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Abstract: Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality
globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conven-
tional methods have shown poor performance compared to more recent and fast-evolving Artificial
Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD
risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based
and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the
preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its
popularity and recent development, the study analyzed the above three paradigms using machine
learning (ML) frameworks. We review comprehensively these three methods using attributes, such as
architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias
(RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-
based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based,
image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk
prediction had shown promising results. Ground truth (GT) selection for AI-based training along
with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was
observed that the most popular classification paradigm is multiclass followed by the ensemble, and
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multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of
development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions:
AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is
most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with
conventional risk factors provides the highest stability when using the three CVD paradigms in
non-cloud and cloud-based frameworks.

Keywords: CVD; multiclass; multi-label; ensemble; cloud; COVID; bias; gold standard

1. Introduction

Cardiovascular disease (CVD) results in 18 million deaths worldwide [1]. In 2020,
the financial burden due to CVD was $237 billion USD [2]. With COVID-19 still not
subsided, rising inflation costs, loss of families due to migration, depression on the rise,
and comorbidities increasing, the risk of CVD risk is likely to go up. The main cause of
CVD is atherosclerotic deposition in the heart’s coronary arteries [3]. Due to different
types of comorbidities such as diabetes [4], chronic kidney disease (CKD) [5,6], rheumatoid
arthritis [7,8], hypertension [9], high lipids [10], and brain diseases [11–13], the risk of CVD
is increasing, putting patients at a higher risk of heart disease and stroke. It is estimated that
by 2030, the financial burden due to CVD will reach about $3T USD [2]. Therefore, the need
for an early CVD risk detection system will alleviate the mortality and morbidity rates.

CVD risk assessment can take two forms, namely (a) in the doctor’s office or pathology
laboratory or both, (b) in the stress test centers or signal processing clinics [14–16]. The
calculators used in the office-based scenario are conventional CVD calculators that use
laboratory-based biomarkers (LBBM) and office-based biomarkers (OBBM) [17], while the
CVD risk assessment in stress test centers uses electrocardiograms (ECG) [18–20]. There
are multiple conventional tools for assessment of risk due to CVD, namely (i) QRISK3 [21],
(ii) Framingham risk score (FRS) [22], (iii) the systematic coronary risk evaluation score
(SCORE) [23], (iv) the Reynolds risk score (RRS) [24], and (v) the atherosclerosis cardio-
vascular disease (ASCVD) [25]. Specific guidelines like the American College of Cardiol-
ogy/American Heart Association (ACC/AHA) [26], the European Society of Cardiology
(ESC) [27,28], and the Canadian society [29,30] are followed for predicting the CVD risk
when using these calculators.

The conventional CVD calculators offer several challenges [26,27], which include (i) not
being able to deal with the non-linearity between the covariates (or risk factors) [31] and
the gold standard (outcomes); (ii) does not reflect a direct representation of plaque build-up
in the arteries [17,32,33]; (iii) usage of ad hoc threshold for CVD risk stratification and
lack granularity for CVD [34,35]; and (iv) finally, the lack of usage of cohort’s knowledge.
All the abovementioned reasons put pressure to investigate a more accurate CVD risk
classification tool that can assess the proper non-invasive atherosclerotic plaque burdens
by using LBBM and OBBM.

When it comes to a non-invasive framework, the risk of coronary artery disease can
be estimated via the carotid artery network, because of the same genetic composition of
these two arteries (see Appendix H, Figure A8: Top). Carotid artery imaging also provides
an advantage to both CVD and stroke risk predictions and is often adapted to act as a
surrogate type of biomarker for CVD risk classification [36]. Generally, for imaging, the
carotid arteries, the popular three medical imaging modalities used are magnetic resonance
imaging (MRI) [37], computed tomography (CT) [38], and ultrasound (US) [39].

Carotid B-mode ultrasound (cBUS) offers several benefits, namely cost-effectiveness,
user-friendliness, easy reach through the neck window, high-resolution via compound,
and harmonic imaging [39–41]. Carotid videos can be also generated in the form of
movies (so-called CINIE loop with cardiac gating) during imaging, which can then be
used for better carotid plaque vulnerability. This can be accomplished by correlations and
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characterization [42] by taking the advantage of image registration paradigms between the
slices. The phenotypes for carotid ultrasound image-based (CUSIP) technique are carotid
intima-media thickness (cIMT) [43–47], intima-media thickness variability (IMVT) [48–51],
maximum plaque height (MPH) [52–54], and total plaque area (TPA) [55–57] and can be
obtained using cBUS frozen scans. The classification of risk for CVD can be improved in
terms of more reliable results by fusing CUSIP biomarkers along with the OBBM, LBBM
as shown by AtheroEdge 2.0 (Roseville, CA, USA) [36]. Though it is fully automated
and statistically based, it does not use cohort’s knowledge and Artificial Intelligence (AI)
framework. Therefore, a more accurate solution is needed to handle this challenge to ensure
reliable and superior CVD risk prediction.

With the advancement of AI in the field of healthcare [19,58–62], especially in machine
learning (ML), deep learning (DL), combined with mobile solutions such as e-health and
cloud-based technologies, CVD risk assessment has shown promising signs. The main
focus of the proposed study is the ML paradigm however, we very briefly touch on DL
strategies due to their infancy stage. Recently, we have seen research showing that ML can
handle non-linearity between the input covariates and target outcomes (or gold standard),
while DL automates the feature extraction process from the input data for classification.
We therefore hypothesize that CVD classification paradigms such as multiclass, multi-label,
and ensemble are more accurate and reliable. Due to the amalgamation of the linear and
non-linear covariates along with the gold standard, there is no clear-cut defined strategy
when adapting these three paradigms for CVD risk stratification. This can sometimes lead
to over-performance inaccuracies and under-performance in clinical outcomes leading to
bias in AI [63]. The proposed study also presents the bias measurements in these three
paradigms independently, and further when all the three sets of techniques are jointly
taken into consideration for CVD risk stratification. The pseudo-code for each technique
is discussed in Appendices A–C. With the evolution of fast-growing telecommunication
technology, these CVD techniques can be applied in e-health frameworks such as mobile
or cloud settings, which provide access to the patient population for rural areas of the
world. This review further dwells in the above-mentioned area. Lastly, due to changing
environmental conditions such as COVID-19, it is important to understand how the CVD
risk assessment integrates into the COVID-19 framework. Several CVD reviews are already
available [64–69], but none of these consider the recent advanced methods like using ML
and DL in office-based, mobile/cloud-based set-ups.

The design of the proposed review is as follows. Section 2 shows the PRISMA strategy
used for study selection along with the statistical distribution of AI attributes. Section 3
presents the biological link between atherosclerosis and CVD risk. Section 4 represents the
heart of the system discussing the three paradigms, namely multiclass, multi-label, and
ensemble-based CVD risk stratification along with performance evaluation (PE) metrics for
these techniques. Section 5 presents the bias in AI for these three methods. The CVD risk
assessment through mobile, e-Health, and cloud-based techniques is presented in Section 6.
The critical discussion of the review is in Section 7, while the study concludes in Section 8.

2. Search Strategy and Statistical Distributions

The statistical distribution of the literature is necessary to understand the types of
CVD methods, the gold standard adapted for these AI-based solutions, the participation
of the feature extraction methods, and bias in the AI-based solutions. Thus, we adapt the
PRISMA model for the selection of the studies for the CVD risk assessment. This section
is therefore divided into two parts: Section 2.1 discusses the study selection criteria and
Section 2.2 presents the statistical distributions.

2.1. PRISMA Model

The PRISMA model was used for searching and selecting the final studies for the re-
view. The search was done using Science Direct, Google Scholar, IEEE Xplore, and PubMed
by adapting the following keywords “multiclass classification for CVD risk”, “multi-label
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classification for CVD risk”, “ensemble classification for CVD risk”, “CVD risk using
Machine Learning/Artificial Intelligence for multiclass”, CVD risk using Machine Learn-
ing/Artificial Intelligence for multi-label, “CVD risk using Machine Learning/Artificial
Intelligence for ensemble”, “CVD risk assessment in ML/AI framework”, and “Bias in
ML/AI”. The total number of ML/AI-based CVD studies is shown in Figure 1. An ex-
haustive search resulted in a total of 19,454 studies. The three criteria used for exclusion
were (a) non-relevant studies (b) articles removed after search and screening of the stud-
ies (c) records rejected due to insufficient data. The implementation of exclusion criteria
provides 19,084, 88, and 17 studies for exclusion showed by E1, E2, and E3 (Figure 1). The
important scientific knowledge from these final studies was gained and the statistical clas-
sification was drawn. Further, a comprehensive analysis of the studies was done between
the three techniques with the determination of AI bias.
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Figure 1. PRISMA model for selection of studies for CVD risk assessment.

2.2. Statistical Distribution

The statistical distributions derived from the selected studies are shown in Figure 2.
The following attributes were used for the statistical distribution (a) types of CVD paradigms,
(b) types of risk classes in multiclass CVD (c) ML-based CVD systems without/with fea-
ture extraction, (d) # GTs in multi-label-based CVD, (e) feature selection techniques, and
(f) ML-based CVD publications.
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(e) feature selection techniques, (f) trend of the ML-based CVD publications by year.

The percentage of studies for each of the three kinds of CVD risk prediction had the
following distributions: multiclass (26%) [69–82], multi-label (15%) [83–90], and ensemble
(59%) [80,91–121] (Figure 2a). Several different kinds of risk classes were identified in
multiclass CVD framework, namely binary (65%), tertiary (22%), quaternary (6%), and
greater than quaternary (7%) (Figure 2b). The distribution of the ML-based CVD studies
with and without feature selection are shown in Figure 2c. It was found that almost 82%
of ML-based CVD studies performed feature selection for risk prediction whereas only
18% [69,70,73,75,83,94,96,110,120] did not perform it. For the ML-based multi-label CVD
(Figure 2d), the total number of GT’s used for each study were as follows and given in
the ground braces: Venkatesh et al. (6) [83], Jamthikar et al. (3) [84], Kumar et al. (3) [85],
Mehrang et al. (3) [86], Mohamend et al. (8) [87], Priyanka et al. (10) [88], Zamzmi et al.
(4) [89], and Zeng et al. (4) [90]. There were eight sectors in the pie chart and each sector
represents a study (publication) in the area of multi-label-based ML system. Below the
study shows the number of gold standards used for the design of the multi-label ML system
paradigm. For example, Ventakesh et al. had 6 types of gold standards ((death, stroke, coro-
nary heart disease (CHD), CVD, heart failure (HF), atrial fibrillation (AF)) during the design
of their multi-label-based ML system. Similarly, Jamthikar et al. had three types of gold
standard (coronary artery disease (CAD), acute coronary syndrome (ACS), composite car-
diovascular event (CVE)) during the design of the multi-label ML system. Since the number
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of gold standards are important during the multi-label paradigm, the pie-chart shows the
statistical distribution of the different studies using the number of gold standards. The num-
ber of studies (given in curly braces) that used the following feature selection techniques
were 2D convolutional neural network (CNN) (6) [71,79,81,89,101,111], continuous wavelet
transform (1) [72], principal component analysis (PCA) (9) [76,79,84,98,102,112,114,119,121],
Mel frequency cepstral coefficient (1) [77], amplitude magnitude (1) [78], gain ratio (1) [80],
Matlab (1) [86], association technique (2) [87], SHAP (1) [90], extreme gradient boost (XG-
Boost) (1), genetic algorithm (5) [91,103,104,122,123], Tunicate Swarm (1) [116], chi-Square
(2) [117], least absolute shrinkage and selection operation (LASSO) (1) [99] (Figure 2e). The
increasing trend of CVD publications from the year 2009 to 2021 is shown in Figure 2f.

