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SUMMARY

 Association mapping of complex traits typically employs tagSNP genotype data

to identify functional variation within a region of interest. However, considerable debate

exists regarding the most powerful strategy for utilizing such tagSNP data for inference.

A popular approach tests each tagSNP within the region individually, but such tests could

lose power due to incomplete linkage disequilibrium between the genotyped tagSNP and

the functional variant. Alternatively, one can jointly test all tagSNPs simultaneously

within the region (using genotypes or haplotypes), but such multivariate tests have large

degrees of freedom that can also compromise power. Here, we consider a semiparametric

model for quantitative-trait mapping that uses genetic information from multiple tagSNPs

simultaneously in analysis but produces a test statistic with reduced degrees of freedom

compared to existing multivariate approaches. We fit this model using a dimension-

reducing technique called least-squares kernel machines, which we show is identical to

analysis using a specific linear mixed model (which we can fit using standard software

packages like SAS and R). Using simulated SNP data based on real data from the

International HapMap Project, we demonstrate our approach often has superior

performance for association mapping of quantitative traits compared to the popular

approach of single-tagSNP testing. Our approach is also flexible, as it allows easy

modeling of covariates and, if interest exists, high-dimensional interactions among

tagSNPs and environmental predictors.
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INTRODUCTION

 The arrival of improved high-throughput genotyping technology has accelerated

the use of association methods for dissecting the genetic mechanisms of complex traits.

Using panels of single-nucleotide polymorphisms (SNPs), association methods seek to

identify those genetic markers that are either functional or are in linkage disequilibrium

(LD) with a functional variant. In the process of association mapping of a complex trait,

interest will eventually focus on regions or genes that are identified either from

interesting signals from previous gene-mapping work or from perceived biological

relevance to the trait of interest. To examine whether such a region harbors a functional

variant, a study could genotype and subsequently analyze all polymorphic SNPs in the

genetic interval. However, the likely existence of LD in the region will induce correlation

among such SNPs such that many of the genetic markers provide redundant information

for association analysis. Therefore, many association studies instead genotype a reduced

set of SNPs within the region (called tagSNPs) that effectively captures the genetic

variation from all SNPs within the region but substantially reduces the genotype cost.

Studies can identify relevant tagSNPs by applying existing selection algorithms (Carlson

et al. 2004; Stram 2004; de Bakker et al. 2005) to SNP genotype data from existing

public databases of human genetic variation, such as the International HapMap Project

(2005).

  In this article, we focus on the use of tagSNP data to identify genetic regions that

influence a quantitative trait of interest using samples collected under a population-based

study design. Currently, considerable debate exists regarding the most powerful manner

by which to utilize such tagSNP data in association analysis. A simple and popular

approach considers association testing of each individual tagSNP with the quantitative

trait of interest (using regression or ANOVA methods) followed by inference on the

maximum of the resulting single-tagSNP statistics. Due to the testing of multiple

correlated tagSNPs within a region, one must implement an appropriate multiple-testing
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procedure to ensure appropriate significance levels. Such multiple-testing corrections

may include permutation procedures, efficient Monte Carlo procedures (Lin 2005), or a

Bonferroni correction based on the effective number of independent tests within the

candidate region (Nyholt 2004).

 While the testing of individual tagSNPs is simple to implement, such methods

may have low power if each tested tagSNP is in incomplete LD with the (untyped)

functional variant. This potential liability of single-tagSNP approaches led to the

development of novel statistical approaches that consider the joint effects of tagSNPs

simultaneously within analysis. Such multivariate tagSNP analyses of quantitative traits

typically apply multilinear regression to model a subject's trait as a function of a vector of

covariates corresponding to either the subject's genotypes at the various tagSNPs or the

subject's pair of tagSNP-based haplotypes (Schaid et al. 2002; Zaykin et al. 2002; Tzeng

et al. 2006). Such regression procedures produce omnibus test statistics that follow a ;#

distribution with degrees of freedom equal to either the number of modeled tagSNPs (for

a genotype-based analysis) or the number of observed haplotypes minus one (for a

haplotype-based analysis)

 As these multivariate approaches combine genetic information from multiple

tagSNPs simultaneously into analysis, they intuitively should provide greater power to

detect functional variants compared to tests of individual tagSNPs. However, many

simulation studies have found the opposite result to be true: multivariate approaches

typically have similar or reduced power relative to single-SNP procedures (Chapman et

al. 2003; Roeder et al. 2005; Rosenberg et al. 2006) unless the trait originates from the

effect of a specific haplotype rather than a specific SNP (Rosenberg et al. 2006). An

explanation for this surprising finding is that multivariate procedures produce test

statistics with degrees of freedom that will increase substantially (particularly in the

situation of haplotype analysis) with the number of modeled tagSNPs within the region

(Tzeng et al. 2006). As the degrees of freedom of the test statistic increases, it follows
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that the power of the omnibus test will decrease. Therefore, it is likely that any

information gained from joint consideration of multiple tagSNPs in association analysis

of a quantitative trait will subsequently be lost by dealing with test statistics with large

degrees of freedom.

 Given these results, we seek to develop a novel statistical approach for

association mapping of quantitative traits that incorporates all tagSNPs (and, hence, all

valuable genetic information) within a region into the association analysis but produces

test statistics with smaller degrees of freedom than the multivariate approaches described

earlier. Existing statistical work in this area generally approaches the problem in one of

two broad ways. The first strategy applies a dimension-reduction procedure such as a

Fourier transformation (Wang and Elston 2007) or principal components (Gauderman et

al. 2007) to the tagSNP data in the region to produce a reduced set of orthogonal genetic

predictors that contain the majority of information found in the original tagSNPs. One

then models this reduced set of genetic predictors within a multilinear regression

framework and constructs appropriate omnibus tests for inference (which should have

smaller degrees of freedom than a standard multivariate test). The second strategy

calculates a measure of average tagSNP similarity for each pair of subjects and compares

the pairwise genetic similarity with the pairwise trait similarity (Schaid et al. 2005;

Wessel and Schork 2006). One can measure such tagSNP similarity using a 'kernel'

function that reduces a comparison of multiple tagSNPs for a pair of subjects into a single

scalar factor. Due to this phenomenon, resulting statistics using kernel functions typically

have small degrees of freedom; for example, Schaid et al. (2005) constructed a kernel-

based U-statistic for case-control association analysis that has only 1 degree of freedom.

