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Abstract Swarm intelligence is a research branch that models the population of
interacting agents or swarms that are able to self-organize. An ant colony, a flock of
birds or an immune system is a typical example of a swarm system. Bees’ swarming
around their hive is another example of swarm intelligence. Artificial Bee Colony
(ABC) Algorithm is an optimization algorithm based on the intelligent behaviour of
honey bee swarm. In this work, ABC algorithm is used for optimizing multivariable
functions and the results produced by ABC, Genetic Algorithm (GA), Particle Swarm
Algorithm (PSO) and Particle Swarm Inspired Evolutionary Algorithm (PS-EA) have
been compared. The results showed that ABC outperforms the other algorithms.

Keywords Swarm intelligence · Artificial bee colony · Particle swarm optimization ·
Genetic algorithm · Particle swarm inspired evolutionary algorithm ·
Numerical function optimization

1 Introduction

Several modern heuristic algorithms have been developed for solving combinatorial
and numeric optimization problems [1]. These algorithms can be classified into differ-
ent groups depending on the criteria being considered, such as population based,
iterative based, stochastic, deterministic, etc. While an algorithm working with a set
of solutions and trying to improve them is called population based, the one using
multiple iterations to approach the solution sought is named as iterative algorithm.
If an algorithm employs a probabilistic rule for improving a solution then it is called
probabilistic or stochastic. Another classification can be made depending on the nature
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of phenomenon simulated by the algorithm. This type of classification mainly has two
important groups of population based algorithms: evolutionary algorithms (EA) and
swarm intelligence based algorithms. The most popular EA is Genetic Algorithm
(GA). GA attempts to simulate the phenomenon of natural evolution. In natural
evolution, each species searches for beneficial adaptations in an ever-changing envi-
ronment. As species evolve, the new attributes are encoded in the chromosomes of
individual members. This information does change by random mutation, but the real
driving force behind the evolutionary development is the combination and exchange
of chromosomal material during breeding. Although sporadic attempts have been
made to incorporate these principles in optimization routines since the early 1960s,
GAs were first established on a sound theoretical basis by Holland [2]. The term
swarm is used in a general manner to refer to any restrained collection of interact-
ing agents or individuals. The classical example of a swarm is bees swarming around
their hive but the metaphor can easily be extended to other systems with a similar
architecture. An ant colony can be thought of as a swarm whose individual agents are
ants; a flock of birds is a swarm of birds. An immune system [3] is a swarm of cells
and molecules while a crowd is a swarm of people. Particle swarm optimization (PSO)
algorithm which simulates the social behaviour of bird flocking or fish schooling was
introduced by Eberhart and Kennedy in 1995 [4]. PSO is a population based stochastic
optimization technique and well adapted to the optimization of nonlinear functions in
multidimensional space. PSO has received significant interest from researchers study-
ing in different research areas and has been applied to several real-world problems [5].
An improved version of PSO algorithm is the Particle Swarm Inspired Evolutionary
Algorithm (PS-EA) which is a hybrid model of EA and PSO [21]. It compensates
the limitations of PSO when solving real-world problems. In order to avoid infeasible
individuals resulted from faulty updates, PS-EA incorporates PSO with heuristics of
EA in the population generator and mutation operator while retaining the workings
of PSO.

