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Abstract

In GWAS, “generalization” is the replication of genotype-phenotype association in
a population with different ancestry than the population in which it was first identi-
fied. The standard for reporting findings from a GWAS requires a two-stage design, in
which discovered associations are replicated in an independent follow-up study. Current
practices for declaring generalizations rely on testing associations while controlling the
Family Wise Error Rate (FWER) in the discovery study, then separately controlling
error measures in the follow-up study. While this approach limits false generaliza-
tions, we show that it does not guarantee control over the FWER or False Discovery
Rate (FDR) of the generalization null hypotheses. In addition, it fails to leverage the
two-stage design to increase power for detecting generalized associations. We develop
a formal statistical framework for quantifying the evidence of generalization that ac-
counts for the (in)consistency between the directions of associations in the discovery
and follow-up studies. We develop the directional generalization FWER (FWERg) and
FDR (FDRg) controlling r-values, which are used to declare associations as general-
ized. This framework extends to generalization testing when applied to a published list
of SNP-trait associations. We show that our framework accommodates various SNP
selection rules for generalization testing based on p-values in the discovery study, and
still control FWERg or FDRg. A key finding is that it is often beneficial to use a more
lenient p-value threshold then the genome-wide significance threshold. For instance, in
a GWAS of Total Cholesterol (TC) in the Hispanic Community Health Study/Study
of Latinos (HCHS/SOL), when testing all SNPs with p-values< 5× 10−8 (15 genomic

∗Correspondence: tsofer@uw.edu
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regions) for generalization in a large GWAS of whites, we generalized SNPs from 15 re-
gions. But when testing all SNPs with p-values< 6.6×10−5 (89 regions), we generalized
SNPs from 27 regions.

Introduction

When presenting results from genome-wide association studies (GWAS), current standards

require a “two-stage design” in which possible discoveries in the first stage are replicated

in an independent study (Cohen, 1999). ‘Generalization’ is the replication of a genotype-

phenotype association in a population with different ancestry (or other characteristics)

than the population in which it was first identified. Increasingly, generalization testing

is performed as part of this two-stage design, primarily because GWAS is expanding into

populations of diverse ancestry. First, with non-white discovery populations, there tend

to be fewer similar studies available, so only generalization and not replication is feasi-

ble. Second, if the discovery study population is admixed (e.g. Hispanics/Latinos), it is

customary to seek generalization in some of its parental populations.

Interestingly, even though the current standard for GWAS mandates replication, er-

ror controlling multiple testing adjustment procedures are often applied separately in the

discovery and follow-up stages, without employing a replication- or generalization- based

statistical framework. Bogomolov and Heller (2013) have shown that such approaches do

not guarantee control over false generalization claims. Let the generalization null hypoth-

esis state that a SNP is not associated with the trait in the discovery population, the

follow-up population or both; and this null is rejected if evidence of association exists for

both populations. Define generalization testing as any multiple testing adjustment pro-
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cedure that controls measures of generalization error such as the Family-Wise Error Rate

(FWERg) or the False Discovery Rate (FDRg). In this paper, we propose methods to test

the generalization null hypotheses in GWAS, by expanding and adapting recent statistical

methods developed for replication.

Bogomolov and Heller (2013) considered replication testing using discovery and follow-

up studies, and developed multiple testing procedures with protection against erroneous

replicability claims by controlling the FWERg or the FDRg. They showed that one must

account for multiple testing in both the discovery and the follow-up studies to avoid a high

number of erroneous replicability claims. Heller et al. (2014) suggested improvements to

these procedures when used for GWAS, and developed r-values to quantify the evidence for

replication while controlling FWERg or FDRg in GWAS. However, the r-values in Heller

et al. (2014) do not account for the direction of the observed association. In this work we

extend the r-values approach to incorporate the direction of observed associations. This

acknowledges that we do not want to claim that an association generalizes if the direction

of effect is different in the two populations. Our procedure performs directional control

by using one-sided p-values to compute directional r-values at the generalization testing

stage, despite using two-sided tests in the discovery stage. This makes our procedure

more powerful than the procedure of Heller et al. (2014) for discovering associations with

the same direction in both studies. We perform extensive simulations to study fixed and

data-adaptive rules for selecting SNPs based on their p-values in the discovery study, and

compare multiple-testing adjustment procedures in combination with these selection rules.

3
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Materials and Methods

The generalization multiple testing framework

Expanding on the formal framework for replication of Heller et al. (2014), here we describe

the generalization null hypothesis, propose a multiple testing adjustment procedure for

generalization analysis, and contrast it with procedures currently used for single-stage

studies.

Generalization versus discovery null hypotheses

There are two crucial differences between testing SNPs in a single-stage versus two-stage

study design. In a single-stage design, all eligible SNPs in a single study are tested (after

quality control filters). In contrast, in a two-stage design (1) the set of SNPs considered

for generalization testing is based on results from the discovery study, and (2) tests of the

null hypotheses are based on association analysis results from both the discovery and the

generalization studies. Thus, suppose that m SNPs are tested in the discovery study. In

a single-stage design, the discovery null is rejected for all significant associations in this

study. However, in a two-stage design, the generalization null hypothesis is rejected when

a SNP is associated with the trait in the generalization study as well, and the directions

of association are the same.

Measures of false generalization

In multiple testing, there are two common measures of error: the FWER, and the FDR.

In a single-stage GWAS, FWER is the probability of rejecting at least one null hypothesis
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corresponding to a SNP not associated with the trait. FDR is the expected proportion of

false null rejections out of all rejections, i.e. the expected proportion of falsely detected

SNPs out of all those reported as associated with the trait. We describe the FWER and

FDR for generalization testing.

Define the left-sided (right-sided) alternative as the scenario in which a given SNP

allele is negatively (positively) associated with the trait in a given study (either discovery

or follow-up). Let

Hij =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if the right-sided alternative is true for SNP j in population i

0 if the null hypothesis of no association is true for SNP j in population i

−1 if the left-sided alternative is true for SNP j in population i

Let Hj = {h = (h1j , h2j) : hij ∈ {−1, 0, 1}} be the set of 9 possible configurations of the

vector Hj = (H1j , H2j) for two-sided alternatives for SNP j. The set of possible configu-

rations is depicted in Figure 1. The generalization null hypothesis for SNP j is true if Hj

belongs to the set H0 = {(−1, 1), (−1, 0), (1,−1), (1, 0), (0, 0), (0,−1), (0, 1)}. A SNP for

which the generalization null is false has Hj ∈ HA = {(1, 1), (−1,−1)}.

For a SNP j, denote by RR
j and RL

j the indicators of whether a generalization null re-

jection (“generalization claim”) is made in the right or left direction, respectively. Suppose

that R generalization claims are made by an analysis. The number of true generalization

claims is

S =
X

{j:Hj=(1,1)}

RR
j +

X

{j:Hj=(�1,�1)}

RL
j ,

and R− S is the number of false generalization claims.
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The directional generalization (and replication) FWER and FDR are given by:

FWERg = Pr (R− S > 0) ,

FDRg = E

✓

R− S

max(R, 1)

◆

.

Controlling for false generalizations

Heller et al. (2014) proposed r-values for testing associations in both the discovery and

generalization (or replication) studies. Notably, Heller et al. (2014)’s procedure is not con-

cerned with directional consistency. We now extend the procedure proposed by Heller et al.

(2014) to the directional r-values framework and procedure for directional control in gen-

eralization testing. Following the definitions given below, the procedures are provided, and

the proofs that these procedures control FDRg/FWERg are relegated to the supplemental

material.

Definition: The directional FDRg/FWERg r-value for a SNP is the lowest FDR/FWER

level at which we can say that the SNP association is generalized with the same direction

of association in both the discovery and generalizing studies.

The directional p-values: Denote the left- and right-sided p-values for SNP association j

in study i ∈ {1, 2} by pLij , p
R
ij respectively. For continuous test statistics, p

R
ij = 1− pLij . The

p-values (p01j , p
0
2j) corresponding to variant j used in generalization analysis are defined as:

p01j =

8

>

<

>

:

pL1j if pL1j < pR1j

pR1j if pL1j > pR1j

p02j =

8

>

<

>

:

pL2j if pL1j < pR1j

pR2j if pL1j > pR1j .
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Note that the one-sided p-values from both studies are guided by the estimated direction

of association in the discovery study, so that if the association of SNP j was in the nega-

tive (positive) direction, then p01j < 0.5 is the left (right) sided hypothesis p-value in the

discovery study, and p02j is the left (right) sided hypothesis p-value in the follow-up study.

Therefore, if the evidence towards association is in the same direction in both studies, both

p01j , p
0
2j < 0.5, but if the estimated associations are in opposite directions in the two studies,

then p02j > 0.5.