In addition, the use of a kernel function is appealing since it allows for the inclusion of

prior information (such as bioinformatic relevance or association signals from tagSNPs in

an independent study) in the form of weights to assist in the evaluation of the tagSNP

similarity. One drawback of these existing similarity-based approaches is that they do not

Hosted by The Berkeley Electronic Press



6

easily allow for covariates and sometimes require computationally-intensive permutation

procedures to establish significance (Wessel and Schork 2006).

 In this article, we propose a novel approach for association mapping of

quantitative traits which uses all tagSNP data simultaneously in analysis but produces

test statistics with smaller degrees of freedom than multivariate tagSNP approaches. We

base our approach on a semiparametric-regression framework (Ruppert et al. 2003) that

regresses the quantitative trait of interest on a smooth nonparametric function of the

tagSNP genotypes within the region, adjusting for the parametric effects of any

covariates of interest. As we will show, we can model this nonparametric function of the

tagSNP data in a reduced-dimension space that is induced by a user-defined kernel

function. As a result, statistics that test for association between the trait and the

nonparametric function of the tagSNP effects should have reduced degrees-of-freedom

compared to existing multivariate tests and, hence, should have improved power to detect

functional variants. Unlike existing dimension-reduction techniques, we will show our

approach permits us to incorporate valuable prior information  analysis via the  in the

kernel function. Unlike existing similarity approaches, we will show our approach can

easily allow for covariates and interaction terms. Further, we can rely on asymptotic

theory to establish significance of the resulting tests, avoiding computationally-intensive

permutation procedures.

 We estimate the parameters in our proposed semiparametric model using an

elegant dimension-reduction technique called least-squares kernel machines (LSKM)

(Rasmussen and Williams 2006; Liu et al. in press), which has been applied previously to

high-dimensional microarray analysis. While LSKM fitting of a semiparametric model

appears complicated, Liu et al. (in press) noted that one can represent the LSKM

procedure using a specific form of a linear mixed model, such that one can estimate and

test the nonparametric function of the tagSNP data using simple restricted-maximum-
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likelihood procedures that are typically applied to mixed models and are available in

common statistical software packages such as SAS and R.

 In subsequent sections, we develop our semiparametric model and show how we

can estimate model parameters using the LSKM maximization approach of Liu et al. (in

press). We then show how one can represent the LSKM approach in terms of a linear

mixed model that facilitates testing of the nonparametric function of the tagSNP

genotype data. Using simulated tagSNP data based on real data from the International

HapMap Project (2005), we show that our proposed semiparametric approach often has

improved power to detect an association between a genetic region and a quantitative trait

compared to the popular single-tagSNP testing approach. We also describe a variety of

valuable gene-mapping extensions of our semiparametric approach in the Discussion.  

MATERIALS AND METHODS

 Notation Using a population-based study design, we assume a sample of R

unrelated subjects. Let  denote the quantitative trait value for subject  .] 4 Ð4 œ "ß ÞÞÞß RÑ4

We assume each subject is genotyped at  tagSNPs within a defined candidate gene orW

region of interest. We let  denote the genotype of subject  at tagSNP  (K 4 = = œ "ß ÞÞÞß WÑ4ß=

and let …  denotes an ( x 1) vector of all tagSNP genotypes forK œ ÐK ßK ß ßK Ñ W4 4ß" 4ß# 4ßW

subject . For tagSNP , we code  to be the number of copies of the minor allele that4 = K4ß=

the subject  possesses at the tagSNP such that the predictor takes values of 0, 1, or 2.4

These values correspond to an additive model of allelic effect  we can consider;

alternative coding scenarios for under dominant and recessive models .K4ß= , if desired

Finally, we let  denote a (  x 1) vector of measured environmental covariates for\ :4

subject .4

 Semiparametric Regression Model We propose the use of semiparametric

regression to model the relationship between the outcome  and the tagSNPs ,] K4 4
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adjusting for potential covariates in . We can write this semiparametric model as the\4

following:

] œ \  2ÐK Ñ  / Ð"Ñ4 4 44
X"

Here,  denotes a nonparametric function of the tagSNP genotype data  that2ÐK Ñ K4 4

resides in some function space   is a (  x 1) vector of regression coefficients, "Þ :

describing the effects of , which are modeled parametrically.  Finally,   is a random\ /4 4

subject-specific environmental effect, which we assume to be normally-distributed with

mean 0 and variance .5#

 Within the model in (1), interest focuses primarily on the estimation of the

nonparametric function of the tagSNP data  and its relationship to the trait outcome .2 ]4

Secondary interest focuses on the estimation and testing of to assess the effects of the"

covariates in  on . As we are using a semiparametric framework in (1), traditional\ ]4 4

maximization procedures for linear regression models are not applicable in this setting.