Several approaches have been proposed to model the specific intelligent behav-
iours of honey bee swarms and applied for solving combinatorial type problems [6–14].
Tereshko and Loengarov considered a bee colony as a dynamical system gathering
information from an environment and adjusting its behaviour in accordance to it. They
established a robotic idea on the foraging behaviour of bees. Usually, all these robots
are physically and functionally identical, so that any robot can be randomly replaced
by the others. The swarm possesses a significant tolerance; the failure in a single
agent does not stop the performance of the whole system. The individual robots, like
insects, have limited capabilities and limited knowledge of the environment. On the
other hand, the swarm develops collective intelligence. The experiments showed that
insect-like robots are successful in real robotic tasks [6]. They also developed a min-
imal model of forage selection that leads to the emergence of collective intelligence
which consists of three essential components: food sources, employed foragers and
unemployed foragers. This model defines two leading modes of the behaviour: recruit-
ment to a nectar source and abandonment of a source [7,8]. Teodorović suggested to
use the bee swarm intelligence in the development of artificial systems aimed at solv-
ing complex problems in traffic and transportation [9,10]. Teodorović also proposed
the Bee Colony Optimization Metaheuristic (BCO) which is capable of solving deter-
ministic combinatorial problems, as well as combinatorial problems characterized by
uncertainty [11]. Drias et al. introduced a new intelligent approach or meta-heuris-
tic called Bees Swarm Optimization (BSO), which is inspired from the behaviour of
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real bees and they adapted it to the features of the maximum weighted satisfiability
(max-sat) problem [12]. Similarly, Benatchba et al. introduced a meta-heuristic to
solve a 3-sat problem based on the process of bees’ reproduction [13]. Wedde et al.
presented a novel routing algorithm called BeeHive, which has been inspired by the
communicative and evaluative methods and procedures of honey bees. In BeeHive
algorithm, bee agents travel through network regions called foraging zones. On their
way their information on the network state is delivered for updating the local routing
tables [14].

The works given in previous paragraph include the combinatorial type of prob-
lems. There is only one numerical optimization algorithm in the literature based on
intelligent behaviour of honey bee swarm [15]. In Ref. [15], Yang developed a virtual
bee algorithm (VBA) to solve the numeric function optimizations. For the functions
with two-parameters, a swarm of virtual bees is generated and the swarm is started
to move randomly in the phase space. These bees interact when they find some tar-
get nectar corresponding to the encoded values of the function. The solution for the
optimization problem can be obtained from the intensity of bee interactions [15]. For
optimizing multivariable functions, Karaboga has described an artificial bee colony
(ABC) algorithm [16] which is different from the virtual bee algorithm. Basturk and
Karaboga compared the performance of ABC algorithm with the performance of GA
in Ref. [17].

In this paper, we compared the performance of the ABC algorithm with that of
GA, PSO and PS-EA on a set of multi-dimensional numerical optimization problems.
These algorithms are chosen because they also are swarm intelligence and population
based algorithms as the ABC algorithm. In Sect. 2, the proposed ABC algorithm is
described, in Sect. 3 experiments and results are presented.

2 Proposed artificial bee colony (ABC) algorithm

In the ABC algorithm, the colony of artificial bees contains three groups of bees:
employed bees, onlookers and scouts. A bee waiting on the dance area for making
decision to choose a food source, is called an onlooker and a bee going to the food
source visited by itself previously is named an employed bee. A bee carrying out
random search is called a scout. In the ABC algorithm, first half of the colony consists
of employed artificial bees and the second half constitutes the onlookers. For every
food source, there is only one employed bee. In other words, the number of employed
bees is equal to the number of food sources around the hive. The employed bee whose
food source is exhausted by the employed and onlooker bees becomes a scout. The
main steps of the algorithm are given below:

• Initialize.
• REPEAT.

(a) Place the employed bees on the food sources in the memory;
(b) Place the onlooker bees on the food sources in the memory;
(c) Send the scouts to the search area for discovering new food sources.

• UNTIL (requirements are met).

In the ABC algorithm, each cycle of the search consists of three steps: sending the
employed bees onto the food sources and then measuring their nectar amounts; select-
ing of the food sources by the onlookers after sharing the information of employed
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bees and determining the nectar amount of the foods; determining the scout bees
and then sending them onto possible food sources. At the initialization stage, a set of
food source positions are randomly selected by the bees and their nectar amounts are
determined. Then, these bees come into the hive and share the nectar information of
the sources with the bees waiting on the dance area within the hive. At the second
stage, after sharing the information, every employed bee goes to the food source area
visited by herself at the previous cycle since that food source exists in her memory, and
then chooses a new food source by means of visual information in the neighbourhood
of the present one. At the third stage, an onlooker prefers a food source area depend-
ing on the nectar information distributed by the employed bees on the dance area.
As the nectar amount of a food source increases, the probability with which that food
source is chosen by an onlooker increases, too. Hence, the dance of employed bees
carrying higher nectar recruits the onlookers for the food source areas with higher
nectar amount. After arriving at the selected area, she chooses a new food source in
the neighbourhood of the one in the memory depending on visual information. Visual
information is based on the comparison of food source positions. When the nectar of
a food source is abandoned by the bees, a new food source is randomly determined by
a scout bee and replaced with the abandoned one. In our model, at each cycle at most
one scout goes outside for searching a new food source and the number of employed
and onlooker bees were equal.

