
A Practical Algorithm for Constructing Oblivious Routing
Schemes

Marcin Bienkowski
∗

International Graduate School
of Dynamic Intelligent Systems

Paderborn University,
Germany

young@upb.de

Miroslaw Korzeniowski ∗
International Graduate School
of Dynamic Intelligent Systems

Paderborn University,
Germany

rudy@upb.de

Harald Räcke
†

Heinz Nixdorf Institute and
Institute for Computer Science

Paderborn University,
Germany

harry@upb.de

ABSTRACT
In a (randomized) oblivious routing scheme the path chosen
for a request between a source s and a target t is independent
from the current traffic in the network. Hence, such a scheme
consists of probability distributions over s− t paths for every
source-target pair s, t in the network.

In a recent result [11] it was shown that for any undirected
network there is an oblivious routing scheme that achieves a
polylogarithmic competitive ratio with respect to congestion.
Subsequently, Azar et al. [4] gave a polynomial time algo-
rithm that for a given network constructs the best oblivious
routing scheme, i.e. the scheme that guarantees the best
possible competitive ratio. Unfortunately, the latter result is
based on the Ellipsoid algorithm; hence it is unpractical for
large networks.

In this paper we present a combinatorial algorithm for
constructing an oblivious routing scheme that guarantees
a competitive ratio of O(log4 n) for undirected networks.
Furthermore, our approach yields a proof for the existence of
an oblivious routing scheme with competitive ratio O(log3 n),
which is much simpler than the original proof from [11].

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Routing and

∗Partially supported by DFG-Sonderforschungsbereich 376
“Massive Parallelität: Algorithmen Entwurfsmethoden An-
wendungen”
†Partially supported by DFG-Sonderforschungsbereich 376
“Massive Parallelität: Algorithmen, Entwurfsmethoden An-
wendungen” and by the IST Programme of the EU under
contract number IST-1999-14186 (ALCOM-FT)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’03, June 7–9, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-661-7/03/0006 ...$5.00.

layout ; G.2.1 [Discrete Mathematics]: Combinatorics—
Combinatorial algorithms; G.2.2 [Discrete Mathematics]:
Graph Theory—Graph algorithms, Network problems, Path
and circuit problems, Trees

General Terms
Algorithms, Theory

1. INTRODUCTION
Efficient routing protocols for unstructured network topolo-
gies have become more and more important in recent years,
because of the dramatic growth of the Internet, and the in-
creasing popularity of e.g. ad-hoc networks and networks of
workstations. A routing algorithm for such networks should
be simple in order to enable quick routing decisions; it should
be distributed in order to work efficiently in large networks,
and it should be online in order to deal with various traffic
patterns.

In this paper we focus on the problem of online virtual cir-
cuit routing in which routing requests, consisting of a source
and a target node, arrive online and a routing algorithm has
to select a path in the network that connects the source and
the target node for each request. The goal is to minimize the
congestion, i.e. the maximum load of a network link, where
the load of a link is the amount of data transmitted by the
link divided by the link-capacity.

One approach towards online routing in networks is to
route obliviously, i.e. without any knowledge of the current
state of the network. For an oblivious algorithm the path
chosen for a request may only depend on the source node,
the target node and on some random input if randomiza-
tion is allowed. Therefore, an oblivious algorithm meets all
the criteria described above. It is simple, because routing
paths can be realized via a lookup in a routing table; it is
distributed, since all routing decisions can be made locally
and it is online, since it does not require preprocessing.

In a recent result [11] it was shown that for any undirected
network, there exists an oblivious routing algorithm that
achieves a competitive ratio of O(log3 n) with respect to
congestion, where n denotes the number of nodes in the graph.
This result is non-constructive, i.e. the question whether
such an oblivious algorithm can be found in polynomial time
remained open.

This question was subsequently addressed by Azar et. al [4]
who have shown that the optimal oblivious routing scheme,

i.e., the scheme that guarantees the best possible competitive
ratio, can be constructed in polynomial time.

In this paper we present a constructive version of the
results in [11] that guarantees a competitive ratio ofO(log4 n).
While this algorithm guarantees a weaker bound than the
polytime algorithm of [4] it has the following advantages.

The algorithm in [4] is based on linear programming with
an infinite number of constraints. Therefore, it uses the
Ellipsoid algorithm with a separation oracle to compute the
solution. This approach is unpractical for large networks.

A second important difference to the work in [4] lies in
the structure of the resulting oblivious routing scheme. Our
algorithm follows the approach of [11] and constructs a hier-
archical decomposition of the network that then can be used
to define the oblivious routing scheme. As shown in [9] and
[11] this hierarchical decomposition can be used to solve other
important problems in the area of distributed computing,
as e.g. multicast routing and data management problems.
Furthermore, Maggs et al. [10] have shown most recently
that the decomposition can be used as a preconditioner for
solving sparse linear systems. Hence, our work does not
only give an efficient construction of an oblivious routing
scheme but also gives a constructive vesion for all the above
problems, that depend on the hierarchical decomposition.

