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Abstract

Background: The role of the microbiota in human health and disease has been increasingly studied, gathering

momentum through the use of high-throughput technologies. Further identification of the roles of specific microbes is

necessary to better understand the mechanisms involved in diseases related to microbiome perturbations.

Methods: Here, we introduce a new microbiome-based group association testing method, optimal microbiome-based

association test (OMiAT). OMiAT is a data-driven testing method which takes an optimal test throughout different tests

from the sum of powered score tests (SPU) and microbiome regression-based kernel association test (MiRKAT). We

illustrate that OMiAT efficiently discovers significant association signals arising from varying microbial abundances and

different relative contributions from microbial abundance and phylogenetic information. We also propose a way

to apply it to fine-mapping of diverse upper-level taxa at different taxonomic ranks (e.g., phylum, class, order,

family, and genus), as well as the entire microbial community, within a newly introduced microbial taxa discovery

framework, microbiome comprehensive association mapping (MiCAM).

Results: Our extensive simulations demonstrate that OMiAT is highly robust and powerful compared with other

existing methods, while correctly controlling type I error rates. Our real data analyses also confirm that MiCAM is

especially efficient for the assessment of upper-level taxa by integrating OMiAT as a group analytic method.

Conclusions: OMiAT is attractive in practice due to the high complexity of microbiome data and the unknown

true nature of the state. MiCAM also provides a hierarchical association map for numerous microbial taxa and can

also be used as a guideline for further investigation on the roles of discovered taxa in human health and disease.

Keywords: Microbial association test, Microbial group analysis, Upper-level taxa, Taxonomic structure,

Phylogenetic tree, Comprehensive association mapping

Background

The human microbiota is the set of all microorganisms

inhabiting the human body [1]. Recently, their roles in

human health and disease have been highlighted [2–9].

Advancement in studies of the microbiota has gathered

momentum due to the advent of high-throughput se-

quencing technologies which enable microbiota profiling

[10–12]. Since raw sequences preprocessed by these

platforms include highly variable regions to be used as

unique markers for each microbe, diverse microbes can

be identified based on the sequence similarity and then

assigned to operational taxonomic units (OTUs) [13].

These OTUs are characterized by their quantity, read

count, or relative abundance, and the difference in mi-

crobial abundances may be associated with health or

disease status [14, 15]. The phylogenetic tree illustrates

taxonomical and evolutionary relationships among diverse

microbes [13, 16, 17], and its related microbial complexity

provides further insights about possible health and disease

etiologies [18, 19]. Further identification of microbial taxa
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is needed to better understand the relationship of particu-

lar microbiota with human health and disease. It is also

common that recent studies report discovered upper-level

taxa at a high taxonomic rank (e.g., phylum, class, order,

family, and genus) along with the dynamics of the entire

microbial community complexity instead of enumerating

individual microorganisms. The upper-level taxa can be

considered as groups of various nested lineages. Hence,

likewise the entire microbial community, numerous statis-

tical challenges can arise to analyze them properly [20].

Nevertheless, a conventional ecological method, refer-

enced as the aggregate-based method in this paper, is most

commonly used for association testing [8, 9, 21–24]. The

aggregate-based method is based on a univariate ana-

lysis, using aggregates of microbial abundances in a

lower-level lineage per sample as a single predictor

variable. It is also regarded as an approach equipped

with the popular methods, the linear discriminant ana-

lysis effect size (LEfSe) [21], STAMP [22], DESeq2 [23],

and metagenomeSeq-fit Zig [24]. The major problem of

this approach is its underlying assumption that associ-

ated OTUs nested at each upper-level taxon are all in

the same effect direction. Any violation of this assump-

tion can lead to a substantial loss of power.

As a counterpart to the aggregate-based method, we

investigate two existing methods, microbiome regression-

based kernel association test (MiRKAT) [25] and

microbiome-based sum of powered score tests (MiSPU)

[26], and propose a new method, optimal microbiome-

based association test (OMiAT), for more sophisticate

microbial association testing. Recently, MiRKAT has

been spotlighted in the literature because of its com-

prehensive capability to incorporate diverse distance-

based measures, including the unique fraction (UniFrac)

distance [27–29] and the Bray-Curtis dissimilarity, into its

kernel machine regression framework [30]. The distance-

based measures integrate different relative contributions

from microbial abundance and phylogenetic tree informa-

tion, and thus, they suit different association patterns, re-

spectively [25, 27–29]. In practice, any strong biological

evidence inclined to a particular distance-based measure

is usually absent; hence, the data-driven approach of

MiRKAT, Optimal MiRKAT, which uses an optimal test

among different distance-based measure trials, is highly

attractive. On the other hand, MiSPU is constructed on

the sum of powered score tests (SPU) framework [31]

based on a newly defined measure, generalized taxon

proportion [26]. Similar to unweighted and weighted

UniFrac distances [27, 28], Wu et al. [26] describe that

two different versions of the generalized taxon propor-

tion, unweighted and weighted generalized taxon pro-

portion, are suitable for discovering rare and common/

abundant taxa, respectively. Wu et al. [26] also insist

that the data-driven approach of MiSPU, adaptive

MiSPU (aMiSPU), is robust and powerful by taking a

highly adaptive test, utilizing the variable selection/

weighting of the SPU framework based on the two gen-

eralized taxon proportions, comprehensively. However,

we argue that the unweighted generalized proportion

might not be sufficient to account for varying microbial

abundances because it is based on the presence or ab-

sence of microbial taxa with no further microbial abun-

dance information incorporation. In addition, since the

generalized taxon proportion weights microbial taxa by

their branch lengths [26], its weighting scheme might

be efficient only when associated microbial taxa have

relatively large branch lengths.