Data and parameters required for FDRg/FWERg r-values computation:

1. m, the number of SNPs examined in the discovery study.

2. R1, the set of SNPs selected for follow-up based on discovery study results. Let

R1 = |R1| be their number.

3. The directional p-values for the followed-up SNPs {(p01j , p
0
2j) : j ∈ R1}.

4. l00 ∈ [0, 1), the user-specified lower bound on the fraction of SNP associations, out of

the m SNPs examined in the discovery study, that are null in both studies. Default

value for a GWAS is l00 = 0.8, following Heller et al. (2014).

5. c2 ∈ (0, 1), the emphasis given to the follow-up study (see Section Variations in Heller

et al. (2014)), default value is c2 = 0.5.

Computation of the FDRg/FWERg r-values

1. Defining functions fFDR
i (x)/fFWER

i (x), i ∈ R1, x ∈ (0, 1):

7
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(a) Compute c1(x) =
1�c2

1�l00(1�c2x)
, the inverse weight function for the p-values from

the discovery study.

(b) For every SNP j ∈ R1 compute the following e-values:

ej(x) = max

✓

m

c1(x)
p01j ,

R1

c2
p02j

◆

, j ∈ R1.

(C) [FDR] Let fFDR
i (x) = min{j:ej(x)�ei(x),j2R1}

ej(x)
rank[ej(x)]

, where rank[ej(x)] is the

rank of the e-value for a SNP j ∈ R1 (with maximum rank for ties).

(C) [FWER] Let fFWER
j (x) = ej(x).

2. The FDRg (FWERg) r-value for SNP i ∈ R1 is the solution to fFDR
i (ri) = ri

(fFWER
i (ri) = ri) if a solution exists in (0, 1), and 1 otherwise. The solution is

unique, see Lemma S1.1 in Heller et al. (2014).

The directional procedure for establishing generalization with FDRg/FWERg

control at level q.

1. Compute the FDRg/FWERg r-values.

2. Declare as generalized all SNPs with FDRg/FWERg r-value at most q. Denote this

set of SNPs by R2.

3. If a SNP j ∈ R2 has p01j = pL1j , then declare this SNP as having a generalized left-

sided alternative; If SNP j ∈ R2 has p01j = pR1j , then declare the SNP as having a

generalized right-sided alternative.
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Selection rules

In generalization analysis, SNP associations are first tested in the discovery study, and

then a smaller subset of these SNPs is selected for testing in the follow-up study, accord-

ing to a selection rule. The most well known selection rule is the one that selects SNPs

with p-value< 5 × 10�8 in the discovery study. This selection rule originates in single-

stage designs, in which one has to report significant findings in the discovery study while

controlling the FWER, assuming that m = 106. We consider other selection rules for a

generalization/replication-based study design where the null hypothesis is the generaliza-

tion null hypothesis.

1. Selection rule 1, recommended by Heller et al. (2014) for FDRg control. Apply

the FDR controlling BH procedure (Benjamini and Hochberg, 1995) on all p-values

from the discovery study to obtain BH-adjusted p-values. Choose all SNPs with

BH-adjusted p-value≤ t, where

t = c1(q) ∗ q, with (1)

c1(x) =
0.5

1− l00(1− 0.5x)
.

Use q = 0.05 to control FDRg at the 0.05 level. The rationale behind selection rule 1

is that every SNP with BH-adjusted discovery p-value larger than t has no chance of

generalizing. Heller et al. (2014) applied this selection rule in settings where either

both discovery and replication used two-sided p-values, or both used one-sided p-

values with pre-determined direction. We can also apply it on one-sided p-values

used for generalization testing when the discovery study hypotheses were two-sided.

9
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2. Selection rule 2, recommended by Heller et al. (2014) for FWERg control. This rule

selects all SNPs with discovery p-value≤ t0, where

t0 = c1(q)× q/m. (2)

As in selection rule 1, SNPs with p-value> t0 have no chance of generalizing using the

FWERg controlling procedure and selecting them may only reduce power. Again, we

can apply this selection rule on the one-sided p-values used for generalization testing.

Note that selection rule 1 is data adaptive, and depends on the distribution of signals

in the discovery study. Selection rule 2 is a fixed threshold rule. In selection rule 2, if

l00 = 0.8, q = 0.05, and m = 106, we get t0 = 1.14 × 10�7. When one-sided p-values are

used for generalization testing, the original two-sided p-values passing this threshold are

≤ 2.28× 10�7.

Linkage Disequilibrium (LD)

GWAS datasets may potentially contain tens of millions of genotyped and imputed SNPs.

Many of these SNPs are in linkage disequilibrium; that is, allelic variation within one SNP is

correlated with allelic variation in another SNP. Often, when a discovery study association

is detected, the locus may contain tens of correlated SNPs with low p-value. All of the

significant SNPs may be tagging the same underlying causal genetic variant, or there may

be multiple causal variants (referred to as “allelic heterogeneity”). Usually, the SNP with

lowest p-value among the set of correlated SNPs is identified as the “lead”, or “sentinel”,

SNP and is the one reported. There are two important issues in generalization testing of

SNPs in the presence of LD:

10
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1. When testing all associated SNPs (compared to a single SNP from any set of SNPs

in LD), the multiple testing burden is larger than when testing only independent

SNPs. In applying FWER-type control, this issue is sometimes handled by calculating

the effective number of independent SNPs, and using this number in applying a

Bonferroni correction. In contrast, this is not a problem for FDR control, which is

concerned with fractions of false positives.

2. The pattern of LD usually differ between two different populations, and consequently

different SNPs may best tag the underlying causal genetic variation.

Therefore, if appropriate information is available (e.g. the LD matrix of the SNPs in the

generalization study), we recommend following-up on all SNPs passing the appropriate

p-value threshold and using the effective number of tests instead of the actual number of

selected SNPs in computing r-values.

Simulation studies: discovery and generalization GWAS

In this section, we examine the performance of our methods when the discovery study

hypotheses tests are two-sided. In particular, we examine the gain in power from using

one-sided p-values guided by the evidence in the discovery study, compared to applying

the two-sided p-values in the procedure suggested by Heller et al. (2014). We also assess

the impact of using different selection rules on generalization power.

In the simulation study described below, we directly simulated test statistics for two

studies. This approach allowed us to conduct a large number of simulations, and study

the effect of test statistics’ inflation under the null (e.g. due to ancestry confounding or

11
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low minor allele counts), where inflation means that the p-values distribution is left-skewed

rather than uniform under the null. First, test statistics were calculated in the discovery

study, and then SNPs were selected for generalization testing based on several selection

rules. We used selection rules 1 (for FDRg control) and 2 (for FWERg control), applied

on both one- and two-sided p-values. We also used the selection rules that take all SNPs

with p-values< 1× 10�6, 1× 10�7, and < 5× 10�8 in the discovery study.

In an additional simulation study, we investigated GWAS of cohorts designed to mimic

realistic data sets with differences in LD structure and MAFs between the discovery and the

generalization cohort (supplemental material) in a smaller number of simulations. There,

we also compared generalization testing of all SNPs satisfying the selection rule with the

testing of only the lead SNPs from each of the detected loci.

Simulating test statistics with null inflation

In each of 1,000 repetitions of the simulations, we sampled a million independent test

statistics for both the discovery and the follow-up studies. Of these SNPs, 100 were causal

in the discovery study and 100 were causal in the follow-up study. 50 of the causal SNPs

overlapped between the studies. We considered two common generalization scenarios. In

the first setting the discovery study had relatively low power, and the follow-up study has

high power. For instance, this happens when discovery is performed in the HCHS/SOL, and

follow-up is pursued in a large meta-analysis GWAS in individuals of Europeans ancestry.

In the second setting the discovery study had high power, and the follow-up study had

low power. This happens when investigators in the HCHS/SOL study the generalization
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to Hispanics/Latinos of associations that were formerly reported in large meta-analyses of

whites.

In both settings, the test statistics corresponding to causal SNPs in the discovery

study 1 were sampled, in each simulation, as z1,j ∼ N (u1j , 1) where u1j is a realization of

a random variable sampled from unif(ul, uh) distribution. When the discovery study had

lower power we set ul = 4, uh = 5. Corresponding two-sided p-values had a median p-value

of 7× 10�6, with an inter-quartile range of [2× 10�7, 1× 10�4]. When the discovery study

had high power we set ul = 5, uh = 6. Corresponding two-sided p-values had a median p-

value of 4×10�8, with an inter-quartile range of [5×10�10, 2×10�6]. The 100 test statistics

corresponding to the causal SNPs in study 2 were similarly sampled as z2,j ∼ N (u2j , 1)

where u2j ∼ unif(5, 6) when the follow-up study had high power, and u2j ∼ unif(3, 4) when

the follow-up study had low power; the latter had corresponding two-sided p-values with a

median p-value of 5× 10�4 and an inter-quartile range of [3× 10�5, 5× 10�3]. Finally, we

generated inflation via a simple procedure in which the test statistics corresponding to non-

causal (null) SNPs, in both the discovery and the generalizing cohorts, were independently

sampled from a Normal distribution with mean of zero and variance of 1.21, corresponding

to λgc = 1.21 (Devlin and Roeder, 1999).