To estimate  and , we instead propose the use of the dimension-reducing LSKM2 "

procedure to analyze our high-dimensional data (which, in our context, refers to the

tagSNP genotype data in ). Using the LSKM approach of Liu et al. (in press), we showK4

in Appendix A that we obtain the following estimates of  and  in (1):2 "

2 œ OÐO  MÑ Ð]  \ Ñs s- "" Ð#Ñ

" - -s œ Ò\ ÐO  MÑ \Ó \ ÐO  MÑ ]X " " X " ($Ñ

Here,  is an ( x 1) vector of the trait values for all subjects and  is] œ Ð] ß ÞÞÞß ] Ñ R \" R
X

an (  x )  matrix of environmental covariates for all subjects. Further,  denotes an (R : M R

x ) identity matrix. Finally, there are two additional terms in (2) and (3) that areR

important to discuss. The first term is the parameter , which denotes a scalar smoothing-

parameter. As we will show in subsequent sections,  plays an important role in-
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constructing appropriate test statistics to assess whether the nonparametric function  of2

the tagSNP genotype data influences ] Þ

  The second important term in (2) and (3) is , which denotes an ( x ) O R R kernel

matrix that is a function of the tagSNP genotype data in the region. In particular, the

Ð4ß 6Ñ O 5ÐK ßK Ñ>2
4 6element of  denotes a kernel that is a scalar function of the tagSNP

genotypes of subjects  and . Broadly speaking, will often be a measure of4 6 5ÐK ßK Ñ4 6

pairwise tagSNP genotype similarity across the region. As is scalar, the kernel5ÐK ßK Ñ4 6

intuitively serves as a dimension-reducing function as it collapses the comparison of the

multidimensional tagSNP vectors  and  into a simple scalar factor.K K4 6

  the choiceA variety of choices exist for the kernel function . However, 5ÐK ßK Ñ4 6

of kernel is not arbitrary. In particular, the kernel function in within (2) and (3) mustO

satisfy the conditions of Mercer's Theorem ( ), whichCristianini and Shawe-Taylor 2000

includes the condition that the  matrix must be positive semidefinite (i.e. theO

eigenvalues of  must be positive). While many common kernels fulfill Mercer'sO

Theorem, we note that certain kernels in the literature which may be intuitively appealing

for SNP data, such as the quadratic kernel in the U-statistic approach of Schaid et al.

(2005), fail to meet this criteria and cannot be used in the proposed LSKM procedure.  

 For this article, we focus on kernel functions that are based on the number of

alleles shared identical by state (IBS) by subjects  and  at the tagSNPs within the region4 6

(Wessel and Schork 2006). The IBS kernel takes the form

5ÐK ßK Ñ œ Ð%Ñ

MFWÐK ßK Ñ

#W
4 6

=œ"

W

4ß= 6ß=

where  denotes the number of alleles shared IBS (0, 1, or 2) by subjects MFWÐK ßK Ñ 44ß= 6ß=

and  at tagSNP . An appealing feature of the IBS kernel is that we can augment it to6 =

include tagSNP-specific weights that can incorporate valuable prior information into
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analysis to potentially improve performance. Define  as a scalar weight for tagSNP .A ==

We can then define an weighted-IBS kernel based on (4) as the following:

5ÐK ßK Ñ œ Ð&Ñ

A MFWÐK ßK Ñ

A

4 6
=œ"

W

= 4ß= 6ß=

=œ"

W

=

 We focus on two potentially-valuable weights for use in the IBS kernel in (5).

First, we consider a weight that upweights tagSNPs with a rare minor-allele frequency

(MAF) and downweights tagSNPs with more common MAF. Such a weight could be

valuable due to the potential for the information from tagSNPs with rare MAF to be

smoothed over by the information from surrounding tagSNPs with more common MAF.

To upweight tagSNPs with rare MAF, we apply the weight , where A œ "Î ; ;= = =È
denotes the MAF of tagSNP  . Other MAF weights are certainly possible,= Ð= œ "ß ÞÞÞß WÑ

such as , but there is concern that such stronger weights may substantiallyA œ "Î;= =

diminish the information provided by those tagSNPs with common MAF.

 In addition to weights based on MAF, we can weights based on prior use 

evidence of association between the tagSNP and the trait (or a related trait of interest) in

an independent dataset. Here, we let  where  is the p-value for theA œ  691 Ð: Ñ := "! = =

test of tagSNP  with the trait in the independent dataset. Intuitively, such weights will=

upweight SNPs showing stronger prior evidence of association and downweight SNPs

that demonstrate weaker prior evidence of association.  As noted in the Discussion, we

feel such weights are, or will be, readily available from relevant genetic literature or

public release of data from whole-genome association studies.

 Relationship to Linear Mixed Models Inspection of  in (2) shows that the2s

nonparametric function in (1) models the tagSNP genotype data in a reduced-dimension

space induced by the chosen kernel function in . Next, we focus on constructing an, O

appropriate test statistic to evaluate whether the function  of the tagSNP genotype data2
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is associated with the trait of interest. That is, we wish to construct a test statistic to

evaluate the null hypothesis , where we model  using equation (1). ToL À 2 œ ! 2!

facilitate the construction of such a test statistic, Liu et al. (in press) noted that LSKM-

based estimation of and  is analogous to the estimation of random and fixed effects,2s s"

respectively, within a specific linear mixed model. Therefore, we can use a likelihood

framework based on a mixed model to construct an appropriate test statistic for inference.

 To develop the mixed-model representation of the LSKM analysis using the

semiparametric model in (1), we consider the following linear mixed model:

] œ \  Y I Ð'Ñ"

where ] \denotes the earlier trait vector and  denotes the earlier matrix of fixed

environmental covariates with related regression-coefficient vector  Within (6), we"Þ

denote  as a vector of random effects belonging to the tagSNP genotype data andY

denote  as a vector of random effects due to subject-specific environment.I

 Suppose we assume that the random tagSNP effects in  follow a multivariateY

normal distribution with mean  and variance-covariance matrix , where is our! O O5
-

#

kernel matrix,  denotes the smoothing parameter discussed earlier, and   denotes the- 5#

variance due to subject-specific environment. Further, suppose we assume that  alsoI

follows a multivariate normal distribution with mean vector 0 and variance-covariance

matrix , where  denotes the identity matrix. Under these assumptions, we can use5#M M

restricted maximum-likelihood (REML) procedures to show that the best-linear unbiased

estimators of the random effects  and the fixed effects  in the linear mixed model areY "

Y œ OÐO  MÑ Ð]  \ Ñs s- "" Ð(Ñ

" - -s œ Ò\ ÐO  MÑ \Ó \ ÐO  MÑ ]X " " X " ()Ñ

One can see that the estimates of  and  in (7) and (8) are exactly the same as theYs s"

estimates of  and  in equations (2) and (3), respectively, using LSKM estimation of the2s s"
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semiparametric model in (1). This important result shows that we can perform our LSKM

multilocus analysis using a straightforward linear mixed model that is easy to implement

using existing statistical software packages for mixed models (such as SAS PROC

MIXED).