Our proposed method, OMiAT, is a data-driven test-

ing method which takes an optimal test through di-

verse tests from both SPU and MiRKAT. To avoid

confusion, we explain here that the SPU used for

OMiAT is different from MiSPU in that it is not based

on the generalized taxon proportion but implemented

on standardized compositional data with no phylogen-

etic information incorporation. We have first been

convinced that MiRKAT is suitable to modulate

relative contributions from microbial abundance and

phylogenetic information by the use of diverse distance-

based measures. However, we emphasize that SPU is

advantageous over MiRKAT to modulate different

association patterns arising from highly imbalanced

microbial abundances, utilizing its wide range of power

value choices [31]. Consequently, OMiAT is highly ef-

ficient to discover significant association signals from

diverse underlying association patterns and thus at-

tractive in practice due to the high complexity of

microbiome data and the unknown true nature of the

state. Our extensive simulations and real data analyses

also demonstrate more robust and powerful perform-

ance of OMiAT, compared with other competing

methods.

We also introduce a microbial taxa discovery frame-

work, namely, microbiome comprehensive association

mapping (MiCAM), which uses different configura-

tions to fine-map diverse microbial taxa throughout all

taxonomic ranks, comprehensively. MiCAM tests all

upper- and lower-level taxa and applies multiple

testing correction per taxonomic rank. MiCAM incor-

porates OMiAT as a group analytic method for asses-

sing upper-level taxa. MiCAM discovers significantly

associated taxa and controls false discovery rate at 5%

per taxonomic rank. Testing numerous microbial taxa

individually may lead to a huge computational burden.

Thus, we apply a combined permutation-based algorithm

to MiCAM to obtain stable outcomes (e.g., P values) in a

computationally manageable manner. A newly introduced

visualization approach for MiCAM also helps to organize

discovered microbial taxa hierarchically.
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The methodological aspects of OMiAT and MiCAM

can be found in the following “Methods” section. Exten-

sive simulation experiments and real data analyses are

addressed in the “Results” section.

Methods

Models and notations

This section is devoted to describe the methodological

aspects of OMiAT and how its performance is affected

in microbial group analysis. Since OMiAT is based on

two existing methods, SPU [31] and MiRKAT [25], we

start with the descriptions of SPU and MiRKAT. OMiAT

shares some of the useful features of SPU and MiRKAT,

as follows. OMiAT is based on a generalized linear model

framework so that different types of outcome traits, such

as continuous and binary responses, with potential covari-

ate adjustments, can be handled. OMiAT is also based on

score tests which do not require any statistical estimation

for the parameters of major interest [32].

Suppose the data include n subjects, p OTUs, and q

covariates (e.g., environmental factors) and the sub-

scripts, i, j, and k, indicate a subject, an OTU, and a co-

variate, respectively. Then, an n × 1 vector, Y, for the

outcome response, either as a form of continuous or

binary traits, is marked asYi for i = 1, …, n, an n × p

matrix, Z, for the OTUs in a microbial group is marked

as Zij for i = 1,…, n and j = 1,…, p, and an n × k matrix,

X, for the covariates is marked as Xik for i = 1,…, n and

k = 1, …, q.

To relate OTUs with an outcome response while

adjusting for covariates, we consider a multiple regres-

sion model (Eq. 1) for continuous traits and a multiple

logistic regression model (Eq. 2) for binary traits.

Yi ¼ β0 þ
Xq

k¼1
Xikαk þ

Xp

j¼1
Zijβj þ ∈i; ð1Þ

where ∈i is an error term which is independently and

identically distributed with a mean zero and a variance

of σ2.

logit P Yi ¼ 1ð Þ ¼ β0 þ
Xq

k¼1
Xikαk þ

Xp

j¼1
Zijβj:

ð2Þ

Then, the score vector to test the null hypothesis of

no association between OTUs and an outcome trait,

H0 : β = (β1,…, βp) ' = 0,, is given as in Eq. 3.

U ¼ U1;…; ;Up

� �0

¼
Xn

i¼1
Yi‐μ̂i;0

� �

Zi1;…;

Xn

i¼1
Yi‐μ̂i;0

� �

Zip

� �0
;

ð3Þ

where μ̂i; 0 is the predicted value of Yi under H0 which

can be estimated as β̂0 þ
Xq

k¼1
Xik α̂k for continuous

traits or logit−1 β̂0 þ
Xq

k¼1
Xik α̂k

� �

for binary traits,

where β̂0 and α̂k are maximum likelihood estimates

under H0 [33–35].