We studied additional simulation settings: a 90% overlap of the causal SNPs between

the two populations, a larger number of causal SNPs (1,000 and 10,000), and a discovery

study with u1j ∼ unif(4, 5), corresponding to two-sided p-values having a median p-value

of 7× 10�6, with an inter-quartile range of [2× 10�7, 1× 10�4], and follow-up study with

u2j ∼ unif(3, 4). Overall, our simulations covered many plausible scenarios of the power
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of the discovery and follow-up studies (high, medium, and low discovery power, and high

and low follow-up study power), and reasonable assumptions on the overlap between the

genetic component of the two populations, and on the number of SNPs associated with the

trait. Finally, we also studied the effect of setting l00 to 0.9, 0.95.

The HCHS/SOL

The HCHS/SOL (LaVange et al., 2010; Sorlie et al., 2010), is a community based cohort

study, following self-identified Hispanic individuals from four field centers (Chicago, IL;

Miami, FL; Bronx, NY; and San Diego, CA). Individuals were sampled via a two-stage

sampling scheme, in which households were randomly sampled from sampled block groups.

Almost 13,000 study participants consented for genotyping. This study was approved by

the institutional review boards at each field center, where all subjects gave written informed

consent.

Genotyping, imputation and quality control

Blood samples from HCHS/SOL individuals were genotyped on a custom array consisting

of Illumina Omni 2.5M content plus ∼150,000 custom markers selected to include ancestry-

informative markers, variants characteristic of Amerindian populations, known GWAS hits

and other candidate gene polymorphisms. Quality control was similar to the procedure de-

scribed in Laurie et al. (2010), and included checks for sample identity, batch effects, miss-

ing call rate, chromosomal anomalies (Laurie et al., 2012), deviation from Hardy-Weinberg

equilibrium, Mendelian errors, and duplicate sample discordance. 12,803 samples passed
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quality control, and 2,232,944 SNPs passed quality filters. Pairwise kinship coefficients and

principal components reflecting ancestry were estimated in an iterative procedure which

accounts for admixture (Conomos, 2014; Conomos et al., 2016). Genome-wide imputation

was done using the 1000 Genomes Project phase 1 reference panel.1000 Genomes Project

Consortium (2012) Genotypes were first pre-phased with SHAPEIT2 (Delaneau et al.,

2013) (v2.r644) and then imputed with IMPUTE2 (Howie et al., 2009) (v2.3.0).

Identifying SNP-TC associations in the HCHS/SOL

To study our proposed methods for identifying SNP-trait associations, we performed a

GWAS of TC in the HCHS/SOL followed by generalization testing using publicly avail-

able GWAS results. Our goal was to demonstrate that by using selection rules that are

geared towards a two-stage study design, we can identify more generalized associations of

independent loci, compared to selection rules that are based on a single-stage design.

The analysis was adjusted for sex, age, 5 principal components to control for confound-

ing bias due to ancestry, and study design variables (e.g. study center, sampling weights).

Analysis was performed using linear mixed effect models, with random effects correspond-

ing to block groups, households, and kinship. As advocated by Kraft et al. (2009), the

HCHS/SOL analyses were matched to the published analyses, so that the same trait trans-

formation was used in both analyses. Thus, we first regressed TC values on covariates, and

then applied a rank-based inverse normal transformation on the residuals. We then used

the transformed residuals as the trait in the association testing.

We utilize the availability of complete results from the Global Lipids Genetics Con-
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sortium (GLGC) TC GWAS (Willer et al., 2013), conducted in a large meta-analysis of

multiple cohorts of European ancestry comprising of over 180,000 individuals, to compare

multiple generalization analyses of TC. First, we considered generalization geared towards

establishing new associations, in which we perform a GWAS in the HCHS/SOL as a dis-

covery stage, with generalizations to the independent GLGC data set. Second, we consider

generalization with the goal of testing whether previously established associations extend

to the HCHS/SOL. For this, we selected SNPs published by Teslovich et al. (2010) and

Willer et al. (2013) to generalize to the HCHS/SOL.

As mentioned previously, we expect multiple SNPs from each detected locus to be

associated with TC, due to LD. Therefore, we define a locus as the region of size 1Mb

around a SNP. We tested all SNPs satisfying the selection rule criterion, even if they were

in LD with each other. However, we report generalization results both in terms of SNP

associations, and by loci: after generalization testing, we identified the first locus by taking

the SNP with smallest discovery p-value (lead discovery SNP) to represent it. We then

“removed” all SNPs in its vicinity, and continued to select other SNPs in a similar manner.

A locus with any SNP that generalized is declared a generalized locus.

Results

Simulations

Tables 1 and 2 provide the simulation results when the discovery power was low and

the follow-up study had high power, when the goal was to control FDRg and FWERg,
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respectively. Tables 3 and 4 provide similar results for the setting where the discovery

study power was high and the follow-up study had low power. In all tables we omitted

the results for the selection rules that selected SNPs for follow-up based on discovery two-

sided p-value≤ 10�7, as this resulted in “intermediate” results in terms of power between

selection rules of higher and lower p-value thresholds, and is less beneficial than other

selection rules.

For each selection rule, the characteristics of the selected SNP sets and generalization

tests are provided, averaged across the iterations of simulations. The latter are provided

in terms of estimated power, calculated as the average proportion of generalized SNPs, out

of all generalizable SNPs in the simulation, false positives (FP) as the average number of

generalizations of SNPs that are not in fact generalizable. In addition, when the selection

rules and multiple testing adjustment methods were aimed at FDRg control (Tables 1 and

3), we also provide false discovery proportion (FDPg), which is the average proportion of

false positives out of all generalized SNPs, and estimates FDRg, and the standard deviation

of the false discovery proportion across all the simulations, SD(FDPg). When the selection

rules and multiple testing adjustment methods were aimed at FWERg control (Tables 2

and 4), we provide the estimated FWERg, as the proportion of simulations having at least

one false positive generalization, i.e. the mean of I[V >0], the indicator function of having

at least one false generalization, i.e. V = R − S > 0, and also SD(I[V >0]). The standard

errors of all measures are also provided.

As expected throughout, the higher the p-value threshold implied by the selection rule,

the larger the number of selected SNPs, and the larger the number of true generalizable
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SNPs selected. As expected by chance, 50% of the non-generalizable candidate SNPs have

different direction of estimated effects in the two studies, so the one-sided p-values from

the generalization study for these SNPs are higher than 0.5. Therefore, it is not surprising

to see fewer false positive generalizations under directional control (using one-sided p-

values). In both simulation settings and under both FDRg and FWERg control, directional

control also had higher generalization power compared to using two-sided p-values, with

less difference when the selection rule had very low p-values, or in other words, when fewer

SNPs were under the null. In the settings in which the discovery study had high discovery

power there was consequently higher generalization power, but also slightly higher error

rates. Importantly, both FDRg and FWERg r-values always protected their target error

measures.

FDRg control: Focusing on directional FDRg r-values, selection rule 1 applied with

either one- or two-sided p-values was most powerful in the low discovery power setting,

and selection rule 1 applied on two-sided p-values was most powerful in the high discovery

power setting. Generalization testing using BH on the follow-up study alone did not

control FDRg when selection rule 1 was applied on one-sided p-values, and it also did

not control FDRg when applied on two-sided p-values. In lower p-value thresholds, when

a high proportion of the tested SNPs were under the alternative, FDRg was controlled

when BH was used on the follow-up study alone. Since the r-values approach is slightly

more stringent than the BH on the follow-up approach, FDRg r-values are expected to be

somewhat less powerful. The difference in power is small when the follow-up SNPs were

highly significant. More specifically, the power is identical when the discovery power is low
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and the selection rule is discovery p-value≤ 10�6 or ≤ 5× 10�8, and the power differed by

only 0.03 for the same selection rules, when the discovery power is high.

FWERg control: Selection rule 2 applied on one-sided p-values was the most powerful

selection rule in both settings. Generalization testing using Bonferroni correction on the

follow-up study alone never controlled FWERg, though error rates were slightly improved

by using one-sided p-values.

Finally, additional simulations (results unreported) revealed the same pattern of results,

overall suggesting that selection rule 1 applied on two-sided p-values is the most powerful

for FDRg control, and selection rule 2 applied on one-sided p-values is the most powerful for

FWERg control. Setting l00 to higher values {0.9, 0.95} had almost no effect on the results

when selection rules with two-side discovery p-values≤ 10�6 (or lower) were used, and had

mixed effects on power when selection rule 1 was used (beneficial in the low discovery power

setting, but less powerful in the high discovery power setting).