3. Biological Link between Atherosclerosis and Cardiovascular Disease

The fundamental cause of CVD is the disease of atherosclerosis [124]. The process of
plaque formation is known as atherogenesis as shown in Figure 3a(A–I) [125]. It is a process
when the plaques develop in the arteries where there is low endothelial shear stress [126].
The shear stress depends on the flow velocity characteristics like type of flow, direction,
and velocity. Leukocytes attack the epithelium in this region (Figure 3(bA)) [126]. Mainly
there is the migration of monocytes into the sub-epithelial layer where it is oxidized by
the low amount of low-density lipoprotein (LDL) cholesterol and turns into macr0ophage
(Figure 3(bB)) [127,128]. Eventually, these macrophages become large foam cells with oxi-
dized LDL cholesterol leading to the formation of necrotic core (Figure 3(bC)). Microscopic
calcium granules expand in the necrotic cells and forms lumps of calcium deposits. This
necrotic core is separated from the blood vessel by a fibrous cap [129]. The blood remains
uninterrupted when the plaque is small as the arteries do remodeling by themselves [130].
However, when the plaques increase, the lipid-core volume decreases leading to structural
stabilization of plaque (Figure 3a) [131].
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Progressive deposition of lipids results in the thinning of the fibrous cap leading to
rupturing the plaque [132]. The ruptures of the cup result in healing by the platelets in the
bloodstream, which leads to the formation of the clot of blood or thrombus which yields
blocking of artery than atrial stiffness [133]. Due to this, the tissues become deprived of
blood supply, causing cell death. If the coronary artery gets blocked, causing a myocardial
infarction or CVD (Figure 3(bD)) [3,7].

4. Three Paradigms for Cardiovascular Risk Stratification

The core aim of this review is to understand the three kinds of paradigms for CVD
risk stratification. This allows understanding the (a) types of gold standards used for
different kinds of applications, (b) types of fundamental architectures used, and (c) finally
the comparison between the three different types of paradigms.

4.1. Multiclass-Based Cardiovascular Disease Risk Stratification System

The most fundamental type of CVD risk stratification is the multiclass framework [134].
There are three main characteristics in multiclass framework, namely (i) it divides the
outcome into two or more granular risk classes, (ii) the drug prescription is better controlled
for CVD treatments based on which class the disease stage or risk lies, and (iii) the risk
of CVD is better understood when divided into several stages such as low, mild, low-of-
moderate, high-of-moderate, low-of-high, and high-of-high.

4.1.1. CVD-Based Multiclass Risk Assessment System

For any CVD system, there are two most important attributes: (a) the types of the
covariates used and (b) the gold standard adopted. Accordingly, in the multiclass frame-
work, there are 14 published studies (see Table 1). It shows the three attributes represented
in three columns: covariates, gold standard, and the AI category, namely ML or DL.
The types of covariates considered for the multiclass systems were OBBM [71,76,80,82],
LBBM [71,76,80,82], CUSIP [76,80] for office-based setups (Table 1: row 1–5), and Electrocar-
diogram (ECG) [79,81,82], PCG [77], Acceleration Plethysmogram (APG) [78] signals for
cardiac stress test laboratories (Table 1: row 6–9), and coronary artery calcium (CAC) for CT-
based CVD models [135]. The ground truths considered for CVD risk assessment (Table 1)
were death [80], coronary heart disease (CHD) [82], chronic heart conditions (CHC) [79],
cardiovascular event (CVE) [76], sudden cardiac death (SCD) [72], heart failure (HF), my-
ocardial infarction (MI) [75], coronary artery calcification (CAC) score [69], fatal/non-fatal
CVD [73], joint CVD and diabetes [70]. Note that these gold standard choices along with
AI attributes, scientific and clinical validations are key to preventing bias in AI.

4.1.2. Comparison between CVD Application and Non-CVD Application

The comparison between CVD and non-CVD applications [136] is shown in Table 2.
Seven attributes were used for this comparison. The image modalities used in the CVD-
based system were US, CT, MRI, and ECG (Table 2: row 4, CVD column). The architectures
applied were ML and DL. DL provided better results due to its unique automated feature
selection process (Table 2: row 6, CVD column). The defined number of classes was in
the range of 3–9 (Table 2: row 5, CVD column) [69–82]. The multiclass approach for
classification has been applied to non-CVD applications such as Alzheimer’s prediction
or different cancer types. The interpretation of multiclass in the non-CVD system can be
thought of as different stages of the diseases, for example, in the case of Alzheimer’s disease
(AD), it can be categorized as different stages of memory loss with age. Similarly, in the
case of cancer, it can be different stages or grades of cancer.
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Table 1. Multiclass 14 CVD studies and their characteristics in ML/DL framework.

SN Studies Input Covariates Gold Standard
Types #RC ML/DL

1 Chao et al. [71] OBBM, LBBM CVD Event K DL

2 Lui et al. [79] ECG parameters CHC 3 ML

3 Wiharto et al. [82] OBBM, LBBM, ECG CHD 3 ML

4 Jamthikar et al. [76] OBBM, LBBM, CUSIP CVE 4 ML

5 Nakanishi et al. [80] OBBM, LBBM, CUSIP Death 3 ML

6 Devi et al. [72] ECG Parameters SCD 3 ML

7 Khan et al. [77] PCG Signals CVE 3 ML

8 Krupa et al. [78] APG signals BCVD 3 ML

9 Ni et al. [81] ECG Signals CVD, No CVD 4 DL

10 Hedman et al. [74] OBBM, LBBM Heart Failure 3 ML

11 Hussain et al. [75] OBBM, LBBM, ECG MI 3 ML

12 Sanchez et al. [69] OBBM, LBBM CAC score 9 ML

13 Emaus et al. [73] OBBM, CAC (CT) F/NF CVD 3 DL

14 Buddi et al. [70] OBBM, LBBM CVD, Diabetes 4 ML

SN: Serial number; APG: Acceleration plethysmogram; CHD: Coronary heart disease; CVE: Cardiovascular events;
CHC: Chronic heart conditions; SCD: Sudden cardiac death; BCVD: Binary CVD (Healthy, diseased); F/NF CVD:
Fetal/Non-fetal CVD; CT: Computed tomography; #RC: Risk classes; OBBM: Office-based biomarkers; LBBM:
Laboratory-based biomarkers; CUSIP: Carotid ultrasound image phenotypes; CAC: Coronary artery calcium;
ECG: Electrocardiogram; MI: Myocardial infarction.

Our observations show that the gold standard types in the non-CVD system are very
different from the CVD systems. For example, for the early detection of AD/Mild Cognitive
Impairment (MCI), the classification is done between (1) AD vs. normal control (NC),
(2) MCI vs. NC, (3) AD vs. MCI, and (4) progressive MCI (PMCI) vs. Significant Memory
Concern (SMCI) for Alzheimer’s. In the case of breast cancer, GTs can be proliferation and
non-proliferation cancer types.

Note that the number of classes considered for multiclass differs from disease-to-
disease. The different architecture followed for CVD are mainly ML and DL, whereas for
non-CVD it ranges from deep learning retinal CAC score (RetiCAC) [137], pooled cohort
equation (PCE) [138,139], support vector machine (SVM) [70,75–77,140], convolutional
neural networks (CNN), decision tree (DT) [71,79], random forest (RF), logistic regression
(LR), naive Bayesian (NB), K-nearest neighbor (KNN), and ensemble. The different types
of covariates for no-CVD-based systems were breast histopathology images (BHI), OBBM,
and LBBM (Table 2: row 2, column non-CVD). Modalities for the non-CVD-based system
were EEG, MRI, CT [137,139] (Table 2: row 4, non-CVD column), and the number of risk
classes varied from 5–14 [137–139,141,142] (Table 2: row 5, non-CVD column).

4.1.3. Multiclass CVD Architecture for Office-Based CVD Risk Stratification

The architectures opted for multiclass prediction of CVD risk has very basic compo-
nents (a) data collection (b) training system, and (c) testing system. The training system
is basically used for training the ML system based on different covariates (or risk fac-
tors) [143,144], with the support of different ground truths while using the training-based
classifiers. The system can be trained to identify the granular risk classes from no, low, and
medium, to high class. Feature selection is also performed during the training of the sys-
tem [145,146]. For prediction, the training model is applied to transform the testing features
either in Seen AI framework or the Unseen AI framework [147]. Two types of architectures
were described in this section in terms of the above-mentioned factors. A typical online
system for multiclass CVD risk stratification is shown in Appendix A, Appendix A.1.
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Table 2. Multiclass in CVD vs. non-CVD using seven attributes.

SN Attributes Multiclass CVD Multiclass Non-CVD

1 Ground truth types CVE [69–73,76–79,81,82], HF [74],
MI [75], Death [80]

AD, NC, MCI, PMCI vs. SMCI [141],
Proliferation, NP [139], ADH, DCS, IC

[137,138,142]

2 Covariates types for the
ML design

OBBM [69,70,73–76,80,82],
LBBM [69,70,73–76,80,82],

CUSIP [71,72,76–82],
MU [76]

BHI [139],
OBBM [137,138,141,142],
LBBM [137,138,141,142]

3 Disease
Type CVD [69–82]

Diabetes [142], Cancer (Breast, Lung,
Brain) [138,139], Alzheimer’s [138,141],

Retinal [137]

4 Image
Modalities ECG, CT, US [71,72,76–82] EEG, MRI, CT [137,139]

5 # Classes 3–9 [69–82] 5–14 [137–139,141,142]

6 Architecture
Type ML [70,72,76–80,82], DL [71,81] ML, rMLTFL [141]

7 Classifiers used SVM [70,75–77],
DT, RF, LR, NB, KNN, CNN [71,79]

RetiCAC [137], PCE, SVM, CNN, DT,
LR, NB, SVM, KNN, ensemble [138,139]

SN: Serial number; CVE: Cardiovascular event; AD: Alzheimer’s; NC: Normal control; MCI: Mild Cognitive
impairment; PMCI: progressive MCI; SCMI: Significant memory concern; HF: Heart failure; MI: Myocardial
infraction; OBBM: Office-based biomarkers; LBBM: Laboratory-based biomarkers; CUSIP: Carotid ultrasound
image phenotype; ECG: Electrocardiogram; CT: Computed tomography; US: Ultrasound; MRI: Magnetic resonance
imaging; BHI: Breast histopathology images; MU: MedUse; IM: Image modalities; SVM: Support vector machine;
KNN: K-nearest neighbor; DT: Decision tree; RF: Random forest; LD: Logistic regression; NB: Naive Bayesian.
RetiCAC: Deep learning retinal CAC score; PCE: Pooled cohort equation; rMLTFL: robust multi-label transfer
feature learning.