SPU [31]

Pan et al. [31] formulated their method, SPU, with its

test statistic as in Eq. 4 to obtain a generalized frame-

work to sum individual score components to be powered

with diverse γ value choices (γ ≥ 1, integer).

TSPU γð Þ ¼
Xp

j¼1
U

γ

j ð4Þ

SPU was originally proposed for gene- or region-based

association testing in genome-wide association studies.

SPU in our proposed method, OMiAT, is implemented

on the standardized compositional data (i.e., starting

from the form of compositional data (i.e., percentages),

for each OTU, we subtract its mean from individual raw

percentages and then divide the difference by its stand-

ard deviation) because of varying total reads per sample.

In microbial group analysis, the SPU test using an odd

value of γ is suitable when associated OTUs have the

same effect direction, while the SPU test using an even

value of γ is more suitable when those are in mixed ef-

fect directions [31, 33, 36]. To explain, when γ is an odd

number, the score components in the SPU test can be

canceled out in its final summing stage by the existence

of opposite directional components, which results in a

significant loss of power in the mixed effect situations.

Instead, when γ is an even number, those in the SPU test

can be protected, which result in a powerful performance

in the mixed effect directions. As γ increases, relatively

larger score components will gradually be weighted more,

while relatively small score components will gradually be

ignored [31]. We can see that the score statistic value is

affected by OTU abundance as in Eq. 3. Thus, a situation

in which abundant OTUs are associated indicates that

their corresponding components in the score vector are

large, and thus, SPU using a large value of γ is more suit-

able by weighting them more and removing noisy small

signals from the others. In contrast, when associated

OTUs are rare in abundance, indicating small score com-

ponents, SPU using a small value of γ can be more suit-

able by preserving them in the final aggregate. Since, in

most microbiomes, OTU abundance is highly imbalanced

across individual OTUs, the high receptivity of SPU to a

wide range of γ value choices must be maximized in mi-

crobial group analyses.

Therefore, the performance of SPU differs according

to γ and the true underlying association patterns. Since

we cannot predict which situation is related to our study

in advance, the adaptive SPU (aSPU) test (Eq. 5) which
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takes the minimum P value among different γ value

trials can be importantly considered [31].

TaSPU ¼ minγ�ГPSPU γð Þ ð5Þ

The γ value can take any natural number (i.e., Γ =ℕ),

but we used the candidate set, Γ = {1,2,3,4,5,6,7,8, ∞},

where TSPU(∞) = max{|Uj|, j = 1,......, p) [31], in our simu-

lations and real data analyses and it was sufficient.

MiRKAT [25]

MiRKAT has recently been introduced to the microbiome

research community for microbial community-level asso-

ciation testing. Here, we describe its key formula and ideas

and refer to the original paper [25] for more details. MiR-

KAT is built on the kernel machine regression framework

with the kernel formula, Eq. 6 [25, 30], to incorporate di-

verse distance-based measures, such as UniFrac distances

[27–29] and Bray-Curtis dissimilarity.

K ¼ ‐
1

2
I‐
11′

n

� �

D2 I‐
11′

n

� �

; ð6Þ

where D is the n × n pairwise distance matrix and D2 is

its element-wise square, I is the n × n identity matrix,

and 1 in 11′ is the column vector of n ones. We can

specify the pairwise distance matrix, D, in this kernel

formula, choosing among diverse distance-based mea-

sures. Then, using the resulting kernel, the variance

component score statistic can be formulated with Eq. 7

below.

QMiRKAT kð Þ ¼
1

2Φ
Y −μ̂0

� �0
K kð Þ Y − μ̂0

� �

; ð7Þ

where Φ is the dispersion parameter which can be

estimated as Φ ¼ σ̂2
0 , where σ̂2

0 is the estimated re-

sidual variance under H0, for continuous traits, and

as Φ = 1 for binary traits; Y − μ̂0 is the vector,

Y1−μ̂1;0;…;Yn−μ̂n;0

� �

; and k is an index for a par-

ticular kernel based on a chosen distance-based

measure.

Of importance is that different distance-based mea-

sures suit different association patterns, respectively

[25, 27–29]. The UniFrac distances are constructed on

the basis of phylogenetic tree information and modu-

late the extent of microbial abundance to be incorpo-

rated by different weighting schemes [27–29]. Thus, the

UniFrac distances are suitable when associated OTUs

are phylogenetically related. Then, the unweighted

UniFrac distance [27] is suitable for considering rare

lineages, while the weighted UniFrac distance [28] can

be used for studying common/abundant lineages. The

generalized UniFrac distance [29] is a compromise ver-

sion; thus, its use can also be modulated according to

its parameter value. When associated OTUs are not

phylogenetically related, the Bray-Curtis dissimilarity

can be best because it is constructed based solely on

microbial abundance not incorporating phylogenetic

tree information. In terms of relative contribution from

microbial abundance and phylogenetic tree information,

we can also understand that the Bray-Curtis dissimilarity is

most inclined to microbial abundance, and then, the

weighted, generalized, and unweighted UniFrac distances

follow in the name ordered. In practice, prior knowledge

about the true underlying association patterns of numerous

OTUs is likely to be absent; thus, Zhao et al. [25] have

proposed the data-driven approach of MiRKAT, Optimal

MiRKAT, which takes the minimum P value among mul-

tiple distance-based measure trials as in Eq. 8.