  The relationship between LSKM and theTesting the Nonparametric Function

linear mixed model implies that we can test L À 2 œ !!  in the semiparametric model by

appropriate testing of the existence of the random tagSNP effect in the linear mixedY

model in (6). As noted earlier, we assume follows a multivariate-normal distributionY

with mean vector 0 and covariance matrix 5 5
- -

# #

O œ. Assume  such that we rewrite the7

covariance matrix as . As elements of will be non-zero, it is straightforward to7O O

show that the random tagSNP effect  does not exist when . Therefore, the test ofY œ !7

L À 2 œ ! L À! ! in the semiparametric model (1) corresponds to the test of 7 œ ! in the

linear mixed model (6).

 To test , we propose the use of the score statistic of Liu et al. (inL À! 7 œ !

press).  The score statistic includes estimates of the unknown parameters and under" 5s s#

L!, which are obtained using REML procedures. The score statistic then takes the form

W œ Ð] \ Ñ OÐ] \ Ñ Ð*Ñ
"

#s
s s

7
5

" "#
X

Since  , we are testing the parameter of interest on its boundary value. As a result,7   !

W L7  does not follow a standard distribution under  and, instead, follows a;"
#

!

complicated mixture of  distributions. To simplify inference, we use a Satterthwaite;"
#

procedure (described in Appendix B) to approximate the  of . distribution W7

 Simulations We used simulations to assess the performance of our

semiparametric approach in a typical candidate-gene study. For genetic data, we used

simulated tagSNP data based on the CEU genotypes from build 35 of the International

HapMap Project (2005). We based our simulations on the LD structure of two genes:

CHI3L2 NAT2 CHI3L2  and . is 15.8 kb long, with 37 polymorphic SNPs in the CEU
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sample.  spans 9.9 kb, with 20 polymorphic SNPs in the same sample. Within eachNAT2

gene, we selected tagSNPs using the Tagger program (de Bakker et al. 2005). We

allowed for multimarker tagging and captured all polymorphic markers in each gene with

V  !Þ)# , regardless of the marker's minor allele frequency. Using these criteria, we

identified 10 tagSNPs for  and 7 tagSNPs for . We show the LD structure ofCHI3L2 NAT2

the tagged and non-tagged SNPs within  and CHI3L2 NAT2 in Figures 1 and 2,

respectively. Within each gene, we applied PHASE (Stephens et al. 2001; Stephens and

Scheet 2005; Marchini et al. 2006) to the genetic data to estimate haplotype frequencies

for the encompassed SNPs. We then generated relevant SNP genotype data at each gene

for each subject using these estimated haplotype frequencies under the assumption of

Hardy-Weinberg equilibrium.

 To ensure our semiparametric approach had appropriate size, we first considered

simulations under null models where none of the SNPs within the gene had an effect on

our trait of interest. However, we did allow for trait-influencing effects from

environmental predictors. Therefore, we simulated trait data under the following null

model

] œ \  /4 I I 44
" (10)

Here, denotes the coding vector of environmental covariates for subject  with\ 4I4

respective effect-size vector . We assumed that  contained both a binary covariate"I I\
4

(with frequency of exposure of  0.506) and a continuous covariate (assumed to be

normally distributed with mean  29.2 and variance 21.1). The assumed parameterization

for the covariates closely mirrored those of relevant covariates in the  FUSION study of

type 2 diabetes (Valle et al. 1998). We assumed the effect size was 0.50 for the binary

covariate and 0.03 for the continuous covariate. Finally, we let  denote a random/4

subject-specific error term for subject , which we generated under a normal distribution4

with mean 0 and variance 1.
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 We next considered simulations under alternative models where we selected one

of the SNPs within the gene to serve as the functional variant. We allowed the functional

variant to be either a typed tagSNP or an untyped , but required the variant to haveSNP

MAF greater than 0.05 (as done elsewhere, such as Roeder et al. 2005). Within CHI3L2,

30 of the 37 polymorphic SNPs fulfilled this criteria with 6 of these 30 polymorphisms

being tagSNPs. Within , 17 of the NAT2 20 polymorphic SNPs fulfilled this criteria with 3

of the 17 polymorphisms being tagSNPs. Denoting the functional SNP as , weW‡

generated the trait outcome for subject  using the following model4

] œ \ \  /4 K W I I 44 W‡
‡

4, " " (11)

Here, denotes the coding of the genotype at functional SNP  for subject   with\ W 4K
‡

4ßW‡

respective effect size . We considered additive, dominant, and recessive effects of the"W‡

minor allele and chose in each case such that the functional SNP explained 3% of"W
‡

‡ W

the trait variation, which is reasonable given that many complex traits originate from the

effects of multiple genes each with small effect. We assumed values for and  that\I I4
"

were the same as those used in the null simulations.

 For a given simulation design, we generated either 5000 datasets (for null models)

or 1000 datasets (for alternative models), each consisting of 300 unrelated subjects. Each

dataset contained trait data on all subjects, genotype data for the tagSNPs in the candidate

gene, and environmental data on the covariates mentioned earlier. We assumed we did

not observe genotypes at untyped SNPs (even though such untyped SNPs may be

functional). We analyzed each dataset using both our proposed semiparametric approach

and, as a benchmark, single-tagSNP statistics.

