 100
PSO W = 0.729, C1 = 1.49445, C2 = 1.49445, N = 30, T = 100

WOA a decreases linearly from 2 to 0, b = 1, p∗ = 0.5, N = 30, T = 100
GWO a decreases linearly from 2 to 0, r1, r2 ∈ [0, 1], N = 30, T = 100

6. Example of Transformer Fault Diagnosis

According to IEC 60599 [35], by analyzing the gas concentration of H2, CH4, C2H6,
C2H4, and C2H2 in the transformer oil, the operating status of the transformer can be
judged. The data were provided by a power supply company in the northeast of China.
In transformer fault diagnosis, the fault characteristics are mostly selected from the five
fault-related gas content values of dissolved gas components (H2, CH4, C2H6, C2H4, and
C2H2) in the insulating oil. However, due to the large number of fault types in transform-
ers and the ambiguity of the fault characteristics associated with them, judging only by
their own component content, it is likely to have some impact on the fault discrimination
ability [36]. Therefore, this paper uses the non-coding ratio method to construct nine char-
acteristic parameters and combines five fault-characteristic-related gases of dissolved gas
components in insulating oil, resulting in a total of 14 characteristic parameters combined
to form the transformer fault raw data set. The nine characteristic parameters are: CH4/H2,
C2H2/C2H4, C2H4/C2H6, C2H2/(TH), H2/(H2 + TH), C2H4/(TH), C2H6/(TH), CH4/(TH),
and (CH4 + C2H4)/(TH). Where TH is the total hydrocarbon, if the denominator of the
ratio is 0, the denominator is modified to 10−8 to avoid an invalid value. The original fault
data for some transformers are shown in Table 4.

Table 4. Transformer Original Fault Data.

Characteristic Gas Composition and Content/(µL·L–1)
Fault Type

H2 CH4 C2H6 C2H4 C2H2

45.8 36.9 7.9 7.5 0.3 Normal
49.1 12.2 0.3 3.9 4.8 Low-energy discharge

201.2 107 19.4 136.6 159.5 High-energy discharge
72.2 159 235.3 32.9 0 Medium- to low-temperature overheating
8.4 28.7 13 105 2.1 High-temperature overheating

84.3 8 0.4 7.2 0 Partial discharge

To ensure that the model has good generalization capability and to target the subjec-
tivity of the human selection of fault data, from the acquired raw transformer fault data,
465 sets of characteristic gas-in-oil data were randomly selected in a ratio of 2:1 for training
and testing. The distribution of the training and testing sample data is shown in Table 5.
Normalization was carried out due to the large difference in the magnitude of the raw data,
which would increase the complexity of the model calculation. Six state types were used
as output features for transformer fault diagnosis (i.e., normal (N), low-energy discharge
(D1), high-energy discharge (D2), partial discharge (PD), medium- to low-temperature
overheating (T1), and high-temperature overheating (T2)). The evaluation indicators for the
experiment included the algorithm running time, fault classification, and accuracy, and the
output was the transformer fault type. The details of the training set and test set sample
distribution are shown in Table 5. The database was used to determine the type of fault by
the parameter range of the gas ratio. The three ratio method of diagnosis recommended by
IEC 60599 is shown in Table 6.
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Table 5. Training and Testing Sample Distribution.

Working
Condition Category Tags Total Number

of Samples
Number of Training

Set Samples
Test Set

Sample Size

N 1 30 20 10
D1 2 66 44 22
D2 3 118 80 38
PD 4 38 26 12
T1 5 126 85 41
T2 6 87 56 31

Total 465 311 154

Table 6. DGA Diagnostic Form.

Classification C2H2/C2H4 CH4/H2 C2H4/C2H6

D1 >1 0.1–0.5 >1
D2 0.6–2.5 0.1–1 >2
PD NS <0.1 <0.2
T1 NS >1 (except NS) <1
T2 <0.1 >1 1–4

The framework for the implementation of the ISCSO-BiGRU model for power trans-
former fault diagnosis is shown in Figure 16.

6.1. Comparison of the Impact of Feature Input Selection Methods on BiGRU

The samples were downscaled and analyzed using the L-Isomap method. In the
L-Isomap algorithm, two key parameters must be taken into account: the nearest neighbor
node k and the low-dimensional space dimension d. If the value of k is shifted too much, it
will lead to a longer computing time for the model, and conversely, if the value of k is too
small, the normal data will be treated as outliers by the algorithm. In this paper, through a
survey of the relevant literature, the residual variance was chosen as the basis for judging
k and d. As the residual variance decreases, the obtained fault feature set better reflects the
characteristics of the original transformer. For the value of k, a minimum value of residual
variance close to 0.01 is sufficient. As a result of the experimental tests, the residual variance
satisfies the optimum condition for k = 10. The relationship between the residual variance
and the dimensionality of the feature data is shown in Figure 17.
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As can be seen in Figure 17, the residual variance decreases with the increase in
the dimension of the feature data. When the number of dimensions d increases to 7, the
residual variance is 0.0092 and stays at around 0.01. As the dimension increases, the
residual variance tends to decrease, and then, smooth out, and the fluctuation also tends to
smooth out at this point. This determines that the characteristic data dimension d is 7.