In the ABC algorithm, the position of a food source represents a possible solution
of the optimization problem and the nectar amount of a food source corresponds
to the quality (fitness) of the associated solution. The number of the employed bees
or the onlooker bees is equal to the number of solutions in the population. At the
first step, the ABC generates a randomly distributed initial population P(G = 0)

of SN solutions (food source positions), where SN denotes the size of population.
Each solution (food source) xi (i = 1, 2, . . . , SN) is a D-dimensional vector. Here,
D is the number of optimization parameters. After initialization, the population of
the positions (solutions) is subjected to repeated cycles, C = 1, 2, . . . , Cmax, of the
search processes of the employed bees, the onlooker bees and scout bees. An artificial
employed or onlooker bee probabilistically produces a modification on the position
(solution) in her memory for finding a new food source and tests the nectar amount
(fitness value) of the new source (new solution). In case of real bees, the production of
new food sources is based on a comparison process of food sources in a region depend-
ing on the information gathered, visually, by the bee. In our model, the production
of a new food source position is also based on a comparison process of food source
positions. However, in the model, the artificial bees do not use any information in
comparison. They randomly select a food source position and produce a modification
on the one existing in their memory as described in (2.2). Provided that the nectar
amount of the new source is higher than that of the previous one the bee memorizes
the new position and forgets the old one. Otherwise she keeps the position of the pre-
vious one. After all employed bees complete the search process, they share the nectar
information of the food sources (solutions) and their position information with the
onlooker bees on the dance area. An onlooker bee evaluates the nectar information
taken from all employed bees and chooses a food source with a probability related to
its nectar amount. As in the case of the employed bee, she produces a modification on
the position (solution) in her memory and checks the nectar amount of the candidate
source (solution). Providing that its nectar is higher than that of the previous one, the
bee memorizes the new position and forgets the old one.
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An onlooker bee chooses a food source depending on the probability value asso-
ciated with that food source, pi, calculated by the following expression (2.1):

pi = fiti
SN∑

n=1
fitn

, (2.1)

where fiti is the fitness value of the solution i evaluated by its employed bee, which is
proportional to the nectar amount of the food source in the position i and SN is the
number of food sources which is equal to the number of employed bees (BN). In this
way, the employed bees exchange their information with the onlookers.

In order to produce a candidate food position from the old one, the ABC uses the
following expression (2.2):

vij = xij + φij(xij − xkj), (2.2)

where k ∈ {1, 2, . . . , BN} and j ∈ {1, 2, . . . , D} are randomly chosen indexes. Although
k is determined randomly, it has to be different from i. φi,j is a random number between
[−1, 1]. It controls the production of a neighbour food source position around xi,j and
the modification represents the comparison of the neighbour food positions visually
by the bee. Equation 2.2 shows that as the difference between the parameters of the
xi,j and xk,j decreases, the perturbation on the position xi,j decreases, too. Thus, as
the search approaches to the optimum solution in the search space, the step length is
adaptively reduced.

If a parameter produced by this operation exceeds its predetermined limit, the
parameter can be set to an acceptable value. In this work, the value of the parameter
exceeding its limit is set to its limit value.

The food source whose nectar is abandoned by the bees is replaced with a new food
source by the scouts. In the ABC algorithm this is simulated by randomly producing a
position and replacing it with the abandoned one. In the ABC algorithm, if a position
cannot be improved further through a predetermined number of cycles called limit
then that food source is assumed to be abandoned.