 For our semiparametric approach, we analyzed the data three times. First, we used

the unweighted IBS kernel in (4). Next, we used the weighted IBS kernel in (5) with

weights based on the MAF of the tagSNP  Finally, we used a weighted IBS kernel withÞ

weights determined based on single-tagSNP p-values from an independently-generated
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dataset. We wished to evaluate the performance of this last kernel when we simulated the

independent dataset under both the same and different genetic model as our dataset under

study. The primary purpose of a independent-dataset simulation under a different genetic

model than the one used for the dataset of interest was to address whether inappropriate

prior p-value weights from an independent dataset affected the size of our semiparametric

approach. We investigated this issue by generating the dataset under study using the null

model in (10) but generating the independent dataset using the alternative model (11)

assuming a particular functional SNP.

 For the single-tagSNP tests, we performed least-squares regression at each

tagSNP in the gene under an additive model (allowing for the binary and continuous

covariates) and tested the effect of the tagSNP using a Wald statistic. We retained the

largest Wald statistic across the tested tagSNPs and used 5000 permutations of the data to

establish the significance of this maximum statistic. We examined type-I error and power

of the semiparametric and single-tagSNP approaches assuming a nominal significance

level of .α œ !Þ!&

RESULTS

 Table 1 provides the empirical type-I error results at nominal for ourα œ !Þ!&

semiparametric method assuming the different IBS-based kernels described in the

Methods. These results suggest our semiparametric approach has appropriate size

regardless of the choice of kernel. In particular, we note that our semiparametric

approach using p-value weights has appropriate size when we select weights using a

dataset that is generated under a different model (i.e. is genetically heterogeneous)

compared to the dataset under study . This result is important because it suggests that the

choice of inappropriate p-value weights does not affect the size of our score statistic and,

hence, does not affect the validity of our semiparametric approach.  For comparison, we
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analyzed the same datasets using the maximum of the single-tagSNP statistics, which

also had appropriate size.

 Figure 3 shows power results for simulations based on the CHI3L2 gene. The x-

axis of the figure shows the functional SNP used in the simulation, as well as theCHI3L2 

SNP's MAF. The y-axis shows the power of our semiparametric approach using IBS

kernels weighted by either the tagSNPs' MAFs or the tagSNPs' p-values from an

independently-generated dataset. The y-axis also shows the power of the maximum of the

single-tagSNP statistics, which serves as a benchmark for our proposed semiparametric

approaches. The plots show that our proposed semiparametric approach using a weighted

IBS kernel based on tagSNPs' p-values clearly has optimal performance relative to the

other approaches shown in the figure, regardless of the genetic model used to simulate

the data, the nature of the functional SNP (i.e. tagSNP or untyped SNP), and the SNP's

MAF. This result is hardly surprising, given this approach is the only one of the three

shown that uses additional information from an independent dataset to assist in inference.

 While the IBS kernel weighted by MAF displays lower power than the IBS kernel

weighted by p-values, Figure 3 shows the former kernel is still generally more powerful

than the maximum of the single-tagSNP statistics across functional SNPs and genetic

models. There are a few situations where this condition does not hold, however. In

particular, under an additive model, results show that the maximum of single-tagSNP

statistics is more powerful than the weighted IBS kernel based on MAF for functional

SNPs with MAF < 0.10 (e.g. SNP rs2182115, MAF=0.085). However, this power

difference between the two approaches substantially decreases for dominant and

recessive genetic models.

 Figure 4 shows analogous power results for simulations based on the  gene.NAT2

Overall, we observed similar power results for this gene compared to that of the CHI3L2

gene. Our semiparametric method using the IBS kernel weighted by p-values

substantially outperformed the other competing approaches across all genetic models
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tested, although the difference was most pronounced under a dominant model. The

semiparametric approach weighted by MAF generally exhibited greater power than the

maximum of the single-tagSNP statistics across the tested SNPs and genetic models. The

differences in power were most pronounced under dominant and recessive models. We

note the low power observed for all methods at one particular marker, rs1961456. As

seen in Figure 2, this marker displays comparatively weak LD with the other SNPs in the

gene, which leads to relatively low power by all methods to detect the association

between the trait and this particular SNP.

 To simplify presentation, we did not show power results for the unweighted IBS

kernel (4) in Figures 3 and 4. Overall, the performance of the unweighted IBS kernel was

similar to the IBS kernel weighted by MAF with a few notable differences. For functional

SNPs with MAF >0.10, we found that the unweighted IBS kernel had equivalent or

slightly improved power compared to the IBS kernel weighted by MAF. However, for

functional SNPs with MAF < 0.10, we found the unweighted IBS kernel could have

substantially-reduced power relative to the IBS kernel weighted by MAF. For example,

assuming an additive model where the functional SNP was rs2182115 (MAF=0.085) in

CHI3L2, we found the power of the unweighted IBS kernel was 0.327 compared to 0.498

for the IBS kernel weighted by MAF. This result suggests that, without weighting, the

effects of functional SNPs with rare MAF may be smoothed over by information from

surrounding SNPs with more common MAF. Since the IBS kernel weighted by MAF

appears to have better performance averaged across the range of MAF compared to the

unweighted IBS kernel, we recommend the use of the former kernel over the latter in

association analysis.

 While primary interest focuses on the testing of the nonparametric function ,2

secondary interest may focus on the estimation and testing of environmental covariate

effects. Table 2 shows estimates of the mean and standard deviation, along with the

empirical standard deviation, of the regression parameters related to the binary and
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continuous covariates used in our simulations. Due to the large number of SNPs and

models examined, we display results only for one representative configuration of both the

NAT2 CHI3L2 and genes. These examples show that the semiparametric regression

method produces unbiased estimates of the covariate effects with empirical standard

deviations that closely match the LSKM-based standard deviations. We observed similar

results for other simulation models (results not shown).