The HCHS/SOL TC GWAS

HCHS/SOL as the primary discovery study in a two-stage design

We performed a GWAS of TC in the HCHS/SOL, to establish generalized SNP-TC asso-

ciations. We test using both FDRg and FWERg controlling r-values, and compare them

in combination with different selection rules. In Table 5, for each combination of selection

rule and multiple testing adjustment method, we report the number of SNPs followed-up

that are available in both the HCHS/SOL and the GLGC TC GWAS, the number of loci

they correspond to, the number of generalized SNPs and generalized loci, and the number
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of loci with none of the SNPs having p-value< 5× 10�8 in Willer et al. (2013)’s GWAS.

As expected, the number of SNPs selected for follow-up increased as the p-value thresh-

old became higher; usually, the number of generalized loci increased as well. When the

selection rule was all SNPs with p-value< 5× 10�8, the followed-up SNPs corresponded to

15 loci, all of which generalized under FWERg (and FDRg) control. For FWERg control,

the number of generalized loci was the same, and maximal (17 loci), with selection rule 2

(on one-sided p-values) and p-value< 10�6. This is consistent with the rationale behind

selection rule 2, because SNPs with HCHS/SOL two-sided p-value> 2.28× 10�7 cannot be

generalized under FWERg control.

In the FDRg-controlling analysis applied on SNPs satisfying selection rule 1 on two-

sided p-values, 21 loci generalized. These included a single generalized locus that would not

be reported in either the HCHS/SOL or the GLGC GWAS alone. The lead SNP, rs870992

on chromosome 5, had r-value= 0.008, HCHS/SOL p-value= 2 × 10�5, and GLGC p-

value= 5.2× 10�5. This SNP was formerly associated with concentration of liver enzymes

in plasma in a GWAS(Chambers et al., 2011). In the FDRg-controlling analysis applied

on SNPs satisfying selection rule 1 with one-sided p-values, there were 22 loci with strong

evidence of association in the GLGC GWAS (SNPs with p-values< 5 × 10�8), and 5 loci

generalized that would not been detected in the HCHS/SOL or GLGC GWAS alone. One

of them was the locus that includes rs870992. Another SNP, rs2072781 in chromosome 6,

had r-value= 0.009 (HCHS/SOL p-value= 2.1×10�5, GLGC p-value= 1×10�4). This SNP

is in the MYLIP gene, formerly associated with high TC in Mexicans (Weissglas-Volkov

et al., 2011). Three additional loci had relatively higher p-values in the GLGC GWAS
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(0.007-0.05) and r-values in the range 0.01-0.05. The five loci are reported in Table S9 in

the supplemental material.

In all analyses, there was a generalized locus in which the HCHS/SOL lead SNP did

not generalize, as it had p-value= 0.92 in Willer et al. (2013), but a different SNP in the

same locus had p-value= 1.4× 10�46 in Willer et al. (2013) and generalized. This supports

a strategy that analyzes all SNPs, rather than an LD-pruned set.

Generalizing previously reported TC-SNP associations

There are 74 SNPs previously reported as associated with TC with p-values≤ 5×10�8 and

are available for generalization testing in the HCHS/SOL data set. Teslovich et al. (2010),

in a meta-analysis of more than 100,000 individuals, reported 51 SNPs, that were later

replicated in Willer et al.,Willer et al. (2013) which further meta-analyzed their association

testing results with additional results from the GLGC study. Willer et al. (2013) reported

an additional set of 23 SNPs (that were not meta-analyzed with Teslovich et al.’sTeslovich

et al. (2010) results). Therefore, we performed two generalization analyses: one for the 51

SNPs that were replicated and had meta-analysis results combining the two studies, and

one for the set of 23 SNPs reported only in Willer et al.Willer et al. (2013) In this analysis,

33 of the formerly replicated SNPs generalized to the HCHS/SOL, while none of the SNPs

that were only reported in Willer et al. (2013) generalized. This is likely due to their low

effect sizes.

In the supplemental material, we provide an additional analysis in which we follow-up

for generalization testing all SNPs with p-value< 10�6 in the GLGC GWAS, without any
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SNP pruning. This analysis generalized 9 more loci than the analysis that tested only the

published lead SNPs.

Discussion

In this work, we propose to leverage two-stage design to increase generalization power in

GWAS. We show that by using a multiple testing adjustment framework tailored to the

two-stage study design we can combine testing results from the discovery and follow-up

studies to increase power with essentially no increase in the rate of false positive findings.

We introduce procedures for calculating directional FDRg and FWERg r-values, computed

based on one-sided p-values. We prove that r-values control their directional error measures

when there is no genomic inflation, and show via simulation that errors are controlled in

the presence of inflation. These procedures are, by construction, more powerful than

those based on two-sided p-values when the direction of association is consistent between

discovery and follow-up populations. We studied SNP selection rules that are geared

towards generalization-based designs, and found in simulation studies that by choosing

SNPs for generalization testing based on p-values less conservative than the genome-wide

significance threshold, e.g. selection rules 1 and 2 for FDRg control and FWERg control,

respectively, we are able to generalize more SNPs while controlling the desired error rate.

Finally, we demonstrated our procedure on a GWAS of TC in the HCHS/SOL. First,

we consider the scenario in which HCHS/SOL is a discovery study and generalization is

required for reporting a significant finding. Second, we considered the scenario in which

there are established SNP-trait associations that we want to generalize to the HCHS/SOL.
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An approach that was promoted in the past to increase power in a two-stage design

was to perform a joint analysis of the two studies via meta-analysis (Skol et al., 2006).

However, this approach does not test the generalization null hypothesis, and an associ-

ation may appear significant even if it exists only in one population. In contrast, our

approach is focused in generalization testing; generalizations makes stronger statements on

the underlying similarity in genetic associations between populations.

We provide practical recommendations based on our results. First, in terms of selection

rules, we recommend selection rule 2 for FWERg control at the α level, which selects SNPs

with two-sided discovery p-value< 2.28 × 10�7 for α = 0.05. For FDRg control at the

α = 0.05 level, we recommend selecting SNPs with discovery p-value≤ 10�6, or based on

selection rule 1 if it is more conservative. If selection rule 1 applied to one-sided p-values is

conservative, it is preferable to other selection rules since it limits the set of SNPs to those

that can potentially be generalized. Second, we recommend follow-up on all SNPs satisfying

the selection rule. Limiting follow-up to lead SNPs from the discovery study may reduce

generalization power due to different LD patterns between the discovery and follow-up

populations, in which the best tag SNP in one may not be the best tag SNP in the other.

Finally, while FDRg control allows for more false positive generalizations compared to

FWERg control, it also allows for more generalizations. This is well known, and the GWAS

culture favors caution and prioritizes FWER control. In generalization, however, FDRg

may be more appropriate than FWERg, since the investigator may be willing to tolerate a

small fraction of false positives among the generalizations, as the overall number of reported

false associations may already be dramatically reduced by generalization testing, compared
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to reported associations from a discovery GWAS alone.

In this work we focus on generalization testing of associations from European ancestry

populations to Hispanics/Latinos, and the other way around. Hispanics/Latinos are ad-

mixed and have large proportion of European ancestry; therefore we expect a large overlap

in genetic architecture between the two populations. However, we do expect our conclu-

sions to hold also when studying generalizations from Africans to Europeans, and other

population as well. We performed additional simulations studies in similar scenarios re-

ported in this manuscript but with varying degrees of overlap between causal SNPs and

distributions of test statistics, corresponding to many plausible generalization scenarios.

The conclusions remained the same.

While our methodology focuses on generalization of variants, in the data analysis we

reported results by loci. The loci generalization framework still needs to be developed.

Consider the null hypothesis of no generalization of a locus that states that none of the

SNPs in the locus generalized. We here reported a locus as generalized if at least one

of its associated SNPs generalized, but we did not offer a measure of locus-generalization

evidence. Assigning a r-value for this null hypothesis is a topic of future work.