A generalized ML system is applied to office-based CVD or stress-test-based CVD
systems as shown in Figure 4. Considering the office-based CVD system, the covariates were
collected from OBBM, LBBM, CUSIP, and MedUSE [76], while for the CVD-based stress-test
system, EEG was the input. The rest of the configuration remains the same which consists
of four parts: Part A is the preprocessing of the input data (covariates) and augmentation
for balancing the classes. Part B consists of a training system, Part C consists of a prediction
system, and Part D consists of a performance evaluation system (Appendix E). In Part A,
the objective is to balance the classes if there is a multiclass scenario, Part B consists of
two subparts: (i) selection of the best feature given the set of covariates and (ii) model
generation using (a) classifier, (b) selected features, and the (c) gold standard. Part C
consists of the application of the trained model on the selected set of best features from the
test data set by transforming the test features to compute the predicted label. Part D is used
for performance evaluation of the ML system where the predicted labels are compared
against the gold standard labels. Note that during the training system, the two ingredients
are the classifier bank and the gold standard used. The classifier bank, for example, can
be classifiers like SVM, XGBoost, KNN, NB, etc., while the gold standard is the coronary
artery disease syndrome, such as coronary artery disease stages that include the four types
of risk stages. Note that since the system is a K-fold (either of the K types such as K2, K3,
K4, K5, and K10 can be used), every patient gets to be in the test pool, and then at the end
of all the folds, the complete set can be used for performance evaluation. Further to note
a classifier bank can be used during the design of the training model, that uses the gold
standard (such as coronary risk scores derived from coronary angiography) and training
covariates. The CVD example in Figure 4 uses four sets of covariates, which can be flipped
to ECG signals [148–150] when using the stress test-based system for CVD risk assessment.
The longitudinal ultrasound model is used typically for the collection of the CUSIP risk
factors such as cIMT (max., min., and ave.), intima-media thickness variability (cIMTV),
maximum plaque height (MPH), and total plaque area (TPA).
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4.1.4. Multiclass CVD Architecture for Cardiac Stress Laboratories

Another set of architecture for multiclass CVD risk prediction was used by Hussein
et al. [75] (Figure 5). The ECG signals [151–153] are obtained from the stress test laboratory
for the analysis of CVD risk. The model uses the multiclass SVM classifier that takes the
ECG signals as risk factors or covariates. And the ground truth used for the training system
is myocardial infarction (MI). The multiclass outcomes that were identified were normal,
low MI, and high MI. The feature of ST (it is the interval between ventricular depolarization
and repolarization, and PR (the flat line that runs from the end of the P-wave till the start
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of the QRS complex) were extracted from the time-frequency (TF) power spectrum. The
created training model was the input to the prediction systems along with the test data and
the final classifications were made into the normal, low MI, and high MI.
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The general algorithm for multiclass CVD risk stratification is explained in form of
pseudo-code. A detailed explanation is provided in Appendix A, Appendix A.2.

4.2. Multi-Label-Based Cardiovascular Disease Classification

The second technique used for CVD risk stratification is multi-label-based [154–156].
The ground truth is very important for the proper classification of CVD risk [157–159].
CVD risk prediction systems were said to be multi-label-based depending on the number
of ground truth (GT) used in the system [160–162]. The paradigm was considered as
a multi-label-based classification if more than one number of GT is used for CVD risk
detection [90,163–167]. The GTs, risk factors, and the architecture used were discussed in
the next sub-sections. The pseudo-code that represents a multi-label-based risk stratification
process can be referred to in Appendix B.

4.2.1. Covariates and Risk Factors for Multi-Label-Based CVD Classification

Eight multi-label-based studies for CVD risk prediction were considered in this re-
view [83–90]. Different types of ground truths used in these studies were death, stroke,
CHD, CVD, HF, atrial fibrillation (AF) [83], CAD, ACS, composite CVE [84], large vessel
disease (LVD), small vessel disease (SVD) [168], intracerebral hemorrhage (ICH) [85], non-
AFib-non-ADHF, AFib-non-ADHF, AFib-ADHF [86], systolic heart failure (acute, chronic
type), diastolic heart failure (acute and chronic type) [87], congestive heart failure, hyper-
tension, AF, acute kidney failure, diabetes type II, acute respiratory failure, hyperlipidemia,
coronary atherosclerosis, urinary tract infection, esophageal reflux [88], CAD, dilated
cardiomyopathy (DCM), MI [89], lung complication, cardiac, infectious and rhythmic
complication [90].

The risk factors used were OBBM, LBBM, CUSIP, MRI, and CT image phenotypes
(input covariates column, Table 3). The algorithms used for the multi-label classifications
were namely binary recursive (BR), label powerset (LP), multi-label adaptive resonance
associative map (MLARAM), random k-labelset (RakEL), classifier chain (CC), multi-label
k-nearest neighbor (MLkNN), seismocardiography (SCG-Z), gyrocardiography (GCG-Z),
principal component analysis (PCA), DCT, consensus-based risk model. Other characteris-
tics of this classification technique were described in Table 3.
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Table 3. Multi-label 8 studies and their characteristics.

SN Studies Input Covariates Ground Truth ML/DL

1 Venkatesh et al. [83] OBBM, LBBM Death, Stroke, CHD, CVD, HF, AF ML

2 Jamthikar et al. [84] OBBM, LBBM, CUSIP CAD, ACS, Composite CVE ML

3 Kumar et al. [85] OBBM, LBBM, ECG LVD, SVD, ICH ML

4 Mehrang et al. [86] OBBM, LBBM, CUSIP Non-AFib-Non-ADHF,
Afib-Non-ADHF, Afib-ADHF ML

5 Mohamend et al. [87] OBBM, LBBM, CUSIP SHF, ASHF, CSHF, ACSHF, DHF,
ADHF, CDHF, ACDHF ML

6 Priyanka et al. [88] OBBM, LBBM HT, CHF, AF, CA, AKF, Dia-TII,
HL, ARF, UTI, ER ML

7 Zamzmi et al. [89] MRI, CT Signals HF, CAD, DCM, MI DL

8 Zeng et al. [90] OBBM, LBBM LC, CC, IC, RC ML

SN: Serial number; HF: Heart failure; AF: Arterial fibrillation; LVD; Large vessel disease; SVD: Small vessel
disease; ICH: Intracerebral hemorrhage (ICH); SHF: Systolic heart failure; ASHF: Acute systolic heart failure;
CSHF: Chronic systolic heart failure; ACSHF: Acute on chronic systolic heart failure; DHF: Diastolic heart failure;
ADHF: Acute diastolic heart failure; CDHF: Chronic diastolic heart failure; ACDHF: Acute on chronic diastolic
heart failure; HT: Hypertension; CHF: Congestive heart failure; CA: Coronary atherosclerosis, AKF: Acute kidney
failure; HL: Hyperlipidemia; Dia-TII: Diabetes Type II; ARF: Acute respiratory failure; UTI: Urinary tract infection;
ER: Esophageal reflux; DCM: Dilated cardiomyopathy LC: Lung complication, CC: Cardiac complication; IC:
Infectious complication, RC: Rhythmia complication.

4.2.2. Multi-Label-Based Architectures for CVD Risk Stratification

The architecture design for the multi-label plays an important in the outcome results
of the system. The basic component of the architecture for the CVD prediction system
is training and testing. The proper choice of GT leads to non-biased results in the risk
prediction of CVD. The architecture system used by Jamthikar et al. [84] is shown in
Figure 6 below. The total number of ground truths considered for this system were three,
namely (a) coronary artery disease, (b) acute coronary syndrome, and (c) a composite
CVE, and the covariates used were OBBM, LBBM, and the CUSIP phenotype. Six types
of classification techniques used include (i) four problem transformation methods (PTM)
and (ii) two algorithm adaptation methods (AAM) are used for multi-label CVE predic-
tion. The four PTM techniques were binary relevance (BR), label powerset (LP), classifier
chain (CC), and random k-labelset (RAkEL). Under AAM-based, two techniques, namely
multi-label k-nearest neighbor (MLkNN), and multi-label adaptive resonance associative
map (MLARAM) were used. The details can be seen in Appendix B. Evaluation was
performed by calculating the accuracy, sensitivity, specificity, F1-score, and AUC for all the
classification techniques. The BR classification was found to be the best performer with the
values for accuracy, sensitivity, specificity, F1-score, and AUC as 81.2%, 76.5%, 83.8%, 75.37,
and 0.89 (p < 0.0001), respectively.

Another architecture [86] used for multi-label CVD classification is described in
Figure 7. The mechanocardiography (MCG) data were used by the system. Four kinds of
ground truth were used, namely AFib, non-AFib, ADHF, and non-ADHF. The covariates
were gender, age, height, weight, BMI, given for the training and testing system. The ML
classification algorithm used were random forest (RF), Xtreem Gradient Boost (XGB), and
logistic regression (LR). RF gave the best performance among all the three ML classifiers.
The system was validated by nested cross-validation. In this system, feature extraction was
also performed using a feature vector. The hierarchal classification was also adapted in this
system. Another paradigm that can use multiple classifiers at the same time is under the
ensemble framework as presented in the next section.
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4.3. Ensemble-Based Cardiovascular Disease Classification

The ensemble-based technique was the third type of technique considered for CVD
risk classification [169–171]. This classification was characterized by the fusion of different
types of ML or DL classifiers (Table 4). It can be used with multiclass and multi-label
classification [172–174]. Figure 8 shows the concept of the ensemble paradigm. There are
two sets of strategies, namely homogeneous ensemble and heterogeneous ensemble (see
the separation shown by dotted line). In homogenous ensemble, the conventional classifier
techniques are combined using homogeneous ensemble algorithm to yield homogeneous
ensemble classifier, which when trained using classifier A while using the gold standard.
This homogeneous system yields the trained model A. The same protocol can be adapted
for the heterogeneous ensemble paradigm yielding the trained model B. These trained
models can be used by the prediction system on the test feature to produce prediction labels.
Finally, the performance can be evaluated by comparing predicted labels to gold-standard
labels yielding performance parameters. The key benefit of using an ensemble classifier
is its superior performance compared to either multiclass or multi-label strategies. The
pseudo-code that represents the ensemble-based risk stratification process can be seen in
Appendix C. The ensemble technique can be applied to the CVD field, as well as to other
fields, such as education, Alzheimer’s, etc.
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4.3.1. Different Classifier Combination for Ensemble-Based CVD Risk Stratification

The different classifiers used in ensemble techniques were kNN, Reglog, GaussNB
(GNB), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), ran-
dom forest (RF) [91,95–98], multilayer perceptron (MLP), SVM [91,94,95,97,101,103,104],
CNN, long short term memory network (LSTM), gated recurrent unit (GRU), bidirectional
LSTM, bidirectional GRU [92], bagging, XGBoost, Adaboost [93,99], DNN [94], general-
ized additive models (GAMs), elastic net, penalized logistic regression (PLR), gradient
boosted machines (GBMs), Bayesian logistic regression [96], K-NN [98,99,102,104,121],
NB [101,104], light GBM, GBDT, LR, BPNN, DT [98,99,104,109], GB [99], Adaboost ensem-
ble [100], ANN [101,104], GNB, LDA, LR, QDA, AdaBoost [105,113,118], XGBoost [102,118],
ensemble SVM [104], CART [106], bagging, VS, LASSO, boosting, Bassian, MARS, logis-
tic [107], ensemble boosting [80], ensemble learning, deep learning [108], ET, sequential
minimal optimization (SMO), IBk, AdaBoostM1 with decision stump (DS), AdaBoostM1
with LR, REPTree, [109], neural network (NN), GB [110,114], linear Cox model [110], en-
semble gradient boosting [111], ET [112], NB, multi-layer defense system (MLDS) [114],
average- voting (AVEn), majority-voting (MVEn), weighted-average voting (WAVEn) [115],
HTSA, ensemble deep learning [116], XGBoost Meta [117,119], SOM [120], extreme learning
machine (ELM) [121].