Finally, an important contribution of this work is that it
enormously simplifies the proofs in [11].

1.1 Related work
Rhagavan and Thompson [12] have shown that the of-

fline version of the virtual circuit routing problem can be
solved via a concurrent multicommodity flow problem. By
applying randomized rounding to the solution of the CMCF-
problem they get a virtual circuit routing algorithm that
well approximates the lowest possible congestion.

In the online setting Aspnes et al. [1] presented an al-
gorithm that achieves a competitive ratio of O(logn) w.r.t.
congestion. This algorithm is based on the use of an expo-
nential cost function. Each edge e is assigned a length that
is exponential in the current load of e. If a routing request
occurs the algorithm chooses a shortest path between source
and destination with respect to the length assigned to the
edges. The competitive ratio of this algorithm is optimal due
to a lower bound provided in the same paper. The drawback
of this algorithm is that it is centralized and it serializes the
routing requests.

Awerbuch and Azar [3] gave a distributed algorithm that
repeatedly scans the network so as to choose the routes.
Unfortunately, this algorithm requires shared variables on
the edges of the network and hence is hard to implement.

All above algorithms are adaptive. In [13] Valiant and
Brebner considered oblivious routing on specific network
topologies and designed an efficient randomized oblivious
routing algorithm for the hypercube. Later, Borodin and
Hopcroft [5] and subsequently Kaklamanis et al. [7] have
shown that randomization is required for efficient oblivious
algorithms, since deterministic algorithms cannot well ap-
proximate the minimal possible congestion on any non-trivial
network.

Independently from our work Harrelson et al. [6] gave a
construction of a hierarchical decomposition that guarantees
better bound on the competitive ratio than our result.

2. PRELIMINARIES

We model the network as a complete weighted undirected
graph G with node set V . We use n to denote the cardinality
of V , i.e. |V | = n. Network links are represented via a weight
function c : V × V → R+

0 that for a pair of nodes describes
the link-capacity between these nodes. If c(u, v) = 0 for two
nodes u and v, then there is no link between these nodes in
the physical network. Note that the graph G is undirected
which means that we assume c(u, v) = c(v, u) for any two
nodes u, v ∈ V . Furthermore, we assume that the weight
function c is normalized, i.e. the minimum nonzero capacity
of a link is 1. We denote the maximum capacity of a network
link with cmax.

We define a function cap : 2V × 2V → R+
0 which for two

subsets X,Y ⊆ V describes the total link-capacity that is
available between nodes of X and nodes of Y . It is defined
as follows:

cap(X,Y) :=
X

x∈X,y∈Y

c(x, y) .

For a set X ⊆ V we denote the total capacity of edges leaving
set X in G with out(X) = cap(X,X), where X := V \X.

A randomized oblivious routing scheme consists of a prob-
ability distribution over s-t paths for each source-target pair
s, t. Equivalently, such a probability distribution can be
viewed as a unit flow between s and t.

We assume that our oblivious algorithm may route frac-
tionally, i.e. a routing request of demand d between s and t
may be fulfilled via a flow of value d between s and t, and
is not restricted to use only a single path. The results of
Rhagavan and Thompson [12] show that fractional routing
and the method of probabilistically choosing a fixed path,
where the probability that a path is chosen corresponds to
the flow in the fractional routing are nearly equivalent.

Since we use fractional routing we can neglect individual
routing requests and only need the total demand between
every source-target pair to specify the communication load
induced by a routing algorithm. This is done via a demand
matrix D which is an n× n nonnegative matrix where the
diagonal entries are 0.

For a given routing algorithm and a demand matrix we
define the (absolute) load of a link as the total amount of
data transmitted by the link. The relative load of a link is
defined to be its load divided by its capacity. Finally, we
define the congestion to be the maximum over the relative
loads of all links in the network.

Suppose that ds,t denotes the total demand of all routing
requests between s and t. The load induced by an oblivious
algorithm on an edge e is given by

P
s,t ds,t ·flows,t(e), where

flows,t : V × V → R+
0 denotes the unit flow between s

and t, used in the oblivious routing scheme. This fixes
the congestion, as well. The optimal congestion that can
be achieved for a given demand matrix D can be simply
computed via a concurrent multicommodity flow problem.

Let opt(D) and obl(D) denote the congestion achieved for
demand matrix D, by an optimal algorithm and by a given
oblivious routing scheme, respectively. The competitive ratio

of an oblivious algorithm is defined as supD{
obl(D)
opt(D)

}. We

will show how to construct an oblivious routing scheme with
a competitive ratio of O(log4 n).

2.1 The hierarchical decomposition
Our oblivious routing scheme depends on a hierarchical

decomposition of the network which is defined as follows. A

a

b

c
d

e

f
g

h

i

j

level 0

level 1

level 2

level 3

a b e h i j

f g

c d

Figure 1: A hierarchical decomposition of a graph and the associated decomposition tree. Small circles in
the right figure correspond to blue vertices and large circles correspond to red vertices.

hierarchical decomposition H of the graph G is a set system
over the universe V that has the following properties

• H is laminar, i.e. for two subsets X,Y ∈ H either
X \ Y , Y \X or X ∩ Y is empty.