Supplemental Data

Supplemental Data include the description of an additional simulation study and its results

in eight tables, a table of data analysis results, and mathematical derivations.
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Software

An R package to perform generalization analysis can be installed using the R commands

library(devtools)

install_github("tamartsi/generalize", subdir = "generalize")

Also, a web applet that computes r-values based on one-sided p-values from the discovery

and follow-up study, and does not require any software installation, is available in

http://www.math.tau.ac.il/~ruheller/App.html
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Follow-up

Discovery
Left Null Right

Left (−1,−1) (0,−1) (1,−1)

Null (−1, 0) (0, 0) (1, 0)

Right (−1, 1) (0, 1) (1, 1)

Figure 1: The set of possible configuration of the vector Hj = (H1j , H2j). The association

of SNP j with the trait is defined as generalized association (marked as gray) when both

alternatives are either left (negative direction of allele-trait association, Hj = (−1,−1)),

or right (positive direction of allele-trait association, Hj = (1, 1)).
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Selection rule selected

SNPs

loci adjustment gen

SNPs

gen loci # loci not

sig Willer

Selection rule 1 -

one-sided

1,662 89 FDRg r-values 1,352 27 5

Selection rule 1 -

two-sided

1,208 51 FDRg r-values 1,076 21 1

10�6 742 18 FDRg r-values 706 17 0

10�6 742 18 FWERg r-values 583 17 0

Selection rule 2 -

one-sided

627 17 FWERg r-values 583 17 0

Selection rule 2 -

two-sided

574 16 FWERg r-values 538 16 0

5× 10�8 546 15 FWERg r-values 514 15 0

Table 5: Generalization testing results from a set of analyses based on a HCHS/SOL GWAS

as the discovery study, and GLGC GWAS as the follow-up study. For each selection rule we

report the number of SNPs selected for follow-up testing, and the number of loci containing

these SNPs. For combinations of selection rules and multiple testing adjustment method

we report the number of generalized loci, and the number of generalized loci that did not

contain any SNP with p-value< 5× 10�8 in the GLGC GWAS.
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1 Additional simulation study: simulating diverse cohorts

1.1 Simulation set-up

Using Hapgen2 (Su et al., 2011), we simulated two populations, one of 20,000 Europeans,

derived from the CEU Hapmap (Gibbs et al., 2003) sample, that represented the discovery

cohort, and one of 10,000 Mexicans derived from the MEX Hapmap sample that represented

the generalizing cohort. The smaller MEX population size reflects the fact that often,

cohorts of diverse ethnicities are smaller than those of Europeans. For each population,

we simulated 90 causal SNPs affecting a quantitative outcome, of which 45 overlapped,

in 5 different simulation scenarios. The 5 simulation scenarios differed only by the list of

causal SNPs, to allow for potential differences in generalization power due to difference in

LD structure. The MAFs of the causal SNPs in the CEU ranged between 0.04 to 0.49,

and were different in the MEX for the same SNPs, since they were the Hapmap MAFs for

these populations. The outcome model was ypi = g
T
piβp + ✏pi, with gpi being the vector of

90 allelic counts of individual i in population p, corresponding to the causal SNPs in this

population. βp was the vector of SNP effects of population p, and ✏pi ∼ N (0, 1) was the

residual error. The median simulated �j in CEU was 0.07, and the largest effect sizes were

0.20 and 0.25. Of the 45 simulated causal SNPs that overlapped between populations, 12

had the same effect size in CEU and MEX so that �CEU,k = �MEX,k for k = 1, . . . , 12, and

33 had effect sizes in MEX sampled from a uniform distribution around the CEU effect, so

that �MEX,k ∼ unif(0.2× �CEU,k, 1.8× �CEU,k).

From each of the 5 simulation settings we generated 20 simulations, to a total of 100

2
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simulations of GWAS in two cohorts. In each simulation, we tested about 800,000 SNPs

were tested for association with the simulated outcome. According to the GWAS results

in the discovery population (either CEU or MEX), we performed a look-up of results in

the follow-up population (either MEX or CEU). For the two combinations of discovery and

follow-up populations, we report two sets of results. In the first analysis, SNPs that were

followed up were pruned, so that no two SNPs closer than 1M base pairs to each other were

followed-up (i.e. we follow-up for generalization testing only lead SNPs). We determined if

the SNPs was a “true signal” if the correlation (due to LD) between the detected SNP and

any simulated causal SNP was higher than 0.5. In the second set of results, we follow-up

all SNPs satisfying the selection rules and tested all. We then determined how many loci

generalized by defining loci as regions of 1M SNPs (here we did not use LD information,

to reduce computations).

1.2 Results - generalization testing of CEU results in MEX

To study the instance in which the first stage of the study performs a GWAS in a large study

of European individuals, and the follow-up study is a smaller study of Hispanic/Latino in-

dividuals, we provide generalization testing results for the case were the GWAS in the

CEU is treated as the discovery study, and the GWAS in the MEX population as the

follow-up. Results are given in Tables S1-S4. To summarize the conclusions from these

simulations, FDRg and FWERg r-values provide better control agains false positive gener-

alization claims compared to procedures that limit the FWER/FDR on the follow-up study

alone. With FDR control, it is more powerful to follow all SNPs satisfying the selection rule

3
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compared to pruning SNPs, especially when applying the more lenient selection rules. The

difference in power diminishes as the selection rule becomes more stringent. However, the

number of false positives also increases somewhat when SNPs are not pruned. For FWER

control, it is more powerful to follow only lead SNPs. With any method of error control,

and with and without pruning of SNPs, it was beneficial to follow-up on a larger set of

SNPs than that dictated by the genome-wide significance level. In particular, selection

rules 1 and 2 are powerful.

Similar simulations were performed with a smaller population in the follow-up study of

6,000 MEX individuals. The conclusions remained the same, only the generalization power

decreased.

1.3 Results - generalization testing of MEX results in CEU

To study the instance in which the first stage of the study performs a GWAS in a relatively

small study of Hispanic/Latino individuals (or other diverse, non-European population),

and the follow-up study is a larger study, we provide generalization testing results for the

case were the GWAS in the MEX is treated as the discovery study, and the GWAS in

the CEU population as the follow-up. Results are given in Tables S5-S8. To summa-

rize the conclusions from these simulations, FDRg and FWERg r-values provide better

control agains false positive generalization claims compared to procedures that limit the

FWER/FDR on the follow-up study alone. Not pruning SNPs is slightly more powerful

(in terms of power) than pruning SNPs when applying FDRg control, but this difference is

essentially non-existent in when FWERg is controlled. With any method of error control,

4
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and with and without pruning of SNPs, it was beneficial to follow-up on a larger set of

SNPs than that dictated by the genome-wide significance level. In particular, selection

rules 1 and 2 are powerful.

Compare to generalizing results from CEU to MEX, here we have lower power, as

expected, since less discoveries are made in the first study. In addition, it is striking that

when implementing FDRg control and following-up on all SNPs satisfying the selection rule,

with no further pruning, the number of false positives is much larger when generalizing

from CEU to MEX, than the other way around. This may also be due to the higher power

of the CEU GWAS.

5
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Adjustment Loci True gen loci Gen loci FP Power

1× 10−6

Bonferroni (one sided) 61.78 22.75 22.49 0.80 0.48

Bonferroni (two sided) 61.78 22.75 21.34 0.74 0.46

FWERg r-values (one sided) 61.78 22.75 20.40 0.70 0.44

FWERg r-values (two sided) 61.78 22.75 19.09 0.62 0.41

Selection rule 2 - one sided

Bonferroni (one sided) 56.55 21.91 21.62 0.77 0.46

Bonferroni (two sided) 56.55 21.91 20.55 0.72 0.44

FWERg r-values (one sided) 56.55 21.91 20.54 0.71 0.44

FWERg r-values (two sided) 56.55 21.91 19.16 0.62 0.41

Selection rule 2 - two sided

Bonferroni (one sided) 53.50 21.35 21.02 0.71 0.45

Bonferroni (two sided) 53.50 21.35 20.09 0.67 0.43

FWERg r-values (one sided) 53.50 21.35 20.08 0.66 0.43

FWERg r-values (two sided) 53.50 21.35 19.21 0.62 0.41

5× 10−8

Bonferroni (one sided) 49.66 20.19 19.95 0.68 0.43

Bonferroni (two sided) 49.66 20.19 19.16 0.65 0.41

FWERg r-values (one sided) 49.66 20.19 19.15 0.64 0.41

FWERg r-values (two sided) 49.66 20.19 18.37 0.61 0.39

Table S1: Averaged generalization testing results of CEU associations in MEX, given by

loci, when SNPs passing the selection rule are pruned by distance to the lead SNP. The

controlled error measure was FWERg. We compare the Bonferroni adjustment on the

follow-up study alone with FWERg r-values, both with and without directional control

implemented with one-sided p-values.
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Adjustment SNPs Loci True gen loci Gen loci FP Power