4.3.2. Comparison between the Three Types of CVD Risk Assessment Systems

All the architecture can be combined to achieve the functionality of all the three models,
namely multiclass, multi-label [13], and ensemble. Both multiclass, multi-label modalities
can be combined with the ensemble to acquire a better accuracy in the prediction of CVD
risk. The comparison between the three has been shown in Appendix D, Table A1. The data
size varies from 212–66,363 (for multiclass) [69–82], 300–46,520 (for multi-label) [83–90],
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459–823,627 (for ensemble) [80,91–121]. The number of risk factors for multiclass is low,
multi-label is more, and for the ensemble is moderate. The risk factors considered for
multiclass are family history and BMI. For multi-label-based studies and ensemble-based
studies, the risk factors considered were BMI, ethnicity, hypertension, and smoking. The
image modalities used for multiclass and multi-label were MRI [175,176], ECG [177–179],
and CUSIP whereas ECG is not used in ensemble-based studies. The range of performance
evaluation parameters used for the multiclass, multi-label, and ensemble was 1–5, 1–8, and
1–8, respectively. The different types of classifiers used for these three techniques were
SVM [91,94,95,97,101,103,104], RF [91,95–98], CNN, DT, k-NN, Agatston classifier, Elastic
Net, NN, NB, XGBoost, SVM, ELM, one against one (OAO), one against all (OAA), decision
direct acyclic graph (DDAG), exhaustive output error correction code (ECOC) [69–82].
The power analysis is also done on more multi-label and ensemble-based techniques.
The detailed description can be seen in Appendix F. The general presentation of the NN
algorithm was made in Appendix H.1 Right. The ML-based systems also lead to bias as it
lacks clinical evaluation which is discussed in the next section.

Table 4. Ensemble-based 33 and their characteristics of ML-based.

SN Studies Input Covariates Ground Truth ML/DL

1 Abdar et al. [91] OBBM, LBBM CAD ML

2 Baccouche et al. [92] OBBM, LBBM HHD, IHD, MHD, VHD DL

3 Chu et al. [93] OBBM, LBBM, ECG CVD, Dia ML

4 Cai et al. [94] OBBM, LBBM CR ML

5 Esfahani et al. [95] OBBM, LBBM CVD ML

6 Gibson et al. [96] OBBM, LBBM ACS ML

7 Gao et al. [97] OBBM, LBBM, ECG CVD, BC ML

8 Gao et al. [98] OBBM, LBBM CVD ML

9 Gosh et al. [99] OBBM, LBBM, ECG CVD ML

10 Honsi et al. [100] OBBM, LBBM CVD ML

11 Jan et al. [101] OBBM, LBBM, ECG HD ML

12 Jamthikar et al. [102] OBBM, LBBM, CUSIP CAD, ACS ML

13 Jothiprakash et al. [103] OBBM, LBBM CVD ML

14 Liu et al. [104] OBBM, LBBM CA ML

15 Miao et al. [105] OBBM, LBBM, ECG CHD ML

16 Mienye et al. [106] OBBM, LBBM HD ML

17 Negassa et al. [107] OBBM, LBBM HF ML

18 Nakanishi et al. [80] OBBM, LBBM, CT Death ML

19 Plawiak et al. [108] OBBM, LBBM, ECG Arrhythmia DL

20 Puvar et al. [180] OBBM, LBBM, ECG HD ML

21 Reddy et al. [109] OBBM, LBBM HD ML

22 Rousset et al. [110] OBBM, LBBM CVD ML

23 Sherly et al. [111] OBBM, LBBM, ECG HD ML

24 Sherazi et al. [112] OBBM, LBBM CVE ML

25 Tan et al. [113] OBBM, LBBM CVD ML
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Table 4. Cont.

SN Studies Input Covariates Ground Truth ML/DL

26 Uddin et al. [114] OBBM, LBBM CVD ML

27 Velusamy et al. [115] OBBM, LBBM CAD ML

28 Wankhede et al. [116] OBBM, LBBM HD DL

29 Yadav et al. [117] OBBM, LBBM HD ML

30 Ye et al. [118] OBBM, LBBM HYT ML

31 Yekkala et al. [119] OBBM, LBBM CVD ML

32 Zarkogianni et al. [120] OBBM, LBBM CVD, Dia ML

33 Zhenya et al. [121] OBBM, LBBM, ECG HD ML

SN: Serial number; HHR: Hypertensive heart disease; IHD: Ischemic heart disease, MHD: Mixed heart disease;
VHD: Valvular heart disease; CR: Cardiac resynchronization; ACS: Acute coronary syndrome; CVD: Cardiovascu-
lar disease; CA: Cardiac arrhythmia; BC: Breast cancer; HD: Heart disease; HF: Heart failure; CVE: Cardiovascular
event; Dia: Diabetes.

4.4. Performance Evaluation Metrics for Multiclass, Multi-Label, and Ensemble Techniques

Performance evaluation (PE) strategies are very vital for understanding the reliability
of the ML-based CVD risk stratification systems. The main metrics used by the PE systems
are sensitivity, specificity, accuracy, precision, F1-score, positive predictive value (PPV), neg-
ative predictive value (NPV), false-positive rate (FPR), false-negative rate (FNR), p-value,
hamming loss, C-index in multiclass, multi-label, and ensemble-based CVD risk assessment
systems. The formulae used for determining these parameters are described in Appendix E.
These different PE strategies were analyzed in different techniques. It was found that PE
for multi-label-based CVD is different as compared to multiclass and ensemble. There are
two types of PE techniques for multi-label, namely label-based and instance-based PE. The
label-based is done using micro and macro-averaging techniques. Details of these tech-
niques can be seen in Appendix E. Figure 9 (top) shows the label-based and instance-based
performance evaluation. The number of studies that used this PE parameter is the accu-
racy (46) followed by sensitivity (32), precision (27), F1-score (27), specificity (26), p-value
(10), PPV (8), NPV (6), FPR (6), FNR (5), c-index (4), Hamming Loss (1). Hamming Loss
has opted only for the ensemble-based CVD risk stratification [181–184]. The PE metrics
used in the stress test-based (ECG) [185–187] techniques are area-under-the-curve (AUC),
sensitivity, specificity, PPV, and NPV [188–192].

As seen from the above discussion, the most important characteristic of the multiclass
paradigm is the selection of gold standards having greater than two classes. The highest
flexibility in the multiclass framework is the amalgamation of different sources of covariates,
namely OBBM, LBBM, CUSIP, and MedUSE. We could take characteristics of plaque in
the carotid ultrasound such as information about plaque symptomatology. The same
principle holds in the stress test-based CVD paradigm or non-CVD framework. The
ML systems sometimes overestimate the accuracies in prediction and underestimate the
scientific validation, which results in bias in the prediction systems that we discuss in
Section 5.
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ple of a ROC for multi-label-based CVD systems (Courtesy of AtheroPoint, Roseville, CA, USA) [84],
PPV: positive predictive value; NPV: negative predictive value; FPR: false positive rate; FNR: false
negative rate; BR: binary relevance; CC: classifier chain; LP: label powerset; MLARAM: multi-label
adaptive resonance associative map; RakEL: random k-labelset; MLkNN: multi-label k-nearest neigh-
bor; CVE: cardiovascular events; CAD: coronary artery disease; ACS: acute coronary syndrome; ROC:
receiver operating characteristic; (a–f): different en-points used in the multi-label studies.

5. Bias Distribution in the ML System for Multiclass, Multi-Label, and Ensemble

The ML-based systems for CVD risk classification generate a bias due to various
reasons [193–195]. Thus, it is important to understand the risk of bias (RoB) in these
ML-based systems. As the ML systems were clustered in three different clusters, namely
multiclass, multi-label, and ensemble, the bias nature was compared in three independent
categories, and finally by considering all the three mixed together. For the RoB in the
ML-based systems, the ML systems were ranked on the basis of the average mean score
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along with cumulative mean values (Table 5). The mean and the cumulative score were
generated by scoring the ML attributes for each study. There were 52 ML studies (14 in
multiclass, 8 in multi-label, 30 in ensemble cluster) with 41 attributes each. The score
was given to each AI attribute using a grading scheme [196]. In this grading scheme, a
high-score was assigned to the AI attribute, if the AI attribute was adopted (used) in a
particular study (publication). The score is between 0 and 5. For example, a high-score was
given if the attribute “data size” had a value higher than 1000 patients, else a low-score
was assigned. Similarly, as another example, a high-score of 5 was given to the attribute
“feature extraction”, if it was implemented in a study, else a score of 0 was assigned, if not
implemented. Later the ML-based studies were clustered into low-bias, moderate-bias,
and high-bias groups. The distributions were done on the basis of the two cut-offs values.
The low-moderate (LM) and moderate-high (MH) cutoff values for each cluster of ML
studies were determined based on the mean values along with the cumulative-mean values.
The cutoffs values obtained for the multiclass cluster are 1.8 and 1.35 for LM and MH
respectively (Figure 10a). The studies belonging in the low-bias, the moderate-bias, and the
high-bias bins are 4, 5, and 5, respectively. Similarly, the cutoffs for the multi-label cluster
are LM: 1.9 and MH: 1.4 (Figure 10b). Multi-label-based CVD ML studies in low-bias group
are 3, moderate-bias group are 3 and high-bias group is 2. The values of LM cutoff for the
ensemble cluster are 1.8 and HM cutoff value is 1.6. The studies in low-bias bin are 8, in
moderate-bias are 16 and high-bias bin is 6 respectively for ensemble-based ML studies
(Figure 10c). Alternatively, as all the studies are based on CVD risk prediction, the LM and
MH cutoffs were determined by combining all the 52 studies. The LM, HM cutoff for the
combined approach is 1.9 and 1.7 respectively (Figure 10d). Thus, we see that the ensemble-
based ML CVD risk estimation systems are low-biased among all the selected studies
followed by multiclass-based (moderate-biased) while the multi-label-based was found
to be low-biased. The AI-based CVD risk stratification systems can be further improved
by incorporating the mobile, cloud, and e-health infrastructure as discussed in the next
Section 6.

Table 5. Ranking table (a) multiclass studies, (b) multi-label studies, (c) ensemble studies.