After each candidate source position vi,j is produced and then evaluated by the
artificial bee, its performance is compared with that of xi,j. If the new food has equal
or better nectar than the old source, it is replaced with the old one in the memory.
Otherwise, the old one is retained. In other words, a greedy selection mechanism is
employed as the selection operation between the old and the current food sources.

ABC algorithm in fact employs four different selection processes: (1) a global selec-
tion process used by the artificial onlooker bees for discovering promising regions as
described by (2.1), (2) a local selection process carried out in a region by the artificial
employed bees and the onlookers depending on local information (in case of real bees,
this information includes the colour, shape and fragrance of the flowers) (bees will
not be able to identify the type of nectar source until they arrive at the right location
and discriminate among sources growing there based on their scent) for determining
a neighbour food source around the source in the memory as defined in (2.2), (3) a
local selection process called greedy selection process carried out by all bees in that if
the nectar amount of the candidate source is better than that of the present one, the
bee forgets the present one and memorizes the candidate source. Otherwise, the bee
keeps the present one in the memory. (4) a random selection process carried out by
scouts.
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It is clear from the above explanation that there are three control parameters used
in the basic ABC: The number of the food sources which is equal to the number of
employed or onlooker bees (SN), the value of limit and the maximum cycle number
(MCN).

In the case of honey bees, the recruitment rate represents a measure of how quickly
the bee colony finds and exploits a newly discovered food source. Artificial recruit-
ing could similarly represent the measurement of the speed with which the feasible
solutions or the good quality solutions of the difficult optimization problems can be
discovered. The survival and progress of the bee colony are dependent upon the
rapid discovery and efficient utilization of the best food resources. Similarly, the suc-
cessful solution of difficult engineering problems is connected to the relatively fast
discovery of good solutions especially for the problems that need to be solved in real
time. In a robust search process, exploration and exploitation processes must be car-
ried out together. In the ABC algorithm, while onlookers and employed bees carry
out the exploitation process in the search space, the scouts control the exploration
process.

3 Experiments

3.1 Benchmark functions

A function is multimodal if it has two or more local optima. A function of variables
is separable if it can be rewritten as a sum of functions of just one variable [18]. The
separability is closely related to the concept of epistasis or interrelation among the
variables of the function. The problem is even more difficult if the function is also
multimodal. The search process must be able to avoid the regions around local minima
in order to approximate, as far as possible, to the global optimum. The most complex
case appears when the local optima are randomly distributed in the search space. The
dimensionality of the search space is another important factor in the complexity of
the problem [19]. A study of the dimensionality problem and its features was carried
out by Friedman [20]. In order to compare the performance of the proposed ABC
with PSO, PS-EA and GA, we used five classical benchmark functions as given in
Ref. [21].

The first function is Griewank function whose value is 0 at its global minimum
(0,0,…,0) (3.1). Initialization range for the function is [−600,600]. Griewank function
has a product term that introduces interdependence among the variables. The aim
is to overcome the failure of the techniques that optimize each variable indepen-
dently. The optima of Griewank function are regularly distributed. Since the number
of local optima increases with the dimensionality, this function is strongly multimodal.
The multimodality disappears for sufficiently high dimensionalities (n > 30) and the
problem seems unimodal.

f1(�x) = 1
4, 000

(
D∑

i=1

(x2
i )

)

−
(

D∏

i=1

cos(
xi√

i
)

)

+ 1. (3.1)

The second function is Rastrigin function whose value is 0 at its global minimum
(0,0,…,0) (3.2). Initialization range for the function is [−15,15]. This function is based
on Sphere function with the addition of cosine modulation to produce many local
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minima. Thus, the function is multimodal. The locations of the minima are regularly
distributed. The difficult part about finding optimal solutions to this function is that
an optimization algorithm easily can be trapped in a local optimum on its way towards
the global optimum.

f2(�x) =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10). (3.2)