1× 10−6

Bonferroni (one sided) 801.63 61.78 31.02 20.23 0.66 0.43

Bonferroni (two sided) 801.63 61.78 31.02 19.33 0.63 0.42

FWERg r-values (one sided) 801.63 61.78 31.02 18.42 0.57 0.40

FWERg r-values(two sided) 801.63 61.78 31.02 17.25 0.50 0.37

Selection rule 2 - one sided

Bonferroni (one sided) 681.07 56.55 29.00 19.47 0.65 0.42

Bonferroni (two sided) 681.07 56.55 29.00 18.65 0.60 0.40

FWERg r-values (one sided) 681.07 56.55 29.00 18.64 0.59 0.40

FWERg r-values (two sided) 681.07 56.55 29.00 17.44 0.51 0.38

Selection rule 2 - two sided

Bonferroni (one sided) 624.80 53.50 27.72 19.09 0.61 0.41

Bonferroni(two sided) 624.80 53.50 27.72 18.28 0.55 0.39

FWERg r-values (one sided) 624.80 53.50 27.72 18.27 0.54 0.39

FWERg r-values (two sided) 624.80 53.50 27.72 17.56 0.53 0.38

5× 10−8

Bonferroni (one sided) 554.81 49.66 25.90 18.27 0.60 0.39

Bonferroni (two sided) 554.81 49.66 25.90 17.51 0.54 0.38

FWERg r-values (one sided) 554.81 49.66 25.90 17.50 0.53 0.38

FWERg r-values (two sided) 554.81 49.66 25.90 16.87 0.51 0.36

Table S2: Averaged generalization testing results of CEU associations in MEX in simu-

lations, given by loci, when all SNPs passing the selection rule are followed-up and the

controlled error measured was FWERg. We compare the Bonferroni adjustment on the

follow-up study alone with FWERg r-values, both with and without directional control

implemented with one-sided p-values.
7
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Adjustment Loci True gen loci Gen loci FP Power

Selection rule 1 - one sided

BH (one sided) 271.41 23.08 32.07 2.58 0.66

BH (two sided) 271.41 23.08 30.59 2.58 0.62

FDRg r-values (one sided) 271.41 23.08 26.17 1.00 0.56

FDRg r-values (two sided) 271.41 23.08 24.26 0.90 0.52

Selection rule 1 - two sided

BH (one sided) 168.09 23.72 32.62 2.46 0.67

BH (two sided) 168.09 23.72 30.94 2.33 0.64

FDRg r-values (one sided) 168.09 23.72 27.09 1.11 0.58

FDRg r-values (two sided) 168.09 23.72 25.15 0.96 0.54

1× 10−6

BH (one sided) 61.78 22.75 28.11 1.68 0.59

BH (two sided) 61.78 22.75 27.05 1.64 0.56

FDRg r-values (one sided) 61.78 22.75 20.40 0.70 0.44

FDRg r-values (two sided) 61.78 22.75 25.59 1.26 0.54

5× 10−8

BH (one sided) 49.66 20.19 23.95 1.37 0.50

BH (two sided) 49.66 20.19 23.27 1.38 0.49

FDRg r-values (one sided) 49.66 20.19 22.99 1.10 0.49

FDRg r-values (two sided) 49.66 20.19 22.20 1.10 0.47

Table S3: Averaged generalization testing results of CEU associations in MEX in simula-

tions, given by loci, when SNPs passing the selection rule are pruned by distance to the

lead SNP. The controlled error measure was FDRg. We compare the BH adjustment on

the follow-up study alone with FDRg r-values, both with and without directional control

implemented with one-sided p-values.
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Adjustment SNPs Loci True gen loci Gen loci FP Power

Selection rule 1 - one sided

BH (one sided) 3014.62 271.41 40.99 42.87 8.93 0.75

BH (two sided) 3014.62 271.41 40.99 41.37 8.92 0.72

FDRg r-values (one sided) 3014.62 271.41 40.99 32.67 2.30 0.67

FDRg r-values (two sided) 3014.62 271.41 40.99 30.13 1.96 0.63

Selection rule 1 - two sided

BH (one sided) 2123.12 168.09 39.93 40.13 6.57 0.75

BH (two sided) 2123.12 168.09 39.93 38.73 6.63 0.71

FDRg r-values (one sided) 2123.12 168.09 39.93 33.98 2.93 0.69

FDRg r-values (two sided) 2123.12 168.09 39.93 31.37 2.42 0.64

1× 10−6

BH (one sided) 801.63 61.78 31.02 30.32 3.04 0.61

BH (two sided) 801.63 61.78 31.02 29.79 3.28 0.59

FDRg r-values (one sided) 801.63 61.78 31.02 28.58 2.15 0.59

FDRg r-values(two sided) 801.63 61.78 31.02 27.58 2.15 0.57

5× 10−8

BH (one sided) 554.81 49.66 25.90 25.45 2.31 0.51

BH (two sided) 554.81 49.66 25.90 25.17 2.58 0.50

FDRg r-values (one sided) 554.81 49.66 25.90 24.26 1.73 0.50

FDRg r-values (two sided) 554.81 49.66 25.90 23.52 1.73 0.48

Table S4: Averaged generalization testing results of MEX associations in CEU in simu-

lations, given by loci, when all SNPs passing the selection rule are followed-up and the

controlled error measured was FDRg. We compare the BH adjustment on the follow-up

study alone with FDRg r-values, both with and without directional control implemented

with one-sided p-values.
9
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Adjustment Loci True gen loci Gen loci FP Power

1× 10−6

Bonferroni (one sided) 20.99 19.44 16.88 0.69 0.36

Bonferroni (two sided) 20.99 19.44 16.80 0.69 0.36

FWERg r-values (one sided) 20.99 19.44 15.38 0.61 0.33

FWERg r-values (two sided) 20.99 19.44 14.64 0.54 0.31

Selection rule 2 - one sided

Bonferroni (one sided) 18.66 17.64 15.44 0.61 0.33

Bonferroni (two sided) 18.66 17.64 15.38 0.61 0.33

FWERg r-values (one sided) 18.66 17.64 15.38 0.61 0.33

FWERg r-values (two sided) 18.66 17.64 14.65 0.54 0.31

Selection rule 2 - two sided

Bonferroni (one sided) 17.68 16.91 14.71 0.54 0.31

Bonferroni (two sided) 17.68 16.91 14.68 0.54 0.31

FWERg r-values (one sided) 17.68 16.91 14.68 0.54 0.31

FWERg r-values (two sided) 17.68 16.91 14.66 0.54 0.31

5× 10−8

Bonferroni (one sided) 16.51 15.88 13.81 0.46 0.30

Bonferroni (two sided) 16.51 15.88 13.78 0.46 0.30

FWERg r-values (one sided) 16.51 15.88 13.78 0.46 0.30

FWERg r-values (two sided) 16.51 15.88 13.76 0.46 0.30

Table S5: Averaged generalization testing results of MEX associations in CEU in simula-

tions, given by loci, when SNPs passing the selection rule are pruned by distance into the

lead SNPs only. We compare the Bonferroni adjustment on the follow-up study alone with

FWERg r-values, both with and without directional control implemented with one-sided

p-values.
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Adjustment SNP Loci True gen loci Gen loci FP Power

1× 10−6

Bonferroni (one sided) 287.36 20.99 16.75 16.74 0.51 0.36

Bonferroni (two sided) 287.36 20.99 16.75 16.66 0.51 0.36

FWERg r-values (one sided) 287.36 20.99 16.75 15.28 0.46 0.33

FWERg r-values (two sided) 287.36 20.99 16.75 14.47 0.44 0.31

Selection rule 2 - one sided

Bonferroni (one sided) 243.00 18.66 15.22 15.33 0.46 0.33

Bonferroni (two sided) 243.00 18.66 15.22 15.30 0.46 0.33

FWERg r-values (one sided) 243.00 18.66 15.22 15.30 0.46 0.33

FWERg r-values (two sided) 243.00 18.66 15.22 14.52 0.45 0.31

Selection rule 2 - two sided

Bonferroni (one sided) 224.44 17.68 14.47 14.62 0.45 0.31

Bonferroni (two sided) 224.44 17.68 14.47 14.59 0.45 0.31

FWERg r-values (one sided) 224.44 17.68 14.47 14.59 0.45 0.31

FWERg r-values (two sided) 224.44 17.68 14.47 14.53 0.45 0.31

5× 10−8

Bonferroni (one sided) 204.14 16.51 13.59 13.74 0.40 0.30

Bonferroni (two sided) 204.14 16.51 13.59 13.72 0.40 0.30

FWERg r-values (one sided) 204.14 16.51 13.59 13.72 0.40 0.30

FWERg r-values (two sided) 204.14 16.51 13.59 13.66 0.40 0.29

Table S6: Averaged generalization testing results of MEX associations in CEU in simula-

tions, given by loci, when all SNPs passing the selection rule are followed-up and the con-

trolled error measure is FWERg. We compare the Bonferroni adjustment on the follow-up

study alone with FWERg r-values, both with and without directional control implemented

with one-sided p-values.
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Adjustment Loci True gen loci Gen loci FP Power