(a) Multiclass Studies Sum Mean Rank (c) Ensemble Studies Sum Mean Rank
Chao et al. [71] 78 1.9 1 Jamthikar et al. [102] 120.5 2.9 1
Lui et al. [79] 76.5 1.9 2 Sherazi et al. [112] 98 2.4 2

Wiharto et al. [82] 76 1.9 3 Uddin et al. [114] 94 2.3 3
Jamthikar et al. [76] 75.5 1.8 4 Velusamy et al. [115] 89.5 2.2 4
Nakanishi et al. [80] 74 1.8 5 Gao et al. [97] 85 2.1 5

Devi et al. [72] 72.5 1.8 6 Jan et al. [101] 85 2.1 6
Khan et al. [77] 71.5 1.7 7 Miao et al. [105] 84.5 2.1 7
Krupa et al. [78] 64.5 1.6 8 Gosh et al. [99] 83 2 8

Ni et al. [81] 59 1.4 9 Wankhede et al. [116] 81 2 9
Hedman et al. [74] 55.5 1.4 10 Esfahani et al. [95] 74 1.8 10
Hussain et al. [75] 53.5 1.3 11 Reddy et al. [111] 72 1.8 11
Sanchez et al. [69] 43 1 12 Rousset et al. [110] 71 1.7 12
Emaus et al. [73] 41 1 13 Yekkala et al. [119] 71 1.7 13
Buddi et al. [70] 33.5 0.8 14 Abdar et al. [91] 70.5 1.7 14

(b) Multi-label Studies Sum Mean Rank Cai et al. [94] 70 1.7 15
Jamthikar et al. [84] 111.5 2.7 1 Nakanishi et al. [80] 70 1.7 16
Venkatesh et al. [83] 108 2.6 2 Mienye et al. [106] 69 1.7 17
Mehrang et al. [86] 96.5 2.4 3 Zhenya et al. [121] 68.5 1.7 18

Zeng et al. [90] 76.5 1.9 4 Liu et al. [104] 67 1.6 19
Zamzmi et al. [89] 69.5 1.7 5 Puvar et al. [180] 67 1.6 20

Mohamend et al. [87] 60 1.5 6 Baccouche et al. [92] 65.5 1.6 21
Kumar et al. [85] 59 1.4 7 Sherly et al. [109] 64.5 1.6 22

Priyanka et al. [88] 59 1.4 8 Jothiprakash et al. [103] 64 1.6 23
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Table 5. Cont.

(a) Multiclass Studies Sum Mean Rank (c) Ensemble Studies Sum Mean Rank
Negassa et al. [107] 64 1.6 24

Ye et al. [118] 64 1.6 25
Gao et al. [98] 63.5 1.5 26

Honsi et al. [100] 59.5 1.5 27
Gibson et al. [96] 55 1.3 28

Zarkogianni et al. [120] 54.5 1.3 29
Plawiak et al. [108] 53.5 1.3 30
Yadav et al. [117] 53.5 1.3 31

Chu et al. [93] 52.5 1.2 32
Tan et al. [113] 52.5 1.2 33
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6. CVD Risk Assessment through Mobile, E-Health, and Cloud Techniques

The CVD risk prediction was taken to next level by integration of mobile, cloud, and
telemedicine technologies. The mobile-based CVD systems follow both ML and non-ML
approaches [197–207]. The classifier techniques used for the mobile-based ML systems
were k-NN [208], SVM [201,209], CNN [201,202], NB [204], DT [207], and RF [207]. The
number of outcomes for the mobile-based CVD systems [197] varies between 1 and 2,
basically CVD and diabetes. The cloud-based CVD systems also used both ML and non-ML
approaches for CVD risk prediction [197–209]. The types of classifiers used for the cloud-
based ML CVD risk prediction systems were quite similar to the mobile-based systems,
namely SVM [201,209], k-NN [208], CNN [201,202], RF [207], Bayesian [204], and DT [207].
The number of outcomes changes to 1 in the cloud-based CVD systems [197–209]. All
the mobile and cloud-based studies have performed the feature extraction along with
the analysis for the CVD risk prediction. Cross-validation was also done by using the
K-fold CV protocol (Column C17) for the mobile, as well as cloud-based systems [197–209].
For performance evaluation of the mobile and cloud-based CVD, systems were analyzed
by the use of different parameters such as sensitivity [207,209], specificity [207,209], ac-
curacy [207,209], precision, F1-Score, p-value, Silberg score [199], and receiver operating
characteristic (ROC) [200] (Column C22–C29). However, the number of performance
parameters used by each study ranges from 0 to 3 as described in Table A4.

Scientific validation (Column C12) was also performed for a high number of mobile
and cloud-based CVD studies. Only one cloud-based CVD risk prediction system has been
FDA approved (Column C6) [208]. All the characteristics are described in detail in Table A4.
It can be noticed that the AI-based systems have gained the advantage of more accuracy,
reliability with the addition of mobile and cloud-based infrastructure. It is also helpful
in remote prediction, which is very much important in the COVID-19 framework. As the
CVD prediction systems have evolved in the COVID-19 times, we, therefore, discuss this in
the upcoming section.

7. Critical Discussion
7.1. Principal Findings

The main scope of this review was to compare comprehensively the three kinds of
machine learning (ML) techniques mainly multiclass, multi-label, and ensemble in office-
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based settings. Further, the scope of the study had a limited discussion on (a) CVD risk
prediction using ECG signals-based settings and (b) deep learning (DL) techniques for
CVD risk prediction. Therefore, the main or principal findings from this review were
(i) three types of CVD risk stratification techniques, namely (a) multiclass (b) multi-label,
and (c) ensemble; (ii) types of covariates used where OBBM, LBBM, MedUSE, and CUSIP.
The OBBM, LBBM, MedUSE were used widely when compared to image-based phenotypes
(CUSIP), which is now evolving more rapidly since is a surrogate marker for coronary artery
disease; (iii) ground truth is a very vital factor so as to avoid the risk of bias (RoB) during
the ML-based CVD risk prediction; (iv) popularity of the classification techniques used in
the field of CVD were in the order as multiclass-based, ensemble-based, multi-label-based;
(v) clinical and scientific validation is another set of AI attributes that must be accompanied
in any ML-based CVD risk prediction systems to prevent the AI bias from in such systems;
(vi) the performance evaluation metrics used for the three techniques were analyzed. It
was found that the most commonly used PE parameter was accuracy. The cloud-based AI
techniques comprising all the three classifications techniques are more likely to be the future
for CVD risk prediction. In the future, advanced computer-aided diagnosis techniques can
be applied based on image processing [210]. Edge devices with mobile and cloud-based
AI infrastructure are now highly emerging in the medical industry as it provides remote
facility and is a much faster, the most necessary feature in the COVID-19 era.

7.2. Benchmarking Table

Table 6 shows the benchmarking table with a comparison between eighteen review
studies that focused on multiclass, multi-label, and ensemble techniques for CVD risk
prediction. This table shows thirteen attributes (column C1 to column C13) for each of
the eighteen studies [35,211–226] corresponding to the rows R1 to R18. These thirteen
attributes presented were the Author (C1), year of the study (C2), name of the journal
(C3), data size (C4), the study belongs to CVD or not (C5), the domain of the study (C6),
machine learning (C7), classifier type (C8), cross-validation protocol (C9), the studies are
multiclass (C10), multi-label study (C11), ensemble study (C12), and finally the summary
of the study (C13). The data size for each study is shown in column C4, which is ranging
from 8 to 86,155, whereas our study (row R18) has used 94 studies. Column C5 describes
whether the study is of CVD type or not. Studies (rows R2, R3, R5, R9, R10, R11, R12,
R16, and R17) along with our study (row R18) are in the field of CVD while the rest are
not. Column C6 describes the different domains for the studies (rows R1, R4, R6, R7, R8,
R13, R14, and R15) which does not belong to CVD. The domains are EEG, blood pressure,
education, statistics, software, chronic fatigue, and sickle cells. The technical approach of
the studies is shown in column C7, i.e., whether machine learning (ML) or not. Most of
the studies including our proposed study are ML (rows R1, R3, R4, R6, R7, R8, R9, R10,
R11, R12, R13, R14, R15, R16, R17, and R18). Column C8 indicates the classifier types for
the studies ranging from SVM, NN, LDA, OVO (row R1), RF, SVM, DT, KNN, LR, GNB
(row R3), SMOTE (row R4) [227], Adaboost, KNN, BPSO (row R6), XG-Boost (row R7),
RF, NBC, KNN (row R8), K-Star (row R9), SVM, RF, CNN (row R10), KNN, RF, DT (row
R11), LDA (row R13), MULAN (row R14), LDA, MDDM (row R15), Probabilistic (row
R16), LogitBoost (row R17). The cross-validation protocols used are shown in column C9
which are K5 (rows R3, R4, R17), K7 (row R6), Open (row R7), K10 (rows R8, R11), and K*
(row R9). The multiclass studies were (rows R1, R3, R6, R7, R9, R11, R12, R17) shown in
column C10 along with our study (row R18). Column C11 shows multi-label studies (rows
R8, R13, R14, R15, and R18) likewise column C12 shows the ensemble studies (rows R4,
R6, R10, and R18). The last column C13 describes the keyword objectives of each study.
The studies’ objectives were classification and CVD risk prediction or stratifications.
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Table 6. Benchmarking table for the multiclass, multi-label, and ensemble studies in CVD/non-
CVD field.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
SN Author Yr JOU DS CVD Domain ML CT CVP MC MLB Ensbl Summary

R1 Boernama
et al. [211] ’21 IEEE 30 % EEG !

SVM, NN,
LDA, OVO % ! % %

EEG
Classification

R2 Collins
et al. [212] ’16 BMJ 122 ! BP % % % % % %

CVD
Meta-analysis

R3 Dissanayake
et al. [213] ’21 Hindawi CHDD ! % !

RF, SVM, DT,
KNN, LR,

GNB
K5 ! % % CVD risk

R4 Galar
et al. [214] ’12 IEEE

Tran. Imb D % % ! SMOTE K5 % % !
Ensemble

Classification

R5 Stewart
et al. [215] ’17 JRSMCD % ! % % % % % % % CVD risk

R6 Mathew
et al. [216] ’21 IEEE 6 % Edu !

Adaboost,
KNN, BPSO K7 ! % !

Teaching
Quality

R7 Uike
et al. [217] ’21 IEEE 8 % SC ! XG-Boost Open ! % %

SC
Classification

R8 Wang
et al. [218] ’14 Plos

One 736 % CF !
RF, NBC,

KNN K10 % ! %
CF

Classification

R9 Wiharto
et al. [219] ’16 HIR 303 ! % ! K-Star K* ! % %

CHD
Classification

R10 Boi
et al. [220] ’18 CAR 126 ! % !

SVM, RF,
CNN % % % !

OCT-based risk
stratification

R11 Jamthikar
et al. [35] ’20 CBM 208 ! % ! KNN, RF, DT K10 ! % % CVD risk

R12 Bianchini
et al. [221] ’08 IEEE 10 ! % ! % % ! % %

Cardiovascular
Risk Markers

R13 Liu
et al. [222] ’12 IEEE 15 % Statistics ! LDA % % ! %

Statistical
Classification

R14 Charte
et al. [223] ’20 IEEE % % Software ! MULAN % % ! % Comparison

R15 Siblini
et al. [224] ’15 IEEE 156 % DM !