DISCUSSION

 In this article, we have proposed a flexible semiparametric-regression framework

for association mapping of quantitative traits using genotype data from multiple tagSNPs

within a region of interest. Using simulated genetic data based on real data from the

International HapMap Project (2005), we demonstrated our approach often has superior

performance compared to tests of individual tagSNPs, which is the most common

approach for association mapping of complex traits. Our method's improved performance

results from modeling the effects of multiple tagSNPs within a reduced-dimension

function, thereby using more genetic information in analysis but producing test statistics

(based on the function) with smaller degrees of freedom than typical multivariate

methods. In addition to improved power, our approach is also quite flexible as it can

easily adjust for the effects of potential confounders (such as subpopulation assignment

in a stratified population) and further can evaluate interaction effects among tagSNPs and

environmental factors (by modeling such interactions parametrically or non-

parametrically using the function  in (1)). By maximizing the semiparametric model2

using LSKM, we show that we can fit the model easily using common maximization

procedures for linear mixed models, which are available in a variety of software

packages. The approach is computationally efficient to implement as analysis of 1000

replicates of simulated data (using the design described in the Simulations section) took
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only 5 minutes to run on a Dell Latitude D810 with a 2.26 GHz processor. We provide

SAS and Fortran code for implementing the approach on our website (Epstein Software).

 An appealing feature of our semiparametric approach is that it can utilize prior

information (in the form of weights) to improve one's ability to detect functional regions.

For a specific tagSNP, a natural choice of weight is to use the strength of evidence for

association between that tagSNP and the trait of interest (or a correlated trait) from an

independent study. We quantify this strength based on the -log  of the relevant p-value."!

To obtain such p-values, one could conduct an exhaustive literature search of relevant

genetic studies of interest. However, we note that such p-value weights will become

increasingly available with the public release of tagSNP genotype and phenotype data

from whole-genome association studies into free databases (often a requirement for NIH

funding of such projects). An example of such a database is the NIH-sponsored dbGaP

(see Web Resources), which will eventually contain information on at least 10 whole-

genome association studies of complex traits. On a related issue, we strongly recommend

against using p-value weights based on single-tagSNP analysis of the same dataset upon

which one intends to apply the proposed semiparametric approach. Such an application

will lead to anticonservative tests (results not shown).

 We applied our semiparametric approach to the problem of testing whether a

specific region influenced a quantitative trait of interest. However, with some effort, we

can extend our approach to create a multilocus association test for genome-wide

association studies. Specifically, we can implement our approach using a sliding-window

process that considers overlapping or nonoverlapping sets of tagSNPs across each

chromosome. Within a particular window, we can apply our approach to the genotype

data from the multiple tagSNPs and produce a statistic for testing whether the tagSNPs

within the given window are associated with the trait of interest. After constructing test

statistics for each window across the genome, we can establish empirical significance of

a particular statistic (taking into account the mandatory adjustment for multiple
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correlated tests) using the computationally-efficient Monte Carlo approach of Lin (2005).

We will investigate this valuable extension in a subsequent paper.

 We note that the nonparametric function within the semiparametric framework

implicitly models both the main and higher-order interaction effects of the specified

predictors within a space induced by a dimension-reducing kernel. This appealing feature

makes our semiparametric approach potentially valuable for genetic pathway analysis,

where one is interested in evaluating the trait-influencing effects of SNPs, environmental

factors, and their complex interactions that reside within a putative biochemical pathway.

Here, one would model all relevant pathway predictors within the nonparametric function

in (1) and test whether that function has an effect on the trait of interest. This idea is

appealing since the development of parametric approaches that explicitly model all of the

pathway effects is challenging  the underlying genetic model (likely containing because

many high-dimensional interactions) is typically unknown. Our semiparametric approach

would circumvent this serious issues of parametric methods in pathway analysis.

 In implementing our approach, we assumed no missing genotype data for the

tagSNPs in the region of interest. While our approach doesn't naturally accommodate

missing genotype data within the nonparametric function, we note that we can use

existing statistical procedures for imputing genotype data for a given subject to resolve

this issue. Such imputation procedures can rely on the LD structure of nearby SNPs to

predict a subject's missing genotype using either observed genotype data from the study

sample (Scheet and Stephens 2006) or appropriate genotype data from the International

HapMap project (Zaitlen et al. 2007). Once we impute missing genotypes, we can then

incorporate them within our nonparametric function and proceed with analysis as we

previously described.

 While we have developed our approach for association analysis of quantitative

trait data, we note that we can extend our approach to conduct similar multi-SNP

association analysis in case-control studies of disease. Implementation of our approach
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for disease data requires minimization of a Lagrangian function related to that shown in

equation (A3) of Appendix A. Estimating relevant parameters using this function is

analogous to model fitting using a non-linear mixed model with a corrected penalized

quasi-likelihood algorithm (Lin and Breslow 1996). While the iterative nature of the

algorithm will increase the numerical complexity of the semiparametric analysis, it

should still be computationally efficient for candidate-gene or whole-genome association

analysis. We will explore this approach in a future work.

 Our approach fits a semiparametric regression model using LSKM, which we

show corresponds to inference using a specific linear mixed model. While mixed-

modeling procedures often are connected to pedigree analysis (Amos 1994; Almasy and

Blangero 1998; Abecasis et al. 2000), we note that their elegance and flexibility make

them increasingly popular tools for association mapping in population-based or case-

control studies. Tzeng and Zhang (personal communication) proposed a powerful mixed

model for SNP-based haplotype analysis of complex traits that models the covariance of

the outcomes among a pair of subjects as a function of their (inferred) haplotype

similarity along a region of interest. The distribution of the authors' random effect has

similarity to the distribution of the random tagSNP effect in our linear mixed model,

although the authors' approach is not based on the use of reproducing kernels in a LSKM

framework. Further, their approach focuses primarily on using SNP-based haplotypes in

their covariance structure and doesn't consider the use of influential and valuable prior

weights in analysis. Another mixed-model tool for such a study consists of a two-level

hierarchical model (Witte 1997; Witte et al. 2000). The first level of the hierarchical

model regresses the trait outcome on the SNPs of interest (and potential confounders)

whereas the second level models the SNP-related risk parameters as a function of

influential covariates including the underlying haplotype structure (Conti and Witte