QOMiRKAT ¼ mink� 1; …; lf gPMiRKAT kð Þ ð8Þ

where PMiRKAT(k) is the P value of the MiRKAT test

based on QMiRKAT(k). We used seven candidate distance-

based measures, Bray-Curtis dissimilarity, unweighted

UniFrac, weighted UniFrac, four different generalized

UniFrac measures with parameter values, 0, 0.25, 0.5,

and 0.75, respectively, in our simulations and real data

analyses.

OMiAT

OMiAT takes the minimum P value from all the score

tests for SPU (i.e., TSPU(γ) in Eq. 4) and MiRKAT (i.e.,

QMiRKAT(k) in Eq. 7) as its test statistic and can be simply

expressed in Eq. 9.

MOMiAT ¼ minfTaSPU;QOMiRKATg ð9Þ

Consequently, OMiAT is highly robust and powerful

by taking an optimal test from all different tests for vary-

ing microbial abundances by SPU and for different rela-

tive contributions from microbial abundance and

phylogenetic information by MiRKAT. Of course, we do

not use the genuine minimum P value, MOMiAT, to be

reported as a final outcome P value, but it is a test statis-

tic to be used for estimating a P value. As with Pan et al.

[31] and Zhao et al. [25], we also use a permutation-

based method [37] to calculate P values for the test statis-

tics, TSPU(γ), TaSPU, QMiRKAT(k), QOMiRKAT, and MOMiAT.

Detailed information on it is addressed in Additional

file 1: Table S1.

Aggregate-based method

There exist different aggregate-based methods, LEfSe

[21], STAMP [22], DESeq2 [23], and metagenomeSeq-fit

Zig [24]. LEfSe and STAMP employ the non-parametric

Kruskal-Wallis test [21, 22, 38] as a univariate analytic

method. This non-parametric method is designed for

one-way layout data structure, and thus, it is difficult

to handle covariate adjustments (e.g., environmental
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factors). Moreover, this method cannot analyze con-

tinuous outcome traits; hence, its usability is limited.

For DESeq2 and metagenomeSeq-fit Zig, the main

assumption of their parametric methods may not be

validated due to the issue of relative abundance, which

can result in inflated type I error rates [16, 39]. For

these reasons, we do not consider these existing ma-

chineries, as they are, for the aggregate-based method.

Instead, we employ a semi-parametric approach which is

based on a score test and a permutation-based method for

the aggregate-based method to be investigated in our sim-

ulations and real data analyses. It begins with the stan-

dardized compositional data and aggregates it per sample.

Then, using a resulting single predictor variable for the ag-

gregates and an outcome variable, we estimate P values

based on the score test statistic, U, in Eq. 3 and a

permutation-based method [37].

MiCAM

In this section, we illustrate a new microbial taxa discovery

framework, MiCAM, to fine-map diverse microbial taxa

from the highest (e.g., kingdom/the entire community) to

the lowest (e.g., species) taxonomic rank. MiCAM tests all

microbial taxa using different configurations for the as-

sessment of upper-level taxa, taxa in the species taxo-

nomic rank, and taxa that include only one OTU,

respectively, and applies multiple testing correction per

taxonomic rank. We also describe its testing algorithm

and graphical representation.

Assessment of upper-level taxa

The upper-level taxa at different taxonomic ranks (e.g.,

kingdom, phylum, class, order, family, and genus) are a

group of individual OTUs except for a few which include

only one OTU. Thus, we apply OMiAT to assess the

upper-level taxa by sub-grouping OTUs and pruning a

phylogenetic tree for the ones nested in each of the

upper-level taxa. For small upper-level taxa, including

only a few OTUs, the UniFrac distances may not be

computed when there is no phylogenetic disparity for

any pairwise sample comparison. For this case, the

Optimal MiRKAT part in Eq. 9 is replaced with the

MiRKAT based on a single kernel for the Bray-Curtis

dissimilarity.

Assessment of taxa in the species taxonomic rank

The species taxonomic rank may not be regarded as a

microbial group but as individual microbes. However,

we include this species rank to be analyzed because

testing separately for individual species is also of interest.

Although it might be considered ideal to have one-to-

one correspondence between OTUs and species, in

reality, some species include multiple OTU. As such, we

can consider an OTU as the smallest unit and thus those

species as a group so that OMiAT is applied. Alterna-

tively, users can consider any species as the smallest

unit, by properly combining the relevant OTUs per

species.

Assessment of taxa that include only one OTU

Group analytic tools lose their efficiency when the

taxa surveyed include only one OTU. For this case,

we employ a simple semi-parametric approach which is

based on a score test, U (Eq. 3), and a permutation-based

method [37].

Control of false discovery rate

Importantly, since there can exist multiple tests for mul-

tiple taxa at a given taxonomic rank, a multiple testing

correction procedure is needed to suppress increased

type I error rate. We apply the Benjamini-Hochberg pro-

cedure to control false discovery rate at 5% per taxo-

nomic rank [40–42] as it is valid robustly whenever the

multiple tests are independent or correlated in various

scenarios [43]. Thus, the error probability applies to a

family of inferences at each taxonomic rank.