Compared to L-Isomap, Isomap also achieves the above dimensionality reduction, but
the computation time is much longer than that of L-Isomap. A comparison of the dimen-
sionality reduction time is shown in Table 7. The difference in computation time between
the two is three orders of magnitude, and L-Isomap is much more efficient than Isomap.

Table 7. Dimensionality reduction time comparison (d = 7)/s.

Number of Data Sets Isomap Time/s L-Isomap Time/s

150 0.24 0.00983
300 1.395 0.0124
450 3.6946 0.052

We further analyzed L-Isomap combined with BiGRU in BiGRU, KNN, ELM, SVM,
and GRU using data without L-Isomap downscaling and after L-Isomap downscaling. The
accuracy rates are shown in Table 8.

Table 8. Comparison of Diagnosis Results Before and After Dimensionality Reduction of
Different Models.

Without L-Isomap Downscaling Downscaled via L-Isomap

KNN ELM SVM GRU BiGRU KNN ELM SVM GRU BiGRU

Accuracy rate (%) 71.26 69.42 67.36 74.32 77.97 76.64 72.72 70.12 81.81 84.41

According to the results in Table 8, the prediction accuracy of the KNN, ELM, SVM,
GRU, and BiGRU models is improved after dimensionality reduction of the original data
by L-Isomap. The accuracy of the BiGRU model is higher than that of KNN, ELM, SVM,
and GRU before and after dimensionality reduction by the L-Isomap algorithm.

6.2. Comparison of Multi-Model Diagnostic Results

The important features after eL-ISOMP algorithm selection were used as diagnostic
model inputs. Four mainstream supervised learning models, K-nearest neighbor (KNN),
ELM, SVM, and GRU, were selected for training with default parameters, and the test
results were compared with the traditional BiGRU model. The results are shown in Table 9
and Figures 18 and 19. In Table 9 and Figures 18 and 19, it can be seen that the BiGRU model
is more sensitive to normal and high-energy discharge in transformer fault diagnosis, and
slightly less effective in partial discharge diagnosis. However, the combined fault diagnosis
accuracy is the highest among the five models.

Table 9. Diagnostic Accuracy of Different Models.

Type of Fault
Correct Diagnosis Rate

KNN ELM SVM GRU BiGRU

N 0.7000 0.7000 0.9000 0.8000 0.9000
D1 0.7555 0.7272 0.6818 0.7272 0.8636
D2 0.7520 0.7368 0.7105 0.8157 0.8684
PD 0.8597 0.6666 0.6666 0.8333 0.7500
T1 0.7694 0.7073 0.6829 0.8048 0.8292
T2 0.7653 0.7741 0.6774 0.8387 0.8387

Average 0.7664 0.7272 0.7012 0.8181 0.8441
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To illustrate the computational stability of BiGRU, 100 samples were randomly selected
from a sample set of 465. They were divided into a training set and a testing set according
to a 2:1 ratio, and then, these training samples were used to train different models, and the
results were tallied. As can be seen in Table 10, the average accuracy of transformer fault
diagnosis using BiGRU is 0.8502. In comparison with the traditional five main monitoring
learning models, the power transformer fault diagnosis model using BiGRU is found to
have the highest average accuracy. In terms of time consumption, the time consumption
of fault diagnosis models based on deep learning methods is generally higher than that
of machine learning methods. However, in comparison, BiGRU has the highest accuracy
rate of all the methods. Although machine learning is easy and fast to use, the accuracy
rate is low and does not meet the needs of today’s industry. In comparison, BiGRU has
the highest accuracy and takes only a little more time than ELM and SVM. All things
considered, BiGRU is the best fault diagnosis method in terms of the practical engineering
performance of all the methods involved in the comparison.

Table 10. Repeat Training Results for Different Models.

Models Highest
Accuracy Rate

Minimum
Accuracy Rate

Average
Accuracy Rate Time (s)

KNN 0.7356 0.7042 0.7232 26.7653
ELM 0.7914 0.7086 0.7543 13.3365
SVM 0.8030 0.7118 0.7246 15.8396
GRU 0.8312 0.7256 0.7879 23.1123

BiGRU 0.8923 0.8242 0.8502 22.8153

6.3. Analysis of Diagnostic Results of Different BiGRU Models

Since the hyperparameters of the BiGRU model had a great influence on its training
and learning effect, the ISCSO method was used to optimize the parameter set. It was also
compared with SCSO, WOA, GWO, and PSO methods. The maximum number of iterations
was 100 and the adaptation degree value was based on the transformer fault diagnosis
accuracy. The adaptation degree variation curve is shown in Figure 19.