2003) or available pathway information (Hung et al. 2004). Such second-level

information can improve the precision and accuracy of SNP-based risk estimates.
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APPENDIX A: ESTIMATION OF SEMIPARAMETRIC MODEL PARAMETERS

IN (1) USING LSKM

 In this Appendix, we use the work of Liu et al. (in press) to apply LSKM to

obtain estimates of  and  in the semiparametric model shown in (1). Prior to2 "

implementation, we note again that we assume  exists in some function space .2ÐK Ñ4 ,

Therefore, we can rewrite the nonparametric function as2ÐK Ñ 44  for subject  

2ÐK Ñ œ ÐK Ñ œ ÐK Ñ4 3 3 4 4

3œ"

∞
X= 9 9 = (A1)

where  is an orthonormal basis of  and  denotes a series of weights.˜ ™ ˜ ™9 , =3 4 3
∞ ∞

3œ" 3œ"
ÐK Ñ

 Using the relationship in A1), we apply LSKM to formulate the optimizationÐ

problem as the minimization of the following function:

N Ð ß ß /Ñ œ /  m m
" "

# #
= " - =

4œ"

R
# #
4 (A2)

subject to the constraint … . Here,  denotes/ œ ]  \  ÐK Ñ Ð4 œ "ß ßRÑ4 4 4
X X
4Š ‹" 9 = -

our previously-defined smoothing parameter.

 Using a Lagrangian multiplier … , we can modify  in# # # # = "œ ß ß ß N Ð ß ß /Ñ" # R

(A2) to develop a Lagrangian function to be minimized as

0Ð ß /ß ß Ñ œ /  m m  \  ÐK Ñ  /  ]
" "

# #
" # = - = # " 9 =Š ‹

4œ" 4œ"

R R
# # X X
4 4 4 4 4 4 (A3)

To determine the estimates of  that minimize this function in (A3), we obtainÐ ß ß /ß Ñ= # "

the following optimality conditions:

f 0 œ ! Ä œ ÐK Ñ
"

= = # 9
-

4œ"

R

4 4 (A4)

.0

./
œ ! Ä / œ

4
4 4# (A5)
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.0

.
œ ! Ä ] \  ÐK Ñ  / œ !

#
" 9 =

4
4 4 4

X X
4 (A6)

f 0 œ ! Ä \ œ !"

4œ"

R

4 4# (A7)

Using the optimality conditions shown in (A4) and (A5), we can rewrite the optimality

condition in (A6) as

] \  ÐK Ñ ÐK Ñ  œ !
"

4 6 4 6 4
X X
4

6œ"

R

" # 9 9 #
-

(A8)

Therefore, we have rewritten the primal formulation of the optimization problem in (A3)

into the dual formulation consisting of equations (A7) and (A8). However, due to the

requirement of calculating  in (A8), we cannot use this dual formulation for9 9ÐK Ñ ÐK Ñ4 6
X

inference since  is likely unknown. However, we can use the theory of˜ ™93 4
∞

3œ"
ÐK Ñ

reproducing kernels to help resolve this issue.

 For two tagSNP vectors  and , we can construct aReproducing kernels K K4 6

reproducing kernel function  that, under certain regulatory conditions, can be5ÐK ßK Ñ4 6

written as an eigenvalue-eigenvector decomposition ,5ÐK ßK Ñ œ ÐK Ñ ÐK Ñ4 6 3 3 4 3 6
3œ"

∞
X. < <

where  forms an orthonormal system. We can use the theory of reproducing˜ ™<3
∞

3œ"
Ð † Ñ

kernels to help solve the dual formulation of the optimization problem in equations (A7)

and (A8) by noting that we can rewrite a kernel function as = ,5ÐK ßK Ñ ÐK Ñ ÐK Ñ4 6 4 6
X9 9

where we define =  Therefore, we can solve the optimization problem in9 . <3 3 3Ð † Ñ Ð † ÑÞÈ
(A8) by specifying an appropriate kernel function  to represent  The5Ð † ß † Ñ Ð † Ñ Ð † ÑÞ9 9X

function space induced by a given kernel function has many nice properties such that

most functions  can be approximated well within the space. We describe2Ð † Ñ œ Ð † Ñ9 =X

examples of kernels within the Materials and Methods section of the article.

 Parameter estimation Using a kernel function, we can rewrite the optimality

condition in (A8) in matrix notation as
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] \  O  M œ !Þ
"

"
-

Œ (A9)

] œ Ð] ß ] ß ß ] Ñ R \ R :" # R
X… denotes the ( x1) trait vector,  denotes the (  x ) covariate

matrix, and denotes a (  x ) identity matrix. Finally,  in (A9) is an  kernelM R R O R BR

matrix with -th element  We can also rewrite the optimality condition inÐ4ß 6Ñ 5ÐK ßK ÑÞ4 6

(A7) in matrix notation as

\ œ !X# (A10)

Using the matrix forms in (A9) and (A10), we can write the dual formulation of the

optimization problem in one matrix equation as

” •” • ” •! \

\ O  M
œ

!
]

X

"-

"
#

(A11)

 By solving (A11), we can obtain estimates of  and , which we can then use to" #

solve for the nonparametric function . One can easily show that2

" - -s œ Ò\ ÐO  MÑ \Ó \ ÐO  MÑ ]X " " X "  and   To# - - "s œ O  M ] \ ÞsŠ ‹"

estimate , we use the optimality condition in (A4) and  together to2 † œ † s9 = #X

obtain 2 œ O O  M ] \ Þs sŠ ‹- ""
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APPENDIX B: APPROXIMATE DISTRIBUTION OF THE SCORE STATISTIC

W7  IN (9)

 We consider the linear mixed model described previously in (6):