Selection rule 1 - one sided

BH (one sided) 111.95 28.30 26.28 2.94 0.52

BH (two sided) 111.95 28.30 26.01 2.72 0.52

FDRg r-values (one sided) 111.95 28.30 18.78 0.82 0.40

FDRg r-values (two sided) 111.95 28.30 17.88 0.72 0.38

Selection rule 1 - two sided

BH (one sided) 62.56 26.56 24.38 2.37 0.49

BH (two sided) 62.56 26.56 24.16 2.20 0.49

FDRg r-values (one sided) 62.56 26.56 18.85 0.86 0.40

FDRg r-values (two sided) 62.56 26.56 17.94 0.72 0.38

1× 10−6

BH (one sided) 20.99 19.44 17.18 0.79 0.36

BH (two sided) 20.99 19.44 17.10 0.76 0.36

FDRg r-values (one sided) 20.99 19.44 17.06 0.75 0.36

FDRg r-values (two sided) 20.99 19.44 16.98 0.71 0.36

5× 10−8

BH (one sided) 16.51 15.88 13.94 0.48 0.30

BH (two sided) 16.51 15.88 13.90 0.47 0.30

FDRg r-values (one sided) 16.51 15.88 13.88 0.47 0.30

FDRg r-values (two sided) 16.51 15.88 13.86 0.46 0.30

Table S7: Averaged generalization testing results of MEX associations in CEU in simula-

tions, given by loci, when SNPs passing the selection rule are pruned by distance to the

lead SNP. The controlled error measure was FDRg We compare the BH adjustment on

the follow-up study alone with FDRg r-values, both with and without directional control

implemented with one-sided p-values.
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Adjustment SNP Loci True gen loci Gen loci FP Power

Selection rule 1 - one sided

BH (one sided) 869.93 111.95 28.84 30.14 4.89 0.56

BH (two sided) 869.93 111.95 28.84 29.93 4.80 0.56

FDRg r-values (one sided) 869.93 111.95 28.84 24.51 1.58 0.51

FDRg r-values (two sided) 869.93 111.95 28.84 22.47 1.03 0.48

Selection rule 1 - two sided

BH (one sided) 625.74 62.56 25.12 25.99 2.80 0.52

BH (two sided) 625.74 62.56 25.12 25.71 2.60 0.51

FDRg r-values (one sided) 625.74 62.56 25.12 24.69 1.73 0.51

FDRg r-values (two sided) 625.74 62.56 25.12 22.63 1.13 0.48

1× 10−6

BH (one sided) 287.36 20.99 16.75 16.74 0.51 0.36

BH (two sided) 287.36 20.99 16.75 17.39 0.88 0.37

FDRg r-values (one sided) 287.36 20.99 16.75 17.29 0.78 0.37

FDRg r-values (two sided) 287.36 20.99 16.75 17.13 0.66 0.37

5× 10−8

BH (one sided) 204.14 16.51 13.59 14.19 0.74 0.30

BH (two sided) 204.14 16.51 13.59 14.11 0.67 0.30

FDRg r-values (one sided) 204.14 16.51 13.59 14.01 0.57 0.30

FDRg r-values (two sided) 204.14 16.51 13.59 13.93 0.49 0.30

Table S8: Averaged generalization testing results of MEX associations in CEU in simu-

lations, given by loci, when all SNPs passing the selection rule are followed-up and the

controlled error measure is FDRg. We compare the BH adjustment on the follow-up study

alone with FDRg r-values, both with and without directional control implemented with

one-sided p-values.
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2 Additional data analysis results

2.1 SNPs that generalized in the FDRg directional r-values TC analysis

but were not discovered in HCHS/SOL or GLGC GWAS alone
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2.2 Generalization of total cholesterol SNPs discovered in Europeans -

without SNP pruning

In this analysis we tested all SNPs with p-value< 10−6 in the GLGC GWAS. There were

2.4 million genotyped SNPs with association testing results in Willer et al. (2013), and

5,399 SNPs had p-value< 10−6 and were available in the HCHS/SOL. Of these SNPs 2,418

of the SNPs generalized, which includes the 33 SNPs that were generalized in Analysis A.

In addition, another one of the SNPs reported in Willer et al. (2013) generalized. Other

generalized SNPs were not specifically reported in the papers. However, we defined loci as

1MB regions around the known loci, and found that all SNPs that generalized in Analysis

B where located at loci around reported SNPs. In particular, there were 9 loci in which

the reported SNP did not generalize, but other SNPs did. These generalizations did not

occur in the analysis reported in the main manuscript, in whic these SNPs were not tested.

3 Mathematical derivations

Definition. A stable selection rule satisfies the following condition: for any j ∈ R1,

changing pL
1j so that j is still selected while all other discovery study p-values are held

fixed, will not change the set R1.

Stable selection rules include selecting the hypotheses with two-sided discovery p-values

below a certain cut-off, or by a non-adaptive multiple testing procedure on the discovery

study two-sided p-values such as the BH procedure for FDR control or the Bonferroni

procedure for FWER control, or selecting the k hypotheses with the smallest two-sided
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p-values, where k is fixed in advance.

Theorem 1 Let f00 be the true fraction of the m SNPs investigated in the discovery study

that are null in both studies. The level q directional procedure based on FDRg r-values

in Section 2.1.5 in the manuscript controls the directional FDRg at level at most q if

the following conditions are satisfied: the rule by which the set R1 is selected is a stable

selection rule; l00 ≤ f00; the p-values within the follow-up study are jointly independent

or are positive regression dependent on the subset of p-values corresponding to true null

hypotheses (property PRDS); for SNPs with Hj /∈ {(1, 1), (−1,−1)} the follow-up study

p-values are independent of the discovery study p-values; and in addition one of items 1-3

below is satisfied.

1. The p-values within the discovery study are independent.

2. Arbitrary dependence among the p-values within the discovery study, when in the com-

putation of the FDRg r-values (section 2.1.4 in the main manuscript) m is replaced

by m⇤ = m
Pm

i=1 1/i.

3. Arbitrary dependence among the p-values within the discovery study, and the selection

rule is such that the discovery study p-values of the SNPs that are selected for follow-

up are at most a fixed threshold t ∈ (0, 1), when c1 computed in Step 3(a) is replaced

by

c̃1(x) = max{a : a(1 +

dtm/(ax)�1eX

i=1

1/i) = c1(x)}.

Steps 3(b) and 3(c) remain unchanged. In step 4, the FDR r-value for feature i ∈ R1

is ri = min{x : fi(x) ≤ x} if a solution exists in (0, 1), and one otherwise.
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The implication of item 3 is that for generalization controlling FDRg at level q, if t ≤

c1(q)q/m, no modification is required, so the procedure that declares as generalized all

SNPs with r-values at most q controls the FDRg at level q any type of dependency in the

discovery study. Note that the modification in item 3 will lead to more generalization than

the modification in item 2 only if t < c1(q)q

1+
P

m−1

i=1
1/i

.

From simulation study 2, even if the discovery study p-values are not independent,

the conservative modifications of the r-value computation in items 2-3 are unnecessary for

FDRg control in GWAS.

Theorem 2 The level q directional procedure based on FWERg r-values controls the di-

rectional FWERg at level q if l00 ≤ f00, and if for SNPs with Hj /∈ {(1, 1), (−1,−1)} the

follow-up study p-values are independent of the discovery study p-values.

3.1 Proof of Theorem 1

We first show that the following procedure is identical to that of declaring the set of SNPs

with FDR r-values at most q as generalized. First, compute the number of generalization

claims at level q as follows:

R2 , max

8

<

:

r :
X

j2R1

I



(p01j , p
0

2j) ≤

✓

r

m
c1(q)q,

r

R1
c2q

◆�

= r

9

=

;

.

Next, declare as generalized SNPs the set

R2 =

⇢

j : (p01j , p
0

2j) ≤

✓

R2

m
c1(q)q,

R2

R1
c2q

◆

, j ∈ R1

�

.

It was shown in Lemma S1.1 in Heller et al. (2014), without directional control, that

this procedure is identical to declaring the set of SNPs with FDR r-values at most q as
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generalized. It is straightforward to see that the proof of Lemma S1.1 in Heller et al.

(2014) remains unchanged when the p-values are replaced by (p0
1j , p

0

2j), therefore the above

procedure is identical to that of declaring the set of SNPs with FDRg r-values at most q

as generalized.