As can be seen in Figure 20, PSO converges the slowest and has the lowest fitness value,
reaching convergence after 55 iterations and converging the slowest. WOA improves diag-
nostic accuracy and convergence speed compared to PSO and GWO, reaching convergence
after 32 iterations. The traditional SCSO algorithm is optimal after 31 iterations, resulting
in poor local optimization performance due to its poor global optimization performance.
In contrast, the improved ISCSO reaches convergence after 15 iterations and has the best
adaptivity. This shows that the algorithm outperforms the other four methods in terms of
global search performance and convergence speed.
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6.4. Comparative Analysis of Different Fault Diagnosis Models

A total of 154 sets of test sample data were used for test training. The features based
on L-ISOMP screening were input to BiGRU for diagnostic accuracy experiments of the
fault diagnosis model. The ISCSO classification results were compared and analyzed with
the SCSO-, WOA-, GWO-, and PSO-optimized BiGRU diagnostic results. The diagnostic
results of each method are shown in Table 11, and the classification accuracies are shown in
Figures 21 and 22.

Table 11. Results of Correct Transformer Fault Diagnosis.

Fault Type PSO GWO WOA SCSO ISCSO

N 90 70 80 80 100
D1 81.81 90.90 86.36 81.81 95.45
D2 84.21 86.84 89.47 92.10 86.36
PD 58.33 66.67 83.33 83.33 94.73
T1 80.48 85.36 87.80 90.24 97.56
T2 93.54 87.09 90.32 93.54 96.77
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As can be seen in Figures 21 and 22, after repeated iterations, ISCSO-BiGRU has
obvious advantages in the application of transformer fault diagnosis. There were 26 fault
diagnosis errors for the PSO-BiGRU model, 24 errors for GWO-BiGRU, 19 errors for WOA-
BiGRU, 17 errors for SCSO-BiGRU, and 8 errors for ISCSO-BiGRU. The improved ISCSO
algorithm improved the rate of correct fault diagnosis by 11.69%, 10.39%, 7.14%, and
5.9% compared with PSO, GWO, WOA, and SCSO algorithms, respectively.

After verifying and comparing the experimental results of the five models, the diagnos-
tic accuracy of the ISCSO-BiGRU transformer fault diagnosis model proposed in this paper
can reach 94.8%. In contrast, the diagnostic accuracies using the conventional PSO-BiGRU,
GWO-BiGRU, WOA-BiGRU, and SCSO-BiGRU diagnostic models are 83.11%, 84.41%,
87.66%, and 88.9%, respectively. The results demonstrate that optimizing the hyperparame-
ters of BiGRU using the ISCSO algorithm results in a higher correct fault identification rate
than the PSO, GWO, WOA, and SCSO algorithms to optimize the parameters of BiGRU.

7. Conclusions

This paper advances a new power transformer fault diagnosis method based on
the BiGRU. First, L-ISOMP is used to extract the features of DGA data. Then, aimed
at the defects of SCSO, four improved methods are proposed: logistic chaotic mapping,
the water wave dynamic factor, inertia weight, and the golden sine strategy. Finally, a
transformer fault diagnosis method based on L-ISOMP and SCSO-BiGRU is constructed,
and related experiments are used to test its diagnostic performance. Significantly, the
following conclusions are obtained:

(1) Using L-ISOMP for the feature extraction of fault sample data can reduce the
dimensionality of the feature vector, reduce the correlation between variables, and im-
prove diagnostic accuracy after feature extraction. Compared with before dimensionality
reduction, the filtering and dimensionality reduction of transformer fault features using
the L-ISOMP method can better improve model performance.

(2) The improved sand cat swarm algorithm with logistic chaotic mapping, the water
wave dynamic factor, inertia weight, and the golden sine strategy enriches the population
diversity, improves the global search performance, balances the global search and local
search balancing ability, and improves the defect of easily falling into the local optimum in
the search process.

(3) The improved sand cat swarm algorithm ISCSO optimizes the parameters of BiGRU,
which can improve the generalization ability and the rate of correct BiGRU classification.
Compared and analyzed with the PSO-BiGRU, GWO-BiGRU, WOA-BiGRU, and SCSO-
BiGRU fault diagnosis models, the diagnosis rates are 83.11%, 84.41%, 88.9%, and 87.66%,
respectively. The ISCSO-BiGRU diagnosis rate can reach 94.8%, and can more effectively
make a fast, accurate, and reliable diagnosis. It has a strong generalization ability and has
certain practical significance in theoretical research and engineering.
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In conclusion, the fault diagnosis method proposed in this paper has excellent diagnos-
tic performance, can diagnose transformer faults accurately, and has high reference values.
It can meet practical engineering needs, but as high accuracy requires a long training time,
investigating how to further optimize the model and reduce the training time of the model
with higher accuracy is the next research direction.
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