] œ \  Y I"

where  is the vector of quantitative trait values, is the vector of fixed effects,  is the] \ Y

vector of random tagSNP effects which follows a multivariate normal distribution with

mean 0 and variance-covariance matrix , and  is a vector of subject-specific random7O I

effects which follows a multivariate normal distribution with mean 0 and variance-

covariance matrix 5#MÞ

 Using the mixed model in (6), we seek to determine the distribution of the score

statistic in (9) for testing . Zhang and Lin (2003) noted that, since 0, weL À œ !  ! 7 7

are testing the parameter on its boundary value and, as a result, the distribution of W7

follows a mixture of distributions. To facilitate inference, the authors showed that one;"
#

can approximate this complicated mixture distribution with a scaled  distribution ,; $;# #
/

where  denotes the scale parameter and  denotes the degrees of freedom  To estimate $ / $Þ

and , the authors suggested the use of the Satterthwaite method, which equates the mean/

and variance of the score statistic  in (9) with the mean and variance of .W7 /$;#

 Let  denote the mean of  and let  denote the variance of the score statistic./ W M7 77

When calculating the mean and variance of , we must account for the fact that we useW7

estimates of  and  instead of the true values of these parameters in (9). Therefore, we5 "#

replace the mean  with  tr , where is the~/ / œ ÐT OÑÎ# T œ M \Ð\ \Ñ \! !
X " X

projection matrix under the null hypothesis  Also, we replace the variance  with theÞ M77

efficient information  as follows:M
µ

77

 M œ M  M M M
µ

77 77 75 5 5 75# # # #
" X

where , and M œ ><ÐT OÑ Î# ß M œ ><ÐT OT ÑÎ# M œ ><ÐT ÑÎ#Þ77 75 5 5! ! !
# #

!# # #
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 Once we obtain  and  , we can set the former equal to  (the mean of a ~/ M
µ

77 /$/ $;#

random variable) and the latter equal to  (the variance of a  random variable).#$ / $;# #
/

After solving the system of equations, we calculate the scale parameter for the

approximate distribution as and calculate the degrees of freedom as$ œ M Î#/
µ µ

77

/ œ / ÎMµ µ2 . We can then compare the value of the resulting scaled score statistic,#
77

W Î ß7 $ /to a chi-squared distribution with  degrees of freedom in order to assess

significance of the test of L À œ !! 7 .
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Table 1: Empirical Type-I Error Rates at α œ !Þ!&

Semiparametric Approach Using IBS Kernel

MAF  (Same) P-value (Diff )P-value 
Gene Single-Locus Test Unweighted Weights Weights Weights

CHI3L2
NAT2

0.0474 0.0458 0.0560 0.0518 0.0522
0.0522 0.0486 0.0492 0.0494 0.0496

Results are based on 5000 replicates. (Same) P-value weights were based on an
independent dataset generated under the same model as the dataset under study. (Diff) P-
value weights were based on an independent dataset generated under an alternative model
where the functional variant explained 3% of the trait variation. For simulations based on
CHI3L2, the functional variant was rs961364 (MAF=0.293). or simulations based onF
NAT2, the functional variant was rs1799930 (MAF=0.292).
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Table 2: Parameter Estimates of Environmental Covariates

NAT2 CHI3L2
Genetic Model

Mean 0.503 0.030 0.504 0.030
Std. Dev. 0.117 0.013 0.117 0.013

Est. Std. Dev.

" " " "s s s s
I F38 IßG98> IßF38 IßG98>,

Additive

0.118 0.013 0.118 0.013

Dominant Mean 0.503 0.030 0.504 0.030
Std. Dev. 0.118 0.013 0.118 0.013

Est. Std. Dev. 0.118 0.013 0.118 0.013

MeanRecessive 0.503 0.030 0.503 0.030
Std. Dev. 0.117 0.013 0.116 0.013

Est. Std. Dev. 0.118 0.013 0.118 0.013
" "IßF38 IßG98> and  denote effect sizes for the binary and continuous
covariates, respectively, described in the simulations. The true value of
" "IßF38 IßG98> is 0.50 and the true value of   is 0.03. Results are based on
1000 replicates generated under an alternative model. For simulations,NAT2 
the functional variant was rs1799930 (MAF=0.292). For simulations based
on CHI3L2, the functional variant was rs961364 (MAF=0.293). For all
simulations, we analyzed replicates using our semiparametric approach
assuming a IBS kernel weighted by MAF.
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FIGURE LEGEND

Figure 1: LD plot of 37 polymorphic SNPs within the gene. Results based onCHI3L2 

the CEU sample from the International HapMap Project. TagSNPs are denoted by a

box surrounding the relevant SNP label.

Figure 2: LD plot of 20 polymorphic SNPs residing within the  gene. Results basedNAT2

on the CEU sample from the International HapMap Project. TagSNPs are denoted by

a box surrounding the relevant SNP label.

Figure 3:  Power results at for simulations based on the  gene underα œ !Þ!& CHI3L2

additive (top panel), dominant (middle panel), and recessive (bottom panel)

mechanisms of allelic effect for the functional SNP. X-axis labels show the name and

minor-allele frequency of the functional SNP used in the simulation (tagSNPs are

shown in bold).  For the IBS kernel with p-value weights, we obtained a relevant p-

value for each tagSNP based on single-locus tests of an independent dataset simulated

under the same model. We note that the range of the y-axis for the recessive model is

different from the range for the additive and dominant models

Figure 4:  Power results at for simulations based on the  gene underα œ !Þ!& NAT2

additive (top panel), dominant (middle panel), and recessive (bottom panel)

mechanisms of allelic effect for the functional SNP. X-axis labels show the name and

minor-allele frequency of the functional SNP used in the simulation (tagSNPs are

shown in bold).  For the IBS kernel with p-value weights, we obtained a relevant p-

value for each tagSNP based on single-locus tests of an independent dataset simulated

under the same model. We note that the range of the y-axis for the recessive model is

different from the range for the additive and dominant models
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FIGURE 1
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FIGURE 2
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FIGURE 3
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FIGURE 4
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