• H contains V and all sets {v}, v ∈ V .

Given a hierarchical decomposition H of G we construct
a decomposition tree TH = (Vt, Et). The node set Vt =
V B

t] V R
t of the tree consists of a set V B

t of blue nodes and
a set V R

t of red nodes that are defined as follows. For each
set H 6= V from the laminar system H the tree contains two
nodes rt ∈ V R

t and bt ∈ V B
t . We call H the set or cluster

corresponding to rt and bt. Further, rt and bt are called the
red node and blue node, respectively, corresponding to cluster
H. For H = V the tree contains only a red node but no blue
one.1

In the following the cluster corresponding to a node vt ∈ Vt

will be denoted with Hvt . A red node rt and a blue node bt
in TH are connected if Hbt ⊆ Hrt and if there is no H ∈ H
such that Hbt (H (Hrt . Note that by this definition TH
is indeed a tree, since H is a laminar system. We assume TH
to be rooted at the node corresponding to the cluster V , that
contains all nodes in the network. By this definition the root
and the leaves of TH are red nodes and the leaves correspond
to sets {v}, v ∈ V , i.e. there is a one-to-one relation between
the nodes of G and the leaf nodes of TH.

We define levels for nodes and edges in TH, as follows. The
level of a node vt of TH is defined as the number of red nodes
on the path from vt to the root, not counting vt. The level
of an edge (rt, bt) ∈ Et is defined as the level of the red node
rt of the edge. Further, we define the level of a cluster H of
the laminar system as the level of a corresponding node in
TH. (Note that both nodes corresponding to H are on the
same level.) Finally, we say that an edge e of G is cut on
level ` ≥ 1 if both endpoints of e are contained in the same
level ` − 1 cluster but in different level ` clusters. We use
level(e) for an edge e ∈ E to denote the level on which e is
cut. Figure 1 gives an example of a complete laminar system
and the corresponding decomposition tree.

1Note that this definition of a decomposition tree substan-
tially differs from the definition used in [11], since a cluster
of the set system may correspond to several tree nodes and
not only to one. The new definition may seem unnatural but
it will turn out that it will help us to simplify the proof of
the competitive ratio of the oblivious routing scheme.

3. THE ROUTING SCHEME
The oblivious routing scheme that for each pair u, v of

nodes in V defines a unit flow between u and v is based on
the solution of a certain concurrent multicommodity flow
problem (CMCF-problem) for each cluster of the hierarchical
decomposition H. In order to specify these CMCF-problems
we first define a weight function w` : 2V → R+

0 for each level
` ∈ {0, . . . , height(TH)} as follows:

w`(X) :=
X

e∈X×V
level(e)≤`

c(e) .

Informally speaking, the weight function w`(X) counts for
a subset X, the capacity of all edges that are adjacent to
nodes in X and are cut before, or at level ` in the hierarchical
decomposition. The following properties of w` will be used
intensively throughout the paper. First of all w` is additive,
i.e. for a set X = X1] X2, w`(X) = w`(X1) + w`(X2).
Furthermore, for a level ` cluster Hvt we have w`(Svt) =
out(Svt). Finally, w`−1(X) ≤ w`(X) holds for any ` ∈
{1, . . . , height(TG)}.

The CMCF-problem for a level ` cluster Hvt of the de-
composition tree is defined as follows. There are |Hvt |2
commodities du,v for u, v ∈ Hvt . The source for commodity
du,v is u, its sink is v and its demand is

dem(u, v) :=
w`+1(u) · w`+1(v)

w`+1(Hvt)
.

We solve the CMCF-problem in the cluster Hvt , i.e. the flow
is restricted to use only links inside Hvt and has to respect
the link-capacities, i.e. the flow that traverses an edge must
be smaller than the capacity of that edge. The throughput
fraction of a solution to a CMCF-problem is the minimum,
over all commodities, of the fraction of the commodity’s
demand that is actually met by the solution.

The following theorem shows that there is a good oblivious
routing scheme if all CMCF-problems can be solved with a
large throughput fraction.

Theorem 1. Let qmin denote the minimum throughput
fraction that is achieved for the CMCF-problem of a cluster
of the hierarchical decomposition H. Further, let h denote the
height of TH. Then there is an oblivious routing scheme with
competitive ratio O(h/qmin). This scheme can be constructed
in polynomial time.

Proof. We first describe the oblivious routing scheme.
Let s, t ∈ V be a source-target pair. We construct a unit flow
from s to t, as follows. The flow paths are chosen according
to the path in TH between the nodes that correspond to {s}
and {t}. Let v1, . . . , vr denote the tree nodes on this path
and let `(i) denote the level of node vi.