A combined permutation-based algorithm

One issue we have encountered is a large computational

burden to test numerous microbial taxa throughout all

different taxonomic ranks. Although the score-based test

using a permutation-based method is efficient in compu-

tation to test a small number of microbial taxa, testing

all existing microbial taxa can require enormous compu-

tational time. Moreover, to reach sufficient convergence

in all the outcomes (e.g., P values) consistently, compu-

tational needs can be even greater.

Our experiences have also revealed that outcomes are

sensitive to different implementation specifications (e.g.,

different numbers of permutations). Accordingly, espe-

cially when the P values are close to 0.05, their discovery

status can even be reversed. Therefore, we apply a com-

bined permutation-based algorithm which shares the

same vector and permuted vectors of residuals for every

microbial taxon assessment; hence, we can avoid repeat-

ing such procedures. We have found that this combined

permutation-based algorithm produces stable outcomes

(e.g., P values) with better correspondence/convergence

than individual permutation-based tests for numerous

assessments using a relatively moderate number of

permutations (e.g., 50,000). In contrast, individual

permutation-based tests may produce highly irregular

outcomes unless an extremely high number of permu-

tations (e.g., 500,000) are specified.

A hierarchical visualization

A graphical representation is introduced to summarize

discovered and undiscovered microbial taxa in a
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hierarchical taxonomic structure. To explain, we stack

all individual OTUs vertically and enumerate taxonomic

ranks from highest to lowest horizontally with each

OTU consistently belonging to their upper-level taxa.

Then, using color, we highlight microbial taxa according

to their discovery status to overview multiple discovery

statuses comprehensively. In addition, on the right end

line on each graph, we enumerate the effect directions

for each OTU by calculating the score test statistic, U

(Eq. 3), for each OTU, assigning “+”, if it is ≥0 and “−” if

it is <0. Related outcomes are presented in the “Real data

analysis” section. Detailed information on the exact

taxonomic names and their P values matched with each

OTU ID can also be found in separate tables using our

software facility, OMiAT.

Other methods in MiCAM

Although we propose OMiAT to be used as a group ana-

lytic method in MiCAM, for the purpose of comparison

in our real data analyses, we have also integrated other

competing group analytic methods, Optimal MiRKAT,

aMiSPU, and the aggregate-based method, respectively,

into the MiCAM framework.

Results

Simulations

We have conducted extensive simulations to evaluate

different methods, OMiAT, Optimal MiRKAT, aMiSPU,

and the aggregate-based method in terms of type I error

and statistical power. For simplicity, we use the entire com-

munity as a microbial group of interest. In practice, any

subgroup for different upper-level taxa can be considered.

Simulation design

The simulation design used is based on the prior studies

[24, 25, 30]. We first simulated OTU counts for 100 sub-

jects from the Dirichlet-multinomial distribution with

total reads per sample to be randomly sampled from a

negative binomial distribution with mean 300 and size

10. The dispersion parameter and proportion means to

be inserted into the Dirichlet-multinomial distribution

were estimated from the early childhood antibiotics and

the microbiome (ECAM) project’s intestinal microbiome

data [7]. The ECAM data includes 2261 OTUs for 43 in-

fants, but as a demonstration, we selected 32 infants

aged from 30 to 40 days of life and applied a filtering

rule that retains only OTUs with a proportion mean

>10−3, as such, 71 OTUs were included in the analysis.

Then, continuous and binary outcome traits were

generated under the linear model (Eq. 10) and the

logistic model (Eq. 11), respectively.

yi ¼ 0:5 � scale X1i þ X2ið Þ þ
Xp

j¼1
βjscale Zij

� �

þ ∈i

ð10Þ

logit P yi ¼ 1
� �

¼ 0:5 � scale X1i þ X2ið Þ

þ
Xp

j¼1
βjscale Zij

� �

;

ð11Þ

where ϵi is an error term with ϵi ~N(0,1), X1i and X2i are

two covariates, Zij is an OTU count, and the “scale”

function is for the standardization to have mean 0 and

standard deviation (SD) 1 and is further defined as scale

X1i þ X2ið Þ ¼ X1i þ X2i− mean X11þ X21; X12þ X22; …; X1nþ X2nð Þ
SD X11þ X21; X12þ X22; …; X1nþ X2nð Þ

and scale Zij

� �

¼
Zij − mean Z1j; Z2j; …; Znjð Þ

SD Z1j; Z2j; …; Znjð Þ
; for sub-

jects i = 1,…, n and OTUs j = 1,…, p. X1i ' s were gener-

ated to be independent with OTUs from the Bernoulli

distribution with success probability 0.5. X2i ' s were gen-

erated in two different ways: one to be correlated with

OTUs as X2i = ∑j ∈Λscale(Zij) + N(0, 1), where Λ is a set

of indices for associated OTUs, and the other to be inde-

pendent with OTUs as X2i = N(0,1).