LDA,
MDDM % % ! % DM Reduction

R16 Indhumathi
et al. [225] ’21 IEEE 30 ! % ! Probabilistic % % % %

CVD
Management

R17 Kolli
et al. [226] ’19 IEEE 86,155 ! % ! LogitBoost K5 ! % !

Coronary
Artery

Calcification

R18 Proposed
Study ’22 % 265 ! % ! % % ! ! ! CVD risk

DS: Data size; ML: Machine learning; CVP: Cross-validation protocol; MC: Multiclass; MLB: Multi-label; GNB:
Gaussian I Bayes; HD: Heart disease; CHDD: Cleveland heart disease datasets; Ensbl: Ensemble; IEEE Tran: IEEE
Transaction; JRSMCD: Journal of the Royal Society of Medicine Cardiovascular disease; CT: Classifier type; ImbD:
Imbalance data; JOU: Journal; SC: Sickle cells; CF: Chronic fatigue.

7.3. A Special Note on Non-Linear CVD Risk Stratification

The conventional classification CVD risk assessment systems assume the linear rela-
tionship between the covariates and the gold standard. The linear systems typically use the
covariates like OBBM and LBBM or ECG signals [228–230]. With the additions of CUSIP
and MedUSE, the requirement becomes more stringent on CVD calculators. In today’s
times, it was observed that COVID-19 can play the role of a new covariate or risk factor due
to its relationship with CVD [231,232]. The risk of CVD gets accelerated in the individual
with COVID-19 [233,234]. This inclusion can result in a more non-linear classification
paradigm for CVD risk prediction [235]. This can improve the reliability and the accuracy
of the prediction results [236]. The AI/ML approaches help in understanding the non-linear
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relationship between the covariates and the ground truth. Hence there is a need for the
development of non-linear classifiers in the ML/DL domain. It includes non-linear SVM
classifiers [237], PCA, XGBoost [235], RF [233], generalized discriminant analysis (GDA),
ELM, LDA [238]. Different non-linear methods which are applied in the CVD field are
Poincare plot (PP), approximate entropy (ApEn) [235], quasi period density-prototype
distance (QPD-PD) [239], fuzzy entropy [238], recurrence period density prototype distance
(RPD-PD) [237], non-linear ensemble classifiers [233]. These are all out of the scope of the
current study. The other application of non-linear classifiers are in the field of stroke [240]
and sleep apnea [241]. The non-linearity can also be handled by using the DL approaches
along with multiclass, multi-label, and ensemble-based techniques for CVD risk prediction
in the future.

7.4. A Special Note on Time-to-Event for Cardiovascular Risk Prediction

This is one of the greatest assets of the machine learning system. The most important
ingredient for accomplishing this solution is to ensure that we have a follow-up gold
standard for the clinical data. This means one must have the gold standard (events) for the
times such as 1st-year, 3rd-year, 5th-year, and 10th-year. Further, the risk factors (so-called
covariates or variables) must be available for the development of the training model. Given
the two pairs (covariates and the gold standard-even for that time), one can develop the
machine learning model for that time-zone (1st-year, 3rd-year, 5th-year, and 10th-year).
Should you intended to predict for 1st-year, 3rd-year, 5th-year, and 10th-years, it requires
four kinds of machine learning models. Each time-event has to have its own machine
learning model. The atherosclerosis disease which has transformed over different years
and leads to the event needs to be used for the development of the training model. The
only challenge with this setup is the length of time it takes to collect the event data. It is
both expensive and tedious since we have to follow the patients over the 10-year period.
Recently, Kakadiaris et al. [62] perused this strategy using the machine learning paradigm.
The ML paradigm has the same fundamental concept of training and testing as shown in
Figure 4. The left half is the training model where the gold standard will change as per
the time-zone (1st-year, 3rd-year, 5th-year, and 10th-years), while the prediction will be
applied for the patient for the corresponding time-zones (1st-year, 3rd-year, 5th-year, and
10th-years). It is painful to wait to accomplish this validation, since it is costly, and a large
cohort is needed.

To overcome such a scenario, another way to predict the CVD risk is using the surro-
gate marker of carotid artery disease. Since the formation of the atherosclerotic disease in
coronary artery has the same genetic make-up as the carotid artery disease, the surrogate
artery can be used for the prediction of CVD or the coronary artery disease risk. Further,
note that over time (1st-year, 3rd-year, 5th-year, and 10th-years), the plaque formation
changes and so does the image phenotypes such as intima-media thickness, plaque burden,
or plaque area/volume. Thus, one can compute the time-dependent image phenotypes
which uses the ingredients which make the atherosclerotic disease. This includes rate of
change of cIMT over time (age), obesity index over time (age), cholesterol change over
(age), one can use this paradigm to predict the plaque burden in carotid artery-based age.
This is sometimes called as vascular age of the patient. This has been shown by Khanna
et al. [34]. Later, this was commercialized as AtheroEdge™ 2.0 (AtheroPoint™, Roseville,
CA, USA) [36]. The CVD risk can be computed based on the intensity of the risk factors.
This is called a non-ML method (also known as the statistical solution for the prediction of
the 10th-year CVD risk.

7.5. A Special Note on the Advantages of Machine Learning-Based Cardiovascular Risk
Stratification

Machine learning paradigm for CVD risk prediction has provided us with a way to
obtain more accurate, early, and fast results. The ML systems offer following advantages
against the previously published studies: (i) it handles the non-linear nature between the
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covariates and ground truths (GT) [31]; (ii) ability to predict the CVD risk in granular classes,
such as six different risk classes (no-risk, low-risk, mild-risk, moderate-risk, high-risk, and
very-high-risk) [34,35]; (iii) ability to augment the training data using popular augmentation
paradigms such as adaptive synthetic (ADASYN) and synthetic minority over-sampling
technique SMOTE [227]; (iv) incorporate the cohort’s knowledge during training and
predicting the CVD risk; (v) flexibility of amalgamating of different types of covariates such
as OBBM, LBBM, CUSIP, and MedUSE during the design of the model training; (vi) ability
to interface with different types of classification techniques like multiclass, multi-label and
ensemble for improving the overall performance of the system; and (vii) ability to enhance
the risk factor (or covariates) such as genetic and comorbidities such as cancer. Thus, all
the above-mentioned factors puts ML-based system a very strong paradigm for CVD risk
stratification, unlike the conventional statistical models.

7.6. A Special Note on Deep Learning-Based Cardiovascular Risk Stratification

The Deep learning (DL) paradigm has started to emerge in the field of CVD risk
prediction. The DL approach can be applied for both (a) the office-based [242,243] and
(b) stress-based test settings [244–248]. DL approaches have been applied for CVD risk
stratification using multiclass [249], multi-label [250], and ensemble-based paradigms [116].
Even though there are evolving CVD risk stratification techniques in the DL framework,
this review does not venture deep since it is not the main focus of this review. As a
result, we have not analyzed publications related to the DL paradigm. Note that, the
main advantage of DL techniques is (i) automated feature selection process from the input
covariates (such as OBBM, LBBM, CUSIP, and EGC signals phenotype) and (ii) prediction of
more accurate and reliable results due to a large number of layers in DL network. Advanced
stochastic imaging methods can be applied [251] to improve the loss function during the
training paradigm. This evolving DL paradigm will flourish more in the very near future
in office-based imaging and stress-based test settings.

7.7. The Future of Cardiovascular Disease Risk Stratification

The CVD risk estimation at an early stage is very much important to reduce the mor-
tality rate due to CVD [252,253]. As it was observed that not only ML but extreme machine
learning (ELM) can also be applied and further developed for CVD risk stratification [254].
Moreover, COVID-19 accelerates the atherosclerosis condition due to which fast detection
of CVD in COVID-19 patients is needed [255,256]. The above circumstances are leading
to an evaluation in the CVD risk stratification techniques. In the near future, cloud-based
AI modalities will be very much in use for CVD risk detection. It also promotes the re-
mote and fast prediction of the risk of CVD. It also helps in reducing prediction errors.
Other non-invasive imaging techniques like carotid, femoral, arterial imaging can be used
as an indirect measure of plaque build-up in these arteries. Deep learning technologies
will evolve in the field of CVD risk estimation [257]. This will also include pruning of
weights using evolutionary techniques such as genetic algorithms in the Deep Learning
framework [147]. Devices equipped with cutting edge technologies like mobile-based
AI, cloud-based AI, multiclass, multi-label, and ensemble-based systems for CVD risk
prediction will be emerging in the medical imaging industry market.

8. Conclusions

This was the first review study of its kind that presented three different kinds of
AI-based CVD risk stratification, namely multiclass, multi-label, and ensemble, where
multiclass was most popular and multi-label was least, which happened to be our first
key contribution. The second contribution was exhaustive analysis by selecting the best
265 studies using the PRISMA model for understanding the three kinds of machine learning-
based systems for prediction of the CVD risk. This was based on our hypothesis that
there exists a biological link between atherosclerotic disease formation and the CVD risk.
The third contribution was the identification of the top four covariates, namely OBBM,
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LBBM, CUSIP, and MedUSE for designing the training model using a machine learning
framework. The fourth contribution was on the choice of the gold standard for an unbiased
AI system design for CVD risk prediction, which leads to a robust and reliable CVD
prediction system. The fifth finding and contribution required that the ML system undergo
clinical and scientific validation for reliability, stability, and robustness of the system design.
Lastly, we observed that with the advancement of telecommunication systems, mobile and
cloud-based strategies are speedily penetrating the CVD risk stratification system designs.
Low-powered edge devices like Rasberry Pi and Jetsen Nano are like to be adopted in
the future.
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Appendix A. Pseudo-Code for Multiclass Classification

Appendix A.1. Typical Online System for CVD Risk Stratification for Multiclass

This system shows the amalgamation of online covariates, which are then transformed
by the ML-based training model using multiclass-based models. The output yields the
multiclass risk marked in color (low, mild, moderate, and high risk).
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Appendix A.2. Pseudo-Code for Multiclass

The pseudo-code describes the process used by the multiclass algorithm for CVD risk
stratification into granular risk classes. It uses the “for” loop for training and prediction of
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each fold of data, which were divided into K folds. The training model is applied to the
test data and the PE was predicted and stored in form of accuracy (ACC), ROC, sensitivity
(Sen), specificity (Spec), F1-score, the area-under-the-curve (AUC), and precision.
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Appendix B. Pseudo-Code for Multi-Label Classification

Appendix B.1. Problem Transformation Methods for Multi-Label Prediction

The problem transformation method (PTM) makes the multi-label classification prob-
lem to one or more single label classification tasks. Basically, four PTM, namely BR, CC, LP,
and RakEL were used as discussed below:

Binary Relevance: In the BR technique, the problems get divided into one or more
single-label classification problems. The single-label classification resembles the binary
prediction. An example can be described as, say M is a set of “q” labels with M = {m1, m2,
. . . , Mq}, the BR technique makes “q” single-label binary classifiers for each label. The
multi-label training sets get converted to binary datasets (“q”), and Elj = 1 . . . q, where
Elj has all samples of the original dataset but with single positive or negative values. The
dataset gets divided into “q” single label datasets with classifier C and the next classifier
set is obtained as Cj (E), j = 1 . . . q by the training set Elj. The label dependency was
not considered by the BR classification algorithm. Thus, it shows less complexity in the
computation as compared with other multi-label techniques. The process is shown in
the following Figure A3 [258]. As shown in Figure A3 four examples were considered as
multi-label dataset and label set M with four labels (m1, m2, m3, and m4) which is split as
four single labels that are independent.