Initially all the flow starts in s, i.e. in the only node
contained in Hv1 . Then the flow is first distributed among
the nodes in Hv2 ; then it is distributed among nodes in Hv3

and so on, until it is distributed among nodes in Hvr = {t},
so that all flow reaches the target t. The distribution of the
flow among nodes in cluster Hvi is not uniform but depends
on the level of vi and on its color. If vi is a blue node, then
a node u ∈ Hvi receives a fraction of w`(i)(u)/w`(i)(Hvi)
of the flow and if vi is a red node, u receives a fraction of
w`(i)+1(u)/w`(i)+1(Hvi).

The intuition behind these values is as follows. If vi is
a blue node then the flow is distributed according to the
weight of edges that leave or enter cluster Hvi . (Recall that
w`(i)(Hvi) counts the capacity of all edges that leave Hvi .)
This is reasonable because the flow sent to vi has either just
entered cluster Hvi or is going to leave this cluster in the
next step. (For a flow that does not have to leave or enter
Hvi , either s, t /∈ Hvi or s, t ∈ Hvi must hold. In the first
case the flow would not be routed to vi. In the second case vi

would be the node with the lowest level on the path from v1
to vr. This is a red node.) In both cases it seems a good idea
to store the flow somehow close to the edges that connect
Hvi to the rest of the graph.

If vi is a red node the flow distribution is done according
to the weight of edges that leave or enter the sub-clusters
of Hvi . In the case that the flow is at a red node vi it
either has to enter a sub-cluster of Hvi in the next step, or
it has to leave Hvi . It will turn out that the first case is
more critical for deriving a good bound on the competitive
ratio. Therefore the flow is distributed according to the edges
leaving sub-clusters of Hvi .

Let fi(u) denote the fraction of flow received by node
u in cluster Hvi . The transition from the distribution for
cluster Hvi to the distribution for cluster Hvi+1 is done as
follows. Let rt denote the red node from {vi, vi+1}. A node
u ∈ Hvi sends a fraction of fi(u) · fi+1(v) to node v ∈ Hvi+1

using the flow paths of commodity du,v from the definition of
the multicommodity flow problem of cluster Hrt . Obviously
this transforms the flow distribution of Hvi into the flow
distribution of Hvi+1 since the total flow sent to v will be
fi+1(v).

Now, we argue that this oblivious routing scheme has a
competitive ratio of O(h/qmin). Suppose that we are given
routing demands between source-target pairs such that the
congestion when routing these demands optimally, is 1. We
show that the congestion when using the oblivious routing
scheme described above is only O(h/qmin).

Fix an edge e ∈ E and a level `. Let rt denote a red
level ` node of TH and let d denote the degree of rt. We
denote the children of rt in TH with bi, i ∈ {1, . . . , d} and
the father with bt. We are interested in the load Lrt(e)
that is created by the oblivious routing scheme on edge e
for transforming distributions between Hrt and clusters Hbt

and Hbi , i ∈ {1, . . . , d}. Obviously this load is 0 if e is not
contained in cluster Hrt , since in this case the corresponding
CMCF does not use edge e. Therefore, let in the following
rt denote the level ` node such that e is contained in Hrt if

such a node exists. We will bound Lrt(e) by the following
claim.

Claim 2. For each edge e ∈ E, Lrt(e) = O(1/qmin).

Proof. First consider load created between clusters Hrt

and Hbt . The flow that is sent between u ∈ Hrt and v ∈ Hbt

is at most

flow(u, v) :=

„
w`+1(u)

w`+1(Hrt)

«
·
„

w`(v)

w`(Hbt)

«
· out(Hrt) . (1)

This holds since (
w`+1(u)

w`+1(Hrt)
) is the fraction of the total flow

that resides in u according to the distribution on cluster

Hrt and (w`(u)
w`(Hbt

)
) is the corresponding term for v in cluster

Hbt . Furthermore all flow that is sent between clusters Hrt

and Hbt corresponds to demands between source-target pairs
s, t for which exactly one node of s, t is contained in Hrt .
Therefore the value of this flow is at most out(Hrt) since an
optimal algorithm can route the demands with congestion 1.
(This would not be possible if the flow that needs to leave
or enter Hrt was be larger than out(Hrt).)

We can utilize w`(Hbt) = out(Hrt) and w`(v) ≤ w`+1(v)

in Equation 1 and we get that flow(u, v) ≤ w`+1(u)·w`+1(v)

w`+1(Hrt)
≤

dem(u, v), where dem(u, v) is the demand between u and v in
the CMCF-problem for Hrt . Since the flow is sent according
to the CMCF, the load for an edge e will be at most 1/qmin.

Now, we consider load created for sending flow between
cluster Hrt and clusters Hbi , i ∈ {1, . . . , d}. The flow that
is sent between u ∈ Hrt and v ∈ Hbi is at most

flow(u, v) :=

„
w`+1(u)

w`+1(Hrt)

«
·
„
w`+1(vi)

w`+1(Hbi)

«
· out(Hbi) .