To estimate type I error rates, outcome traits were gen-

erated from the null model by setting β = (β1, …, βp) ' = 0.

To estimate statistical powers, we first selected a set of as-

sociated OTUs with four different simulation scenarios:

(1) OTUs in upper 10% in abundance, (2) a random 10%

of OTUs, (3) OTUs in lower 10% in abundance, and (4)

OTUs in the selected cluster using the partitioning-

around-medoids (PAM) algorithm [44]. The fourth

scenario is for a situation when associated OTUs are

phylogenetically related. For this, we first partitioned all

OTUs into five clusters using the PAM algorithm based

on the cophenetic distances in the real phylogenetic tree

[45]. Then, we randomly assigned all these five clusters

(which contain 20.9, 21.6, 32.5, 15.3, and 9.7% of total

abundance, respectively) into each iteration in our simula-

tions. This is to overcome the arbitrariness of the choice

of clusters and opposite to working on a single or a

couple of chosen cluster(s) as conducted in prior

studies [24, 26, 30]. If we work on simulations with

some particularly chosen clusters, it would not be a fair

comparison because those clusters can be favorable to a

particular testing method. Especially, adaptive methods

are needed to be tested from diverse simulation envi-

ronments (e.g., differing microbial abundances and

phylogenetic relationships using different associated

clusters evenly) to evaluate their adaptivity.

Because the fourth scenario combines both microbial

abundance and phylogenetic information, it is believed

to be more realistic than the first three scenarios. How-

ever, the first three scenarios are useful to check whether

each method discovers abundant or rare microbial taxa,
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equivalently. We denote Λ as a set of indices for the

associated OTUs. Then, βj ∈Λ is a vector of coefficients

corresponding to associated OTUs. For each experimen-

tal setting, βj ∈Λ are simulated with three different con-

tinuous uniform distributions, Uniform(0,1),

Uniform(0,2), and Uniform(0,3), for the same effect dir-

ection and with another three continuous uniform distri-

butions, Uniform(−1,1), Uniform(−2,2), and

Uniform(−3,3), for mixed effect directions, separately.

Simulation results

For presentation, we include only the outcomes for

the adaptive methods (with the exception of the

aggregate-based method) and for the logistic models,

moving all the other outcomes to additional material

(Additional file 2: Figure S1 reports complete type I

error estimates, Additional files 3 and 4: Figure S2

and S3 report complete power estimates for the linear

models, and Additional files 5 and 6: Figure S4 and

S5 report complete power estimates for the logistic

models).

Type I error First, we observe mostly well-controlled

type I error rates (≤~5%) across all methods [Table 1,

Additional file 2: Figure S1]. Therefore, any discovered

microbial taxa using any of these methods are from sta-

tistically valid approaches.

Power We observe that with the increase of effect

size, the power increases for all methods under any

simulation scenario [Figs. 1 and 2, Additional files 3,

4, 5, and 6: Figure S2–S5]. We also observe that power

is generally higher for linear than logistic models

[Additional files 3, 4, 5, and 6: Figure S2–S5], but

the relative performance among different methods

within the linear or logistic model remains similar.

Whether the covariate, X2, is independent or corre-

lated with OTUs does not strongly alter the relative

performance.

We observe that OMiAT is clearly more powerful

than the other methods under most of the scenarios

[Figs. 1 and 2]. Exceptions include situations where

abundant OTUs are associated, in which Optimal

MiRKAT is most powerful [Figs. 1 and 2a, b], and

where rare OTUs are associated, in which the

aggregate-based method is most powerful [Figs. 1 and

2e, f]. However, even then, OMiAT is highly compar-

able. Based on the first three scenarios, we can ob-

serve that SPU using a high γ value (≥4) is powerful

when abundant OTUs are associated [Additional files

3, 4, 5, and 6: Figure S2–S5: A, B], SPU using a

medium γ value (~4) is powerful when random

OTUs are associated [Additional files 3, 4, 5, and 6:

Figure S2–S5: C, D], and SPU using a low γ value

(≤4) is powerful when rare OTUs are associated

[Additional files 3, 4, 5, and 6: Figure S2–S5: E, F].

In contrast, the major drawback of Optimal MiRKAT

occurs when rare or random OTUs are associated,

resulting in low power values [Figs. 1c–f and 2c–f].

Consequently, we can observe that OMiAT reaches

the highest power considerably beyond Optimal MiR-

KAT for the fourth scenario [Figs. 1g, h and 2g, h],

as explained by the assistance from diverse SPU tests

within its machinery.

The aggregate-based method is highly underpowered

when associated OTUs are in mixed effect directions

[Figs. 1b, d, f, h and 2b, d, f, h], as explained by the viola-

tion of its underlying assumption that all associated

OTUs are in the same effect direction. Moreover, the

aggregate-based method is less powerful than the other

methods under most of the other scenarios [Figs. 1a, c, g

and 2a, c, g]. The only exception is when rare OTUs are

associated and they are in the same effect direction

[Figs. 1e and 2e], which can be explained similarly with

the situation where the SPU test using a small value of γ

outperforms.

aMiSPU is not observed to be as powerful as Optimal

MiRKAT as well as OMiAT [Figs. 1 and 2], and it is op-

posite to the simulation outcomes reported in Wu et al.