The third function is Rosenbrock function whose value is 0 at its global minimum
(1,1,…,1) (3.3). Initialization range for the function is [−15,15]. The global optimum
is inside a long, narrow, parabolic shaped flat valley. Since it is difficult to converge
the global optimum, the variables are strongly dependent, and the gradients gener-
ally do not point towards the optimum, this problem is repeatedly used to test the
performance of the optimization algorithms.

f3(�x) =
D∑

i=1

100(x2
i − xi+1)

2 + (1 − xi)
2. (3.3)

The forth function is Ackley function whose value is 0 at its global minimum
(0,0,…,0) (3.4). Initialization range for the function is [−32.768,32.768]. Ackley has an
exponential term that covers its surface with numerous local minima. The complex-
ity of this function is moderated. An algorithm that only uses the gradient steepest
descent will be trapped in a local optima, but any search strategy that analyses a wider
region will be able to cross the valley among the optima and achieve better results. In
order to obtain good results for this function, the search strategy must combine the
exploratory and exploitative components efficiently.

f4(�x) = 20 + e − 20e

(

−0.2

√

1
D

D∑

i=1
x2

i

)

− e
1
D

D∑

i=1
cos(2πxi)

(3.4)

The fifth function is Schwefel function whose value is 0 at its global minimum
(420.9867, 420.9867,…, 420.9867) (3.5). Initialization range for the function is [−500,
500]. The surface of Schwefel function is composed of a great number of peaks
and valleys. The function has a second best minimum far from the global minimum
where many search algorithms are trapped. Moreover, the global minimum is near
the bounds of the domain.

f5(�x) = D ∗ 418.9829 +
D∑

i=1

−xi sin(
√|xi|). (3.5)

3.2 Settings for algorithms

Common control parameters of the algorithms are population size and the number of
maximum generation. In the experiments, maximum number of generations were 500,
750 and 1,000 for the dimensions 10, 20 and 30, respectively; and the population size
was 125 as in Ref. [21]. Other control parameters of the algorithms and the schemes
used in Ref. [21] are presented below; and also the values of these control parameters
employed for GA, PSO and PS-EA in Ref. [21] are presented.
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3.2.1 GA settings

The used GA scheme presented in Ref. [21] is as follows: single point uniform cross-
over with the rate of 0.95, random selection mechanism, gaussian mutation with the
rate of 0.1 and linear ranking fitness function are employed. A child chromosome is
added to the population in child production scheme.

3.2.2 PSO settings

PSO equations are given with the expressions in (3.6) and (3.7).

�υ(t + 1) = ω�υ(t) + φ1rand(0, 1)(�p(t) − �x(t))

+φ2rand(0, 1)(�g(t) − �x(t)), (3.6)

�x(t + 1) = �x(t) + �υ(t + 1), (3.7)

where ω is the additional inertia weight, which varies from from 0.9 to 0.7 linearly
with the iterations. The learning factors, φ1 and φ2 are set to be 2. The upper and lower
bounds for υ, (υmin, υmax) are set to be the maximum upper and lower bounds of x,
i.e. (υmin, υmax) = (xmin, xmax). If the sum of accelerations would cause the velocity on
that dimension υ(t + 1), to exceed υmin or υmax, then the velocity on that dimension
υ(t + 1), is limited to υmin or υmax, respectively [21].

3.2.3 PS-EA settings

Particle Swarm Inspired Evolutionary Algorithm (PS-EA) is a hybridized algorithm
combining concepts of PSO and EA. The main module of PS-EA is the Self-updating
Mechanism (SUM), which makes use of the Inheritance Probability Tree (PIT) to
do the updating operation of each individual in the population. A Dynamic Inher-
itance Probability Adjuster (DIPA) is incorporated in SUM to dynamically adjust
the inheritance probabilities in PIT based on the convergence rate or status of the
algorithm in a particular iteration [21]. The purpose of setting the initial inheritance
probabilities differently is to observe whether DIPA works properly to adjust the
inheritance probabilities back to that ensures an effective search. An infeasible set of
initial inheritance probabilities are used to test the performance of DIPA module of
PS-EA [21].