Since w`+1(Hbi) = out(Hbi) (bi is on level `+ 1) we get that
also in this case flow(u, v) ≤ dem(u, v). Therefore the load
on edge e due to this flow will be at most 1/qmin. Altogether
this yields the claim.

Since each edge is contained in at most h different clusters,
the theorem follows from the above claim.

4. CONSTRUCTION OF THE DECOMPO-
SITION

In this section we show that for any graph G = (V,E) we
are able to construct a hierarchical decomposition H, such
that the height of the corresponding decomposition tree TH
is O(logn) and in each cluster H ∈ H the CMCF-problem
has a throughput fraction of at least Ω(1/ log3 n). This yields
an oblivious routing scheme for graph G which is O(log4 n)-
competitive with respect to congestion. Furthermore we
show that this construction can be done in polynomial time
with respect to cmax and the number of nodes in the graph
G.

In order to formally define our construction algorithm we
need some notation. Consider any set of nodes X ⊆ V and
a concurrent multicommodity flow problem on X. A cut
in the subgraph induced by X is a partition of X into two
subsets A and B = X \ A. The sparsity of a cut (A,B)

is defined as cap(A,B)
dem(A,B)

, where dem(A,B) is the demand of

the CMCF-problem that is separated by the cut, i.e. the
sum over all demands of commodities for which sources and
destinations lie in different parts of the cut.

Clearly, the sparsity of a cut in X places an upper bound
on the throughput fraction of the corresponding multicom-
modity flow problem. Let σ denote the maximum possible
ratio between the throughput fraction of a CMCF-problem
and the sparsity of an approximate sparsest cut on G, com-
puted by a suitable algorithm. For general graphs there exist
approximation algorithms such that σ = O(logn) and for
planar graphs there are algorithms with σ = O(1) (see [2]
and [8]).

Denoting the throughput fraction of the CMCF-problem
with q, we obtain that there exists a cut (A,B) such that

cap(A,B)

dem(A,B)
≤ σ · q .

Furthermore, such a cut can be constructed in polynomial
time with respect to |X|. Let φ denote the minimum sparsity
of a cut. Then cap(A,B)/dem(A,B) ≤ σ · φ. Therefore we
call (A,B) an approximate sparsest cut.

For the remainder of the section we define λ = 64 ·σ · logn
and qmin = 1/(24 · σ · λ). We say that a cluster H fulfills the
throughput property if the solution to the CMCF-problem in
H has a throughput fraction of at least qmin. Notice that
qmin = Ω(1/(logn · σ2)) = Ω(1/ log3 n).

In the following we describe an algorithm for partitioning
a single level ` cluster H. If we partition H into subclusters
then the function w`+1(·) is well defined over the subsets
of H and so is the CMCF-problem in the cluster H. By
appropriate partitioning our algorithm tries to ensure that
H fulfills the throughput property. If this is possible we
can apply our algorithm to the set V and then recursively
to the computed subclusters. This yields a hierarchical
decomposition H of graph G that consists of clusters in which
the solution to the CMCF-problem has a sufficiently large
throughput fraction. Additionally the algorithm ensures that
the size of each subcluster of an input cluster H is at most a
constant fraction of the size of H. Thus, the height of the
decomposition tree TH is at most logarithmic. Furthermore,
the algorithm runs in polynomial time.

An important difficulty of this approach is that it turns
out that not every subset H of V can be partitioned into
subclusters such that the corresponding CMCF-problem on
H fulfills the throughput property. To ensure that such a
partitioning is possible, we need an additional precondition
that has to be fulfilled by an input set for the algorithm.
This precondition is as follows.

Definition 3. A level ` cluster H fulfills the precondition
if for all sets U , such that |U | ≤ 3

4
|S| the following condition

holds:

λ · cap(U,H \ U) ≥ w`(U) .

Now we can formally describe the properties of the algorithm.

Lemma 4. Let H be a level ` cluster, which contains at
least two vertices and fulfills the precondition. Then it is
possible to partition H into disjoint subclusters Hi with the
following characteristics:

1. H fulfills the throughput property.

2. For each subcluster Hi we have |Hi| ≤ 2
3
· |H|.

3. Each subcluster Hi fulfills the precondition.

Moreover this partitioning can be done in polynomial time
with respect to |H| and cmax, where cmax denotes the maxi-
mum capacity of a network link.

Now, we first argue that the algorithm characterized by the
above lemma yields the construction of the hierarchical de-
composition H. First we apply the algorithm to the set V
which is the only cluster on level 0 of the decomposition
tree. V fulfills the precondition, because w0(V) = 0. The
algorithm returns a partitioning of V that defines the func-
tion w1(·) and yields the level 1 clusters which fulfill the
precondition. We apply the algorithm recursively to all these
clusters until we get singleton sets {v}, v ∈ V . By Property 1
our algorithm ensures that for each cluster the corresponding
CMCF-problem has a good throughput fraction. Further, the
height of the decomposition tree TH is logarithmic because
of Property 2 of the lemma. Since the number of all clusters
on a single level of the decomposition tree is at most n, the
number of clusters in the hierarchy H is at most O(n · logn).
Therefore the total construction time is also polynomial with
respect to cmax and n.
In the rest of this section we present our construction algo-
rithm.