[26]. For the reasons, we can further observe two related

simulation outcomes as follows. Firstly, the MiSPU tests

based on the unweighted generalized taxon proportion

are mostly underpowered [Additional files 3, 4, 5, and 6:

Figure S2–S5]. This may be because it is solely based on

the presence or absence of microbial taxa with no fur-

ther microbial abundance incorporation. Secondly, the

MiSPU tests based on the weighted generalized taxon

proportion are less powerful than the MiRKAT tests

based on different UniFrac distances [Additional files 3,

4, 5, and 6: Figure S2–S5]. This may be because the

Table 1 Type I error rate estimates in percent for both linear and logistic models

OMiAT Optimal MiRKAT aMiSPU Aggregate-based

Linear model Independent X2 4.98 5.10 5.13 4.84

Correlated X2 4.93 4.92 5.15 4.92

Logistic model Independent X2 5.09 4.98 5.09 5.10

Correlated X2 5.26 5.21 4.94 4.99
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generalized taxon proportion weights microbial taxa

by their branch lengths [26], and thus, it is efficient

only when associated microbial taxa have relatively

large branch lengths, but not in general. In addition,

in Wu et al. [26], a limited number of candidate

distance-based measures were surveyed for different

MiRKAT tests, which can lead to a lower power for

Optimal MiRKAT [26].

Real data analysis

Here, we apply the methods, OMiAT, Optimal MiRKAT,

aMiSPU, and the aggregate-based method, respectively,

to the MiCAM framework to assess existing microbial

taxa throughout all different taxonomic ranks from king-

dom to species using two real data sets [6, 7]. Along

with the simulation results, we also compare different

methods by the extent of discovered microbial taxa from

our real data analyses.

Sustained effects on intestinal microbiota by early-life

low-dose penicillin exposure [6]

Cox et al. [6] have conducted a microbiome profiling

study to examine whether the intestinal microbiota

altered during maturation by low-dose antibiotic, low-

dose penicillin (LDP) induces sustained effects on

body composition (e.g., tendency to obesity). Here, we

a b

c d

e f

g h

Fig. 1 Power estimates for the logistic model when the covariate X2 is independent with OTUs. a Positive effect: OTUs in upper 10% in abundance.

b Mixed effect: OTUs in upper 10% in abundance. c Positive effect: a random 10% of OTUs. d Mixed effect: a random 10% of OTUs. e Positive effect:

OTUs in lower 10% of abundance. f Mixed effect: OTUs in lower 10% of abundance. g Positive effect: OTUs in the cluster. h Mixed effect: OTUs in

the cluster
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re-examine a small portion of its original analyses,

which address whether the LDP-affected microbial com-

positions are recovered after its cessation. For this, cecal

microbiota were transferred from control-microbiota re-

cipients (CR1) to seven germ-free mice (CR2) and LDP-

microbiota recipients (PR1) to eight germ-free mice (PR2).

Fecal specimens from these 15 recipient mice were col-

lected 23 days after the transfer, and their DNA samples

were analyzed by targeting the V4 region of the bacterial

16S rRNA gene. Using the QIIME pipeline [13] to quan-

tify OTUs and construct a phylogenetic tree, 424 OTUs

were observed, but after filtering OTUs with a proportion

mean ≤10−3, 28 OTUs were analyzed.

We examined whether there is any disparity in micro-

bial profiles between two groups (CR2 and PR2). No co-

variate adjustment was made assuming that other

potential confounding factors were already well con-

trolled in the randomized experimental design.

To summarize the results [Fig. 3, Additional file 7:

Table S2], while many upper-level taxa were discovered

consistently by the three methods, OMiAT, Optimal

MiRKAT, and aMiSPU, the aggregate-based method dis-

covered apparently less. Since many of the OTUs trend

in opposite directions, the weakness of the aggregate-

based method likely originates from the violation of its

assumption of same effect directions of all associated

a b

c d

e f

g h

Fig. 2 Power estimates for the logistic model when the covariate X2 is correlated with OTUs. a Positive effect: OTUs in upper 10% in abundance.

b Mixed effect: OTUs in upper 10% in abundance. c Positive effect: a random 10% of OTUs. d Mixed effect: a random 10% of OTUs. e Positive

effect: OTUs in lower 10% of abundance. f Mixed effect: OTUs in lower 10% of abundance. g Positive effect: OTUs in the cluster. h Mixed effect:

OTUs in the cluster
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OTUs. OMiAT discovered the greatest number of taxa,

which is consistent with our simulations. The P values

for testing the entire microbial community level were

estimated as <0.001 for OMiAT, <0.001 for Optimal

MiRKAT, <0.001 for aMiSPU, and 0.518 for the

aggregate-based method.