3.2.4 ABC settings

ABC algorithm has a few control parameters: Maximum number of cycles (MCN)
equals to the maximum number of generation and the colony size equals to the
population size, i.e. 125, as in the study presented in Ref. [21] . The percentage of
onlooker bees was 50% of the colony, the employed bees were 50% of the colony and
the number of scout bees was selected as one. The increase in the number of scouts
encourages the exploration as the increase of onlookers on a food source increases the
exploitation. Each of the experiments was repeated 30 times with different random
seeds. The mean function values of the best solutions found by the algorithms for
different dimensions have been recorded. The mean and the standard deviations of
the function values obtained by the ABC, GA, PSO, PS-EA are given in Table 1.
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Fig. 1 The mean best values obtained for f1 by GA, PSO, PS-EA and ABC1 after 500, 750 and
1,000 cycles for dimensions 10, 20 and 30

Fig. 2 The mean best values obtained for f2 by GA, PSO, PS-EA and ABC1 after 500, 750 and
1,000 cycles for dimensions 10, 20 and 30

Fig. 3 The mean best values obtained for f3 by GA, PSO, PS-EA and ABC1 after 500, 750 and
1,000 cycles for dimensions 10, 20 and 30

In order to show the performance of the ABC algorithm more clearly, the graph-
ical representations of the results in Table 1 are reproduced in Figs. 1–5. Table 1 and
the graphics indicate that while the performance of PS-EA algorithm deteriorates in
optimizing difficult functions like Griewank and Ackley functions, the ABC algorithm
shows better performance on them. However, PS-EA and GA outperform the ABC
algorithm on only Schwefel function for dimension 20 and 30 by these settings. After
obtaining results for 500, 750 and 1,000 cycles, the ABC algorithm was run for 1,000,
1,500 and 2,000 cycles instead of 500, 750 and 1,000 cycles for dimension 10, 20 and
30, respectively, to see whether the ABC algorithm can improve the solutions for
this problem when the value of MCN is increased. The results produced in this case
are shown in the ABC2 column of Table 1. As seen from the results in this column,
the ABC algorithm can converge to the minimum of Schwefel function, too. In other
words, this proves that the ABC algorithm has the ability of getting out of a local
minimum in the search space and finding the global minimum. In the ABC algo-
rithm, while the exploration process carried out by artificial scouts is good for global
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Fig. 4 The mean best values obtained for f4 by GA, PSO, PS-EA and ABC1 after 500, 750 and
1,000 cycles for dimensions 10, 20 and 30

Fig. 5 The mean best values obtained for f5 by GA, PSO, PS-EA and ABC1 after 500, 750 and
1,000 cycles for dimensions 10, 20 and 30

Fig. 6 The mean best values obtained for f5 by GA, PSO, PS-EA, ABC1 after 500, 750 and 1,000 cycles
and ABC2 after 1,000, 1,500 and 2,000 cycles

optimization, the exploitation process managed by artificial onlookers and employed
bees is very efficient for local optimization. Therefore, the ABC algorithm is quite
successful in optimizing multivariable and multimodal functions. In Fig. 6, the mean
best values of GA, PSO, PS-EA, ABC1 and ABC2 are given graphically for f5 when
the value of MCN is set to 1,000, 1,500 and 2,000. A demo version of the Artificial
Bee Colony Algorithm has been prepared and it is presented on its homepage [22].

4 Conclusion

This paper compared the performance of the ABC with that of GA, PSO and PS-EA
which are also swarm intelligence and population based algorithms as the ABC algo-
rithm. In order to demonstrate the performance of the ABC algorithm, PSO, PS-EA,
GA and ABC algorithms were tested on five high dimensional numerical benchmark
functions that have multimodality. From the simulation results it was concluded that
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the proposed algorithm has the ability to get out of a local minimum and can be
efficiently used for multivariable, multimodal function optimization. There are sev-
eral issues which remain as the scopes for future studies such as the investigation
of the control parameters’ effect on the performance of the ABC algorithm and the
convergence speed of the algorithm.
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