Proof of Lemma 4. The algorithm for partitioning a
set H according to the requirements of Lemma 4 uses a
subroutine that is described in the proof of the following
lemma.

Lemma 5. It is possible to partition any set R ⊆ V into
disjoint sets Ri, such that each Ri fulfills the precondition
and

P
i out(Ri) ≤ 2 out(R). Moreover, this partitioning can

be computed in polynomial time with respect to |R|.

Proof. We use the algorithm AssurePrecondition de-
scribed in Figure 2. The algorithm works as follows. We
start with a partition that contains only R. In each iter-
ation we consider each set Ri of the current partitioning
PR. We define a concurrent multicommodity flow problem
G with demands dem(u, v) = w`(u)/|Ri| for each ordered
pair u, v ∈ Ri. Then we compute (A,B) – an approximate
sparsest cut of Ri. Let ψ denote the sparsity of this cut, i.e.,

ψ = cap(A,B)/
“
|B|
|Ri|

· w`(A) + |A|
|Ri|

· w`(B)
”
. If ψ ≤ 4σ

λ
,

then Ri is replaced by A and B in the current partitioning
PR. We proceed until the sparsity of the computed approxi-
mate cut for each Ri is greater than 4σ

λ
. For simpler notation

we denote the term 4σ
λ

with Λ further on.
The algorithm runs in polynomial time because the number

of iterations is bounded by |R| and each iteration runs in
polynomial time.

First we prove that after this algorithm has finished, each
set Ri from the partitioning of R fulfills the precondition.
Assume for contradiction that there exists a set Ri and
U ⊆ Ri such that |U | ≤ 3

4
|Ri| and λ ·cap(U,Ri \U) < w`(U).

Let φ denote the sparsity of the sparsest cut for G(Ri). We
derive a bound on φ and thus also on the sparsity of the
approximate sparsest cut ψ computed by the algorithm.

λ · cap(U,Ri \ U) < w`(U)

≤ 4
|Ri \ U |
|Ri|

· w`(U)

≤ 4

„
|Ri \ U |
|Ri|

w`(U) +
|U |
|Ri|

w`(Ri \ U)

«

AssurePrecondition (R)

PR := {R}
do

for each Ri ∈ PR do

compute (A,B) - an approximate sparsest cut for G(Ri)
ψ := sparsity of the cut (A,B)

if ψ ≤ 4σ
λ

then

PR := PR \ {Ri}
PR := PR ∪ {A,B}

until we made no changes to PR in this iteration
return PR

Figure 2: The algorithm AssurePrecondition

This gives that the sparsity of the cut (U,R \ U) is at
most 4/λ. Therefore we get ψ ≤ σ · φ ≤ 4σ/λ which is a
contradiction, since in this case the algorithm would have
divided Ri. Hence, each set Ri ∈ PR fulfills the precondition.

To prove that
P

i out(Ri) ≤ 2 out(R) we consider a di-
rected weighted graph H with node set VH whose vertices
correspond to edges of G leaving a partition Ri in the current
partitioning PR. For simpler notation, let RH ⊆ VH denote
the set of nodes of H that represent edges which have exactly
one endpoint in R, i.e. edges that contribute to out(R).

The edges of H will model the fact that newly introduced
capacity is amortized against already existing capacity. In
the following, we define the set of edges of H more precisely.
Consider a step of the algorithm in which a set Ri is divided
into sets A and B. Such a step increases the capacity of
edges that leave partitions of PR by the capacity of edges
between A and B, i.e., 2 cap(A,B). (Each edge is counted
twice since it leaves two partitions of PR.) For each such
edge we introduce a new vertex in H. We want to derive a
bound on the total capcity that is added to H. Therefore
we amortize the newly created capacity 2 cap(A,B) against
the capacity out(Ri).

Let EA = A × Ri and EB = B × Ri denote the set of
edges that have one endpoint outside Ri and the other in A
and B, respectively. (EA ∪ EB contains all edges that leave
the set Ri.) In order do describe our amortization scheme
we introduce the following notion. We say that the edges
from EA ∪EB pay for the new edges from A×B. We define
for each pair of edges e ∈ A× B and e′ ∈ EA ∪ EB a price
pay(e′, e) that describes the amount that is paid by edge e′

for edge e. We require that for each edge e ∈ A×B it holds
that X

e′∈EA∪EB

pay(e′, e) ≥ 2c(e) ,

i.e., we pay enough for edge e.
We model this payment in the graph H via a directed

edge from ve′ to ve that is weighted with pay(e′, e). Then
the above requirement simply states that for each node
ve ∈ VH \RH (a node that is added to H during the running
time of AssurePrecondition), the weight of incoming
edges must be at least as large as two times the weight of
ve, i.e., c(e).