We will now prove that under the conditions of items 1-3 of Theorem 1 the directional

procedure based on FDRg r-values controls FDRg at a level which is smaller or equal to

c1(q)c2q
2(|j : Hj ∈ {(−1, 0), (1, 0), (0, 0)}|)/m+

c1(q)q|j : Hj ∈ {(0, 1), (0,−1), (−1,−1), (1, 1), (−1, 1), (1,−1)}|/m+

c2qE[|R1 ∩ {j : Hj ∈ {(−1, 0), (1, 0), (−1, 1), (1,−1), (0, 1), (0,−1), (0, 0)}|/|R1|],

(1)

where the cardinalities are over the sets containing all m SNPs, i.e. j = 1, . . . ,m. Note

that this expression is at most q if l00 ≤ f00. To see this, note that

|j : Hj ∈ {(−1, 0), (1, 0), (0, 0)}|/m = f
·0,

and

|j : Hj ∈ {(0, 1), (0,−1), (−1,−1), (1, 1), (−1, 1), (1,−1)}|/m = 1− f
·0.

Moreover,

E[|R1 ∩ {j : Hj ∈ {(−1, 0), (1, 0), (−1, 1), (1,−1), (0, 1), (0,−1), (0, 0)}|/|R1|] ≤ 1.
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Therefore, expression (1) is at most

c1(q)c2q
2f·0 + c1(q)q(1− f·0) + c2q

= c1(q)q − f·0c1(q)q(1− c2q) + c2q

≤ c1(q)q − l00c1(q)q(1− c2q) + c2q

= c1(q)q[1− l00(1− c2q)] + c2q

= (1− c2)q + c2q = q.

We will now prove that the expression in (1) is an upper bound for FDRg, which is

E

✓

R− S

max(R, 1)

◆

=

X

{j:Hj2{(0,�1),(0,1),(0,0),(1,0),(�1,0),(1,�1),(�1,1)}}

E

 

RL
j +RR

j

max(R, 1)

!

+

X

{j:Hj=(1,1)}

E

 

RL
j

max(R, 1)

!

+
X

{j:Hj=(�1,�1)}

E

 

RR
j

max(R, 1)

!

. (2)

For each j ∈ {1, . . . ,m}, we define C
(j)
r as the event in which if j is declared generalized,

r hypotheses are declared generalized including j, which amounts to the definition given

in the proof of Theorem 1 in Supplementary Material of Heller et al. (2014), where the

one-sided p-values (p1j , p2j) are replaced by (p01j , p
0

2j). Note that for any given realization

of |R1| and value of r such that r > |R1|, C
(j)
r = ∅.

From the equivalent procedure above we get the following equality,

E

 

RL
j

max(R, 1)

!

=

m
X

r=1

1

r
Pr

✓

j ∈ R1, P
L
1j ≤ min

✓

rc1(q)q

m
, 0.5

◆

, PL
2j ≤

rc2q

max(|R1|, 1)
, C(j)

r

◆

≤

m
X

r=1

1

r
Pr

✓

PL
1j ≤

rc1(q)q

m
, PL

2j ≤ c2q, C
(j)
r

◆

, (3)
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where the equality follows from the fact that a generalization claim is made in the left

direction only if PL
1j ≤ PR

1j , i.e. only if PL
1j < 0.5. Similarly,

E

 

RR
j

max(R, 1)

!

≤

m
X

r=1

1

r
Pr

✓

PR
1j ≤

rc1(q)q

m
, PR

2j ≤ c2q, C
(j)
r

◆

. (4)

Using inequalities (3) and (4), and the facts that PL
1j and PR

1j are uniform for j ∈ {j : H1j =

0} and are stochastically larger than uniform for j ∈ {j : H1j = 1} and j ∈ {j : H1j = −1}

respectively, we obtain the following inequalities:

E

 

RL
j

max(R, 1)

!

≤

8

>

>

>

>

>

<

>

>

>

>

>

:

c1(q)q/m if Hj ∈ {(0,−1), (1,−1), (1, 1)},

c2qE[I(j ∈ R1)/|R1|] if Hj ∈ {(−1, 0), (0, 1), (−1, 1)},

c1(q)c2q
2/m if Hj ∈ {(0, 0), (1, 0)},

E

 

RR
j

max(R, 1)

!

≤

8

>

>

>

>

>

<

>

>

>

>

>

:

c1(q)q/m if Hj ∈ {(0, 1), (−1, 1), (−1,−1)},

c2qE[I(j ∈ R1)/|R1|] if Hj ∈ {(1, 0), (0,−1), (1,−1), (0, 0)},

c1(q)c2q
2/m if Hj ∈ {(−1, 0)}.

These upper bounds for items 1-3 of Theorem 1 follow from similar derivations to these

given in the proof of items (i)-(iii) of Theorem 1 in Heller et al. (2014), respectively.

Specifically, for each of the items, the upper bounds c1(q)q/m, c2qE[I(j ∈ R1)/|R1|] and

c1(q)c2q
2/m are derived similarly to inequalities [S3], [S4], and [S5] in the proof of Theorem

1 in Heller et al. (2014), respectively. Thus we obtain

E

 

RR
j +RL

j

max(R, 1)

!

≤

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

c2qE[I(j ∈ R1)/|R1|] + c1(q)c2q
2/m if Hj = (0, 0),

c2qE[I(j ∈ R1)/|R1|] + c1(q)c2q
2/m if Hj ∈ {(1, 0), (−1, 0)},

c1(q)q/m+ c2qE[I(j ∈ R1)/|R1|] if Hj ∈ {(0, 1), (0,−1)},

c2qE[I(j ∈ R1)/|R1|] + c1(q)q/m if Hj ∈ {(1,−1), (−1, 1)},
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and for the directional error terms:

E

 

RL
j

max(R, 1)

!

≤
c1(q)q

m
, for j with Hj = (1, 1)

E

 

RR
j

max(R, 1)

!

≤
c1(q)q

m
, for j with Hj = (−1,−1).

The result follows from using expression (2) for FDRg, and summing up over the above

upper bounds.

3.2 Proof of Theorem 2

It is easy to show that the procedure in Section 2.1.5 of the main manuscript is unchanged if

we replace Step 2 by the following: all SNPs with fFWER
j (q) ≤ q are declared generalized.

The equivalence follows from the facts that fFWER
j (x) is a continuous function of x and

fFWER
j (x)/x is strictly monotone decreasing (this result follows from the proof of Lemma

S1.1 in the SI of Heller et al. (2014) and it is straightforward to show that it continues to

hold in the directional generalization analysis).

We will now prove that the expression in (1) with q replaced by α is an upper bound

for the directional FWERg, which is Pr(R−S > 0). It was shown in the proof of Theorem

1 that this expression is at most α if l00 ≤ f00. Note that

Pr(R− S > 0) ≤ E(R− S) ≤
X

{j:Hj=(1,1)}

E(RL
j ) +

X

{j:Hj=(−1,−1)}

E(RR
j )

+
X

{j:Hj∈{(0,−1),(0,1),(0,0),(1,0),(−1,0),(1,−1),(−1,1)}}

E(RR
j +RL

j ).

We consider the procedure that replaces Step 2 by declaring SNPs with fFWER
j (α) ≤ α

as generalized (as discussed above). The directional error terms (declaring that a SNP
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association is generalized in one direction, when in fact the association is in the other

direction) in the first two sums above are bounded by:

E
�

RL
j

�

≤
c1(α)α

m
, for j with Hj = (1, 1)

E
�

RR
j

�

≤
c1(α)α

m
, for j with Hj = (−1,−1)

These bounds hold since (without loss of generality), for j with Hj = (1, 1)

E
�

RL
j

�

≤ Pr(PL
1j ≤ min(c1(α)α/m, 0.5), PL

2j ≤ c2α/R1)

≤ Pr(PL
1j ≤ c1(α)α/m) ≤ c1α/m,

where the first inequality follows from the fact that a generalization claim is made in the

left direction only if PL
1j ≤ PR

1j , i.e., only if PL
1j < 0.5, and the last inequality follows that

the fact that for H1j = 1, PL
1j is stochastically larger than uniform.

All remaining errors are false generalization claims that are not directional errors.

Clearly,

E(RR
j +RL

j ) = Pr(min(PL
1j , P

R
1j) ≤ c1(α)α/m,P 0

2j ≤ c2α/|R1|, j ∈ R1).

It is simple to show (using similar derivations to these in the proof of Theorem S6.1 in the

SI of Heller et al. (2014)) that the right hand side is at most the following upper bounds:

E(RR
j +RL

j ) ≤

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

c2αE[I(j ∈ R1)/|R1|] + c1(α)α/m× c2α if Hj = (0, 0),

c2αE[I(j ∈ R1)/|R1|] + c1(α)α/m× c2α if Hj ∈ {(1, 0), (−1, 0)},

c1(α)α/m+ c2αE[I(j ∈ R1)/|R1|] if Hj ∈ {(0, 1), (0,−1)},

c2αE[I(j ∈ R1)/|R1|] + c1(α)α/m if Hj ∈ {(1,−1), (−1, 1)}.

The result follows from summing over these upper bounds.
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