Classifier Chain: This algorithm also works in single-label classification. This technique
takes a class of classifiers where the very initial classifier is trained with the dataset, which
acts as the input, following that each classifier gets trained with the whole feature space.
The feature set has an original dataset with the label set used in the earlier base classifier
that is in the chain. Each base classifier uses the earlier label information for training and
testing models. Thus, a correlation exists in the CC algorithm. Figure A4 describes the
functioning of CC [259].
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Label Powerset: It also converts the prediction situation to a single-label multiclass
prediction technique. In this technique, all possible individual group of labels is given
special or unique class. Such as if three types of labels are there, then eight different types
of combinations can come into the picture. LP technique has eight types of labels that get
trained for prediction. This technique deals with a large number of classes that are related
to small instances, and also consideration of correlation is done. The transformation was
shown in Figure A5 [260]. In Figure A5 the 1st table shows the original datasets, and the
2nd table is showings the transformed datasets.
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Random k-label set: It is a type of combination technique used for multi-label prediction.
Every combination method gets trained on a small size of the randomly selected subset of
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labels by a single-label-based classifier. This process is described as if L labels in the dataset
(E), the RAkEL classifier turns this data to all the possible k-label sets (Lk). Each label set is
then trained for prediction. Finally, the prediction is made into positive (1) and negative
(0) values in accordance with the threshold (0.5). The further implementation can be seen
in [261].

Appendix B.2. Algorithm Adaptation Methods for Multi-Label Prediction

Multi-label KNN: This algorithm is basically an implementation of the KNN algorithm
in multi-label datasets. The neighbors are selected from unseen training sets. Next, the
labelset are found for the instance which are unseen in nature by utilizing the maximum of
posteriori (MAP) principle. The full algorithm can be seen in [262].

Multi-label ARAM: It is associated with the neural network model based on resonance
theory. The advantage of this algorithm is its fast learning ability. The detailed algorithm
can be seen in [263].

Appendix B.3. Pseudo-Code for Multi-Label Classification Technique

Multi-label pseudo-code describes the multi-label algorithm where more than one
multi-label endpoint was considered. For each multi-label endpoint, the risk class was
defined. In this pseudo-code, two “for” loops are used one for multi-label and the next
for multiclass prediction. Finally, the PE was determined as accuracy, sensitivity (Sen),
specificity (Spec), area-under-the-curve (AUC), sample-based, and label-based metrics.
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Appendix C. Pseudo-Code for Ensemble Classification

Pseudo-Code for Ensemble-Based Technique

Ensemble-based-CVD risk prediction uses combinations of multiple classifiers. The
pseudo-code shows that the data are divided into testing and training with K folds. The
prediction was done using each type of classifier for multiclass and multi-label prediction.
Then each type of classifier is combined into an ensemble classifier and the final prediction
was made.
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Appendix D. Comparison between 3 Paradigms

Comparison of ML-Based Multiclass, Multi-Label, and Ensemble CVD Classification

Table A1. Comparison of ML-based multiclass, multi-label, and ensemble CVD classification.

SN Attributes Multiclass Multi-Label Ensemble

- - Characteristics Characteristics Characteristics

Total Studies 14 [69–82] 8 [83–90] 32 [80,91–121]

1 Data Size 212–66,363 [69–82] 300–46,520 [83–90] 459–823,627 [80,91–121]

2 Risk Factors Low [69–82] Large [83–90] Moderate [80,91–121]

3 Family History Frequent
Considered

[69,71,76,77,80,
82]

Seldom
Considered [83,84,90]

Considered Intermittently
[80,91,96,97,99,100,102,105,106,

110–112,114–120]

4 BMI Less
considered [72,74–76,80] Considered

Moderately [84–86]
Highly considered

[46–52,80,91,93–
97,99,100,102,106,107,112]



Diagnostics 2022, 12, 722 30 of 47

Table A1. Cont.

SN Attributes Multiclass Multi-Label Ensemble

- - Characteristics Characteristics Characteristics

5 Ethnicity Less
Considered [72,74–76,80] Considered

Moderately [84–86] Highly Considered

6 Type of data OBBM and
LBBM [69–82] OBBM, LBBM

and Image [83–90] OBBM and LBBM [80,91–121]

7 Hypertension Low Usage [72,74–76,80] High Usage [83–90] Moderate Usage [46–52,80,91,93–
97,99,100,102,106,107,112]

8 Smoking Low Usage [72,74–76,80] High Usage [83–90] Moderate Usage [80,91,96,97,99,
100,102,105,106,110–112,114–120]

9 Multicenter Low Usage [72,74–76,80] High Usage [83–90] Moderate Usage [80,91,96,97,99,
100,102,105,106,110–112,114–120]

10 MRI Considered
Moderately [71,80] Considered

Moderately [83,89] Less Considered [80]

11 ECG Partial
Considered

[72,74,75,78,79,
81,82]

Strongly
Considered [83,86,87,89] Not Considered

12 CUSIP Moderate Usage Moderate Usage Low Usage

13 # GT Only 1 [69–82] Very high
(10-4) [83–90] Average (1,2) [80,91–121]

14 # Algorithm % ! [83–90] %

15 Type of
Algorithm % - %

16 # Classifiers Ranging
from 1–4 [69–82] Ranging

from 1–9 [83–90] Ranging from 1–10 [80,91–121]

SN Attributes Multiclass Multi-label Ensemble

- - Characteristics Characteristics Characteristics

17 Classifier Type

SVM, RF, CNN
DT, k-NN

Agatston classifier, Elastic Net,
NN, NB, XGBoost

SVM, ELM, OAO, OAA, DDAG,
ECOC
[69–82]

RF, SVM, DT, KNN, LDA, LR,
XGBoost, AdaBoost, GBA, Basic

RNN, GRU RNN
CNN, AAM

[83–90]

kNN, GaussNB, LDA, QDA, RF,
MLP, CNN, LSTM, GRU, BiLSTM,

BiGRU
Bagging, XGBoost,

Adaboost, DNN, NB, NN, RS,
GAMs, Elastic Net, GBMs, DT,

CART, MARS, Logistic, EB, SMO,
Boosting, MLDS, AVEn, MVEn,

WAVEn, HTSA [80,91–121]

18 # Classes ! [69–82] % %

19 Hyperparameters
Used ! [79] ! [83,84,90] ! [92,98–100]

20 Protocol K-10 [64–82] K-10, K, K-5 [83–90] K-10, k, K-5 [80,91–121]

21 # PE
parameters

Ranging
from 1–5 [69–82] Ranging

from 1–8 [83–90] Ranging
from 1–8 [80,91–121]

22 Precision ! [72,73,77,81,82] % ! [80,91–121]

23 PPV % ! [84,86] ! [80,91–121]

24 NPV % ! [84,86] ! [80,91–121]

25 FPR % ! [84,90] ! [80,91–121]

26 FNR % ! [84] ! [80,91–121]

27 Hamming Loss % ! [87] %

28 C-index % ! [83] %
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Table A1. Cont.

SN Attributes Multiclass Multi-Label Ensemble

- - Characteristics Characteristics Characteristics

29 Statistical
Analysis % ! [83–90] ! [80,91–121]

30 Power
Analysis % ! [83,84] %

31 Hazard
Analysis % ! [83] %

32 Survival Test % ! [83] %

SN: Serial number; SVM: Support vector machine; RF: Random forest; CNN: Convolutional neural network; DT:
Decision tree, k-NN: k-Nearest neighbor; NN: Neural network; ELM: Extreme learning machine; OAO: One against
one; OAA: One against all; DDAG: Decision direct acyclic graph; EOECC: Exhaustive output error correction
code; LDA: Linear discriminant analysis; RNN: Recurrent neural networks; GRU: Gated recurrent unit; AAM:
Algorithm adaptation methods; MARS: Multivariate adaptive regression splines; GAMs: Generalized additive
models; PLR: Penalized logistic regression; GBM: Gradient boosted machines; MLP: Multilayer perceptron; CART:
Classification and regression trees; SMO: Sequential minimal optimization; DNN: Deep neural network; NB:
Naive Bayes; LSTM: Long short term memory network; EB: Ensemble boosting; MLDS: Multi-layer defense
system; PPV: Positive predictive value; NPV: Negative predictive value; FPR: False positive rate; FNR: False
negative rate; #GT: Number of ground truth.

Appendix E. Performance Evaluation Metrics

Performance Evaluation Metrics Descriptions

The PE for the multiclass and ensemble basically have accuracy (ACC), sensitivity
(Sen), specificity (Spec), AUC, F1-Score which were calculated using values of true positives
(TPs), false positives (FPs), false negatives (FNs), and true negatives (TNs). The formulae
can be referred from Table A2. The performance evaluation for multi-label-based CVD is
different as compared to multiclass and ensemble. They are label-based, instance-based
performance evaluations.

In the label-based techniques, the PE parameters are checked for each label by the
values of TPs, FPs, FNs, and TNs. All the labels have their own values. S, these are
calculated by averaging methods (i) macro-averaging and (ii) micro-averaging [181]. The
performance metrics say β is calculated by the values of TPs, FPs, FNs, and TNs, the macro-
averaging techniques, macro-averaging (βmacro) for all labels (L) is given by averaging β for
each label “p”, as shown in Equation (A1).

βmacro =
1
L

(
L

∑
p=1

β
(
TPp, FPp, TNp, FNp

))
(A1)

In the same manner, for the micro-averaging techniques, the PE metrics are computed
for each individual label and finally obtaining the micro-average (βmicro) by using the
Equation (A2).

βmicro = β

(
L

∑
p=1

TPp,
L

∑
p=1

FPp,
L

∑
p=1

TNp,
L

∑
p=1

FNp

)
(A2)

For instance-based performance evaluation, the parameters are calculated for indi-
vidual instances, then the average value is computed and final the performance metric
is performed. The final metric has a hamming loss, precision, recall, F1-score, Jaccard
similarity coefficient score, and accuracy.

The multi-label dataset is supposed to be |E| with multi-label examples (pi, Qi),
i = 1 . . . |E|, and Qi ⊆ L, L is a set of all multiple labels. C is a multi-label classifier and
Mi = C (pi) be the set of labels predicted by C. |E| indicates the features of the set E, while
|Qi∩Mi| indicates the feature of the intersection of true labels and the predicted labels.
|Mi| indicates the features of predicted labels, and |Qi| indicates the features of the
true labels.
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Hamming loss shows the number of times when the label pair is misclassified. The
lower value of Humming loss presents the better performance of the multi-label classifier.
Jaccard score presents the ratio of the size of the intersection between predicted and the
ground truth labels. Precision is the proportion of correct predictions out of all predictions.
Likewise, recall is the ratio of correct predicted labels to the actual labels. F1-score is the
combination of precision and recall Table A3.