Effects on intestinal microbiota by the early-life factor,

vaginal or cesarean birth [7]

The early childhood antibiotics and the microbiome

(ECAM) project is a longitudinal microbiome profiling

study to examine the hypotheses that early life factors,

such as delivery mode (e.g., vaginal or cesarean birth),

infant nutrition (breast milk or formula predominance),

and antibiotic usage, influence microbial community de-

velopment, resulting in sustained states. Among 32 in-

fants studied, 21 and 11 were delivered by vaginal and

cesarean delivery, respectively. None had received antibi-

otics, and two covariate adjustments, predominant diet

and sex, were included in our analyses.

The fecal samples from these infants were also

assessed for the bacterial 16S rRNA V4 region, and

Fig. 3 A hierarchical visualization which summarizes discovered (colored in red)/undiscovered (colored in gray) microbial taxa across different

taxonomic ranks for the sustained effects of LDP on microbial profile using the group analytic methods, OMiAT, Optimal MiRKAT, aMiSPU, and the

aggregate-based method
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Fig. 4 A hierarchical visualization which summarizes discovered (colored in red)/undiscovered (colored in gray) microbial taxa across different

taxonomic ranks for the effects of delivery method on microbial profile using the group analytic methods, OMiAT and Optimal MiRKAT
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Fig. 5 A hierarchical visualization which summarizes discovered (colored in red)/undiscovered (colored in gray) microbial taxa across

different taxonomic ranks for the effects of delivery method on microbial profile using the group analytic methods, aMiSPU, and the

aggregate-based method
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OTUs were determined, and a phylogenetic tree was

constructed [13]. There were 2261 OTUs in the original,

but after filtering with a proportion mean ≤10−3, 71

OTUs were analyzed.

We found that the aggregate-based method discovered

apparently fewer microbial taxa than the other methods,

since many of the OTUs had opposite effect directions

[Figs. 4 and 5, Additional file 8: Table S3]. While many

microbial taxa were consistently discovered by OMiAT

and aMiSPU, many taxa do not overlap with Optimal

MiRKAT [Figs. 4 and 5, Additional file 8: Table S3]. Some

of the discovery statuses for the use of Optimal MiRKAT

were also highly irregular by different specifications of the

number of permutations since their P values were too

close to 0.05. Here, again, OMiAT discovered the greatest

number of taxa. The P values for testing the entire micro-

bial community level were estimated as 0.005 for OMiAT,

<0.001 for Optimal MiRKAT, 0.023 for aMiSPU, and

0.495 for the aggregate-based method.

Discussion
The computational performance of MiCAM still needs to

be improved. Although we could obtain stable outcomes

efficiently for our real data analyses by the use of combined

permutation-based algorithm, analyzing a big data may

pose huge computational challenges in practice. To illus-

trate, as the number of microbial taxa increases (e.g., using

a less stringent filtering rule), its computational burden can

increase. MiCAM is written in R to facilitate the use of

existing R functions, but in case of such huge computation,

the use of a lower-level language can be required.

We have described the use of different group analytic

methods and the MiCAM framework focusing on

microbiota profiles via target sequencing for the 16S

rRNA gene [10]. However, as long as a data includes

OTU abundance and a phylogenetic tree in groups of

interest, similar approaches can apply. Therefore, the ex-

tension to the shotgun metagenomic data for the whole

microbial genomes [11, 46] is also highly feasible.

Although MiRKAT and SPU cover a wide range of asso-

ciation patterns, the candidate tests in the search space of

OMiAT in Eq. 9 are not limited to those two sets of tests. If

one finds other tests which suit other association patterns

which are not covered by MiRKAT and SPU tests, one can

include them into the search space to yield extra power.

As an extension, OMiAT can also be implemented into a

hierarchical multiple testing scheme [47] to identify which

microbes are associated with the phenotype of interest in

the lowest taxonomic rank. By utilizing the taxonomic tree

structure, one can test the lower-level lineages only when

their upper-level taxon is significant. In this way, the

number of tests can be reduced and smaller penalty due to

multiple testing correction is needed.

Conclusions
In this paper, we investigated two existing methods,

MiRKAT and MiSPU, and a new method, OMiAT, that

can be used as a counterpart to aggregate-based

methods [21–24] in microbiome-based association stud-

ies. Due to the lack of knowledge about true underlying

association patterns of numerous OTUs, the data-driven

approaches (OMiAT, Optimal MiRKAT, and aMiSPU)

are highly attractive in practice. We confirmed that they

are all statistically valid approaches with well-controlled

type I error rates. Among those, we observed that our

proposed method, OMiAT, is most robust and powerful

through extensive simulations and real data analyses.

The high performance of OMiAT comes from its high

adaptivity to suit two unique features of microbiome

data, the high imbalance in microbial abundance and

phylogenetic information.

The newly proposed microbial taxa discovery frame-

work, MiCAM, organizes different configurations to

test microbial taxa through a breadth of taxonomic

ranks, and it is especially efficient for the assessment of

upper-level taxa by integrating OMiAT as a group ana-

lytic method. Of importance is that MiCAM produces

statistically significantly associated microbial taxa with

a well-defined false discovery rate criterion. Its hier-

archical visualization also helps rapidly overview mul-

tiple discovery statuses. Consequently, we can obtain a

hierarchical association map for numerous microbial

taxa, and this can also be used as a guideline for further

investigation on the roles of discovered microbial taxa

in human health and disease.
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