The exact definition of the function pay(·, ·) is as follows.
For an edge ea ∈ EA we define

pay(ea, e) := 2Λ · c(e)

cap(A,B)
· |B||Ri|

· c(ea),

and for an edge eb ∈ EB we define

pay(eb, e) := 2Λ · c(e)

cap(A,B)
· |A||Ri|

· c(eb) .

In order to simplify our notation we extend the function
pay(·, ·) to vertices of H, i.e. for two vertices ve, ve′ ∈ VH

that correspond to edge e, e′ ∈ V ×V we define pay(ve′ , ve) =
pay(e′, e) which describes the weight of edge (ve′ , ve) ∈ EH .

The following claim shows that by the above definition we
pay enough for new edges.

Claim 6. ∀ve ∈ VH \RH :
P

v∈VH
pay(v, ve) ≥ 2c(e).

Proof. Let e denote an edge that is created when parti-
tioning a set Ri into A and B. We can estimate the incoming
edges of ve byX

v∈VH

pay(v, ve) =
X

e′∈EA∪EB

pay(ve′ , ve)

=
X

ea∈EA

pay(vea , ve) +
X

eb∈EB

pay(veb , ve)

=
X

ea∈EA

2Λ · |B||Ri|
· c(e)

cap(A,B)
· c(ea)

+
X

eb∈EB

2Λ · |A||Ri|
· c(e)

cap(A,B)
· c(eb)

= 2Λ · c(e)

cap(A,B)
·
„
|B|
|Ri|

· w`(A)

+
|A|
|Ri|

· w`(B)

«
≥ 2 c(e),

where the last step follows from the fact that (A,B) is a cut

with sparsity at most Λ which implies that Λ ·
“
|B|
|Ri|

· w`(A)+

|A|
|Ri|

· w`(B)
”
≥ cap(A,B).

The following claim relates the total weight of edges leaving
node ve ∈ VH to c(e).

Claim 7. The total payment of an edge e during the whole
algorithm is at most c(e)/2, i.e.X

v∈VH

pay(ve, v) ≤ c(e)/2 .

Proof. Let e = (v, u). We consider sequences of different
sets in which v and u lie during the run of the algorithm.
We denote these sequences of sets as V0, V1, . . . , Vl and U0,
U1, . . . , Uk for v and u, respectively. For those sequences,
let ni = |Vi| and mj = |Uj |.

Each edge (ve, v) of H corresponds to cutting some Vi

into Vi+1 and Vi \ Vi+1 or Uj into Uj+1 and Uj \Uj+1. First
we consider the case in which Vi is cut into A := Vi+1 and
B := Vi \ Vi+1. We can estimate the total weight of edges
between ve and nodes of H that represent edges from A×B
as followsX

e′∈A×B

pay(ve, ve′) =
X

e′∈A×B

2Λ · |B||Vi|
· c(e′)

cap(A,B)
· c(e)

= 2Λ · c(e) · |B||Vi|
·

P
e′∈A×B

c(e′)

cap(A,B)

= 2Λ · c(e) · |B||Vi|

= 2Λ · c(e) · ni − ni+1

ni

An analogous bound can be proved for the case when we di-
vide Uj into Uj+1 and Uj\Uj+1, namely

P
e′∈A×B

pay(ve, ve′) =

2Λ · c(e) · mj−mj+1
mj

.

Claim 8. For any sequence of numbers n = n0 > · · · >
nk ≥ 1 it holds that n0−n1

n0
+ n1−n2

n1
+· · ·+ nk−1−nk

nk−1
≤ 2 logn .

Thus, the total weight outgoing from ve can be estimated asP
v∈VH

pay(ve, v) = 2Λ·c(e) ·
»“

n0−n1
n0

+ · · ·+ nk−1−nk

nk−1

”
+
“

m0−m1
m0

+ · · ·+ ml−1−ml

ml−1

”–
≤ 2Λ · c(e) · (2 logn+ 2 logn)

≤ 8 · 4σ
λ
· logn · c(e)

≤ c(e)/2 .

This gives the claim.

Now, we can use the above claims to show that
P

i out(Ri) ≤
2 out(R). This is done by summing the weight of all incident
edges for each node ve ∈ H, where incoming edges are
counted positively and outgoing edges are counted negatively.
Recall that RH ⊆ H denotes the set of nodes of H that
represent edges leaving set R in the graph G. We get

0 =
P

ve∈VH

 P
v∈VH

pay(v, ve)−
P

v∈VH

pay(ve, v)

!

=
P

ve∈VH\RH

 P
v∈VH

pay(v, ve)−
P

v∈VH

pay(ve, v)

!

−
P

ve∈RH

 P
v∈VH

pay(ve, v)

!
≥

P
ve∈VH\RH

`
2 c(e)− 1

2
c(e)

´
−

P
ve∈RH

`
1
2

c(e)
´
.