Table A2. Performance evaluation metrics used in CVD risk assessment.

SN Label-Based Performance Metrics Mathematical Expression

1 Sensitivity (Sen), % Sen =
[

TP
(TP+FN)

]
× 100

2 Specificity (Spec), % Spec =
[

TN
(TP+FN)

]
× 100

3 Positive Predictive Rate (PPR), % PPR =
[

TP
(TP+FP)

]
× 100

4 Negative Predictive Rate (NPR), % NPR =
[

TP
(TN+FN)

]
× 100

5 False Predictive Value (FPV), % FPV =
[

FP
(FP+TN)

]
× 100

6 False Negative Value (FNV), % FNV =
[

FN
(FN+TP)

]
× 100

7 False Discovery Value, % FDV =
[

TP
(TP+FP)

]
× 100

8 F1-Score, % F1 =
[

2TP
(2TP+FP+FN)

]
× 100

9 Accuracy (ACC), % ACC =
[

TP+TN
(TP+FP+TN+FN)

]
× 100

Table A3. Performance evaluation metrics used in CVD risk assessment.

SN Sample-Based Performance Metrics Mathematical Expression

1 Hamming Loss, HL HL (C, E) = 1
|E|

|E|
∑

i=1

|Qi∆Mi|
|L|

2 Jaccard Score, JS JS = 1
|E|

|E|
∑

i=1

|Qi ∩Mi|
|Qi ∪Mi|

3 Precision, Pe Pe (C, E) = 1
|E|

|E|
∑

i=1

|Qi ∩Mi|
|Mi|

4 Recall, Re Re (C, E) = 1
|E|

|D|
∑

i=1

|Qi ∩Mi|
|Qi|

5 F1-score, F1 F1 (C, D) = 1
|E|

|E|
∑

i=1

2|Qi ∩Mi|
|Qi|+|Mi|

6 Subset Accuracy, AccSubset AccSubset =
1
|E|

|E|
∑

i=1
I(Mi = Qi)

Appendix F. Power Analysis

Power Analysis for Multi-Label and Ensemble-Based CVD Risk Stratification

Power analysis can be done for multi-label and ensemble-based CVD systems. Its
objective was to state the smallest data or sample size (s) needed to perform the multi-label,
ensemble-based CVD risk classification. The parameters which are required for calculating
power analysis are confidence interval, a margin error (e) as ±5%, and a sample proportion
(q̂), the z-score (z∗) (taken standard z-table). Therefore, the formula used is shown in
Equation (A3) [264,265].
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s =
(

z∗

e

)2
× q̂ (1− q̂) (A3)

Appendix G. CVD Risk Assessment through Mobile, E-Health, and Cloud Techniques

Characteristic of Mobile and Cloud-Based CVD Systems

Table A4. Characteristics of mobile and could-based CVD systems.

C0 C1 C2 C3 C4 C5 C6 C7 C8

SN Authors/Citations ST Year Journal DS Diseases FDA SV Comparator

1 Buss et al. [197] SR 2020 JMIR 7 ED CVD, DIA % %
No (i.e., standard care),

await list control,
intervention

2 Villarreal
et al. [198] SR 2020 AIF 44 CVD % % CVD, No CVD

3 Xiao et al. [199] R 2017 TM 151 CVD % % CVD, No CVD

4 Saba et al. [200] R 2018 IHJ 100 CVD % ! CVD, No CVD

5 Lillo-Castellano
et al. [208] R 2015 JBHI 6848 CVD ! ! CVD, No CVD

6 Huda
et al. [201] R 2020 TENSYMP BIHAD CVD % !

Normal ECG, Abnormal
ECG

7 Sakellarios
et al. [209] R 2018 EMBC 236 CAD % !

No CAD, OCAD,
Non-OCAD

8 Singh
et al. [202] R 2019 IEEEc 2 CVDa % ! Arrhythmia, CVD

9 Spanakis
et al. [203] R 2020 EMBC % CHF % ! CHF, No CHF

10 Paredes
et al. [204] R 2018 BIBM 1600 MI, CVD % ! Acute MI, No MI

11 Freyer
et al. [205] R 2021 AJH % AF % ! AF, No AF

12 Giansanti
et al. [206] S 2021 mHealth % CVD % % Use of AI, non-use of AI

13 Park et al. [207] R 2014 IEEEa % Arrhythmia % % Arrhythmia, CVD

SN Authors/Citations Non
ML/ML Cloud Mob Sea DE Analysis # O OT # C Classifier

1 Buss et al. [197] Non-ML % ! ! ! ! 2 Dia, CVD 3 %

2 Villarreal
et al. [198] Non-ML ! ! ! ! ! 1 CVD 2 %

3 Xiao et al. [199] Non-ML % ! ! ! ! 1 CVD 2 %

4 Saba et al. [200] Non-ML ! ! ! ! ! 1 CVD 2 %

5 Lillo-Castellano
et al. [208] ML ! % ! ! ! 1 CVD 2 k-NN

6 Huda
et al. [201] ML, DL ! ! ! ! ! 1 Arrhythmia 2 SVM, CNN

7 Sakellarios
et al. [209] ML ! % ! ! ! 1 CVD 3 SVM
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Table A4. Cont.

C0 C1 C2 C3 C4 C5 C6 C7 C8

SN Authors/Citations ST Year Journal DS Diseases FDA SV Comparator

8 Singh et al.
[202] DL ! ! ! ! ! 1 CVDa 2 CNN

9 Spanakis et al.
[203] IoT ! ! ! ! ! 1 CHF 2 %

10 Paredes et al.
[204] CI % ! ! ! ! 2 CVD, MI 2 Bayesian

11 Freyer
et al. [205] Non-ML ! ! ! ! ! 1 AF 2 %

12 Giansanti
et al. [206] AI ! ! ! ! ! 1 CVD 2 %

13 Park et al. [207] ML % ! ! ! ! 1 Arrhythmia 2 DT, RF

C0 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29

SN Authors/Citations CV Protocol # PE SEN SPEC Acc Pre F1 S PV SS ROC

1 Buss et al. [197] % % 0 % % % % % % % %

2 Villarreal
et al. [198] % % 0 % % % % % % % %

3 Xiao et al. [199] % % 1 % % % % % % 2.87 %

4 Saba et al. [200] ! % 1 % % % % % % % 1

5 Lillo-Castellano
et al. [208] ! K 1 % % 90 % % % % %

6 Huda
et al. [201] ! % 1 % % 96 % % % % %

7 Sakellarios
et al. [209] ! % 3 44 98.7 85.1 % % % % %

8 Singh
et al. [202] % % 1 % % 97 % % % % %

9 Spanakis
et al. [203] % % 1 % % 1 % % % % %

10 Paredes
et al. [204] ! % 0 % % % % % % % %

11 Freyer
et al. [205] ! % 1 % % 1 % % % % %

12 Giansanti
et al. [206] ! % 0 % % % % % % % %

13 Park et al. [207] ! % 3 1 1 1 % % % % %

SN: Serial number; CV: Cross validation; SEN: Sensitivity; SPEC: Specificity; Acc: Accuracy; Pre: Precision; F1 S:
F1 Score; PV: p-value; SS: Silberg score. DE: Data extraction; OT: Outcome types; C: Comparators; O: Outcomes;
CI: Computational intelligence; CHF: Congestive heart failure; CVDa: CVD Auscultation; Dia: Diabetes; MI:
Myocardial infarction; Mob: Mobile; Sea: Scientific validation; # O: Number of outcomes; # C: Number of classes.
DS: Data size; BIHAD: MIT-BIH Arrhythmia Database; IEEEc: IEEE connect; AF: Atrial fibrillation; R: Research;
SR: Systemic review; ST: Study type; IHJ: Indian Heart Journal; AIF: AI Foundation; TM: Telemedicine; IEEEa:
IEEE-ACAINA; SV: Scientific validation; OCAD: Obstructive CAD; NonOCAD: Non-obstructive CAD.
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Appendix H. Miscellaneous Figures

Appendix H.1. Anatomical Link between the Carotid Artery and Aortic Arch and Typical
Neural Network
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Table A5. Acronym.

SN Abb * Definition SN Abb * Definition

1 ACC American college of cardiology 42 IPN Intraplaque neovascularization

2 AD Alzheimer’s 43 KNN K-nearest neighbor

3 AHA American heart association 44 LBBM Laboratory-based biomarker

4 AI Artificial intelligence 45 LP Label Powerset

5 ANOVA Analysis of variance 46 LSTM Long short-term memory network

6 APG Acceleration Plethysmogram 47 LVD Large vessel disease

7 ASCVD Atherosclerotic cardiovascular disease 48 MCI Mild cognitive impairment

8 AUC Area-under-the-curve 49 MedUSE Medication use

9 BCVD Binary CVD 50 MI Myocardial Infarction

10 BMI Body mass index 51 ML Machine learning

11 BR Binary recursive 52 MLARM Multi-label adaptive resonance asso & map

12 CAC Coronary artery calcification 53 MLkNN Multi-label k nearest neighbor

13 RetiCAC Deep learning Retinal CAC score 54 MPH Maximum plaque height

14 CAD Coronary artery disease 55 MRI Magnetic resonance imaging

15 CAS Coronary artery syndrome 56 NPV Negative predictive value

16 CC Classifier chain 57 Non-ML Non-machine learning

17 CCVRC Conventional cardiovascular risk cal # 58 OBBM Office-based biomarker

18 CHD Coronary Heart Disease 59 PCA principal component analysis

19 CHD Chronic Heart Conditions 60 PCE Pooled cohort equation

20 cIMT Carotid intima-media thickness 61 PE Performance evaluation matrices

21 CKD Chronic kidney disease 62 PMCI Progressive MCI

22 CT Computed tomography 63 PPV Positive predictive value

23 CUSIP Carotid ultrasound image phenotype 64 PTC Plaque tissue characterization

24 CV Cross-validation 65 QRISK3 QResearch cardiovascular risk algorithm

25 CVD Cardiovascular disease 66 RA Rheumatoid arthritis

26 CVE Cardiovascular events 67 RakEL Random k-label set

27 DL Deep learning 68 #RC Risk classes

28 DM Diabetes mellitus 69 RF Random forest

29 DT Decision tree 70 RoB Risk-of-bias

30 ECG Electrocardiogram 71 ROC Receiver operating-characteristics

31 EEGS Event-equivalent gold standard 72 RRS Reynolds risk score

32 ESC European society of cardiology 73 SCD Sudden cardiac death

33 FH Family history 74 SCG Seismocardiography (SCG-Z)

34 FNR False-negative rate 75 SCORE Systematic coronary risk evaluation

35 FPR False-positive rate 76 SCMI Significant memory concern

36 FRS Framingham risk score 77 SMOTE Synthetic minority over-sampling tech.

37 GCG Gyrocardiography 78 SVM Support vector machine

38 GUI Graphical user interface 79 TPA Total plaque area

39 HTN Hypertension 80 US Ultrasound

40 IM Image modalities 81 WHO World health organization

41 IMTV Intima-media thickness variability - - -

SN: Serial Number; Abb *: Abbreviation; # Calculator; & Asso. Associative; Tech.: Technique.
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