This gives out(R) ≥ 3
P

ve∈VH\RH
c(e). Altogether we get

2 out(R) ≥ out(R) + 3
X

ve∈VH\RH

c(e)

≥ out(R) + 2
X

ve∈VH\RH

c(e)

=
X

i

out(Ri) ,

as desired.

Now, we describe the algorithm Partition for partitioning
a cluster H according to the requirements of Lemma 4.

In each iteration of the algorithm we maintain a partition-
ing PH that fulfills Requirements 2 and 3, i.e. each subcluster
Hi has at most 2

3
|H| nodes and fulfills the precondition. We

begin with subclusters containing only one node. Clearly
both requirements are fulfilled.

The general idea of the algorithm to guarantee that the
solution for the CMCF-problem that corresponds to the final
partitioning has a good throughput fraction, is as follows.
In each iteration the algorithm checks whether the CMCF-
problem that corresponds to the current partitioning already
has a throughput fraction larger than qmin. If this is the
case, the algorithm terminates, since all the requirements are
fulfilled. Otherwise the algorithm tries to find a collection
of sublusters Hi of the current partitioning that has a cer-
tain property, namely that out(

U
i∈I Hi) � w`+1(

U
i∈I Hi),

where I is the index set of the collection of these subclus-
ters. Then the algorithm removes all the subclusters that
belong to this collection and adds a new single subcluster
U∗ :=

U
i∈I Hi that simply contains all nodes from the col-

lection. Then in a final step the algorithm partitions U∗

with AssurePrecondition in order to ensure that every
subcluster of the partitioning fulfills the precondition.

We call the replacement of all Hi by clusters that results
from AssurePrecondition(U∗) a local improvement of the
algorithm. A key result for the construction is that we show
that in each local improvement step the total capacity of
edges that connect different subclusters decreases at least by
a constant. Since this capacity is clearly bounded from below
by 0, the algorithm will terminate after at most |H|2 · cmax

iterations, i.e. in polynomial time. Furthermore, since we
show that the algorithm always makes an improvement step if
H does not fulfill the throughput property, we can conclude
that after termination the CMCF-problem on H can be
solved with throughput fraction of at least qmin.

Now we describe how the algorithm finds a collection of
subclusters such that out(

U
i∈I Hi) � w`+1(

U
i∈I Hi) if H

does not fulfill the throughput property. First we compute
an approximate sparsest cut (A,B) corresponding to the
CMCF-problem in H. Without loss of generality we can
assume that |A| ≤ |B|.

Partition (S)

PH := {{v} | v ∈ H}
while H does not fulfill the throughput property
do

compute (A,B) - an approximate sparsest cut of H /* W.l.o.g. |A| ≤ |B| */

U∗ := round(A)

for each Hi ⊆ U∗ do PH := PH \Hi

PH := PH ∪AssurePrecondition(U∗)

end
return PH

Figure 3: The algorithm Partition

For the sparsity of this cut we have cap(A,B)/dem(A,B)
≤ σ · qmin = 1/(24λ), where

dem(A,B) =
X

u∈A,v∈B

dem(u, v) +
X

u∈A,v∈B

dem(u, v)

=
X

u∈A,v∈B

w`+1(u) · w`+1(v)

w`+1(H)

+
X

u∈B,v∈A

w`+1(u) · w`+1(v)

w`+1(H)

= 2 · w`+1(A) · w`+1(B)

w`+1(H)

≤ 2 · w`+1(A) .

Combining the sparsity of cut (A,B) with the above inequal-
ity we get

cap(A,B)

w`+1(A)
≤ 2 · cap(A,B)

dem(A,B)
≤ 1

12λ
. (2)

We cannot directly use the set A to improve the current
partitioning of H, because it does not have to consist of whole
subclusters Hi. Therefore we define a set U∗ := round(A),
using a construction taken from [11]. U∗ is a rounding of
the set A using the current partitioning, i.e. U∗ is a union
of disjoint subclusters Hi.

More precisely, let Ai := A ∩Hi and Bi := B ∩Hi. We
partition all indices of subclusters into sets IL and IS . If
|Ai| ≥ 3

4
· |Hi| then we say that Hi has large intersection

with A and i ∈ IL. Otherwise i ∈ IS . U∗ is a union of
all subclusters Hi which have large intersection with A, i.e.
U∗ :=

U
i∈IL

Hi. Note that this definition and the fact that

|A| ≤ 1
2
|H| ensure that |U∗| ≤ 2

3
|H|. The following technical

claim is proven in [11]. (see appendix)

Claim 9. cap(A,B)
w`+1(A)

≥ 1
4λ
· out(U∗)

w`+1(U∗) .

Using this claim and Equation 2 we get w`+1(U
∗) ≥

3 out(U∗). We are now able to prove that the Partition
algorithm terminates.

Lemma 10. The algorithm Partition terminates and its
running time is polynomially bounded with respect to cmax

and |H|.

Proof. By W (H) := w`+1(H) − out(H) we denote the
total capacity of edges that connect different subclusters in
H. For proving the lemma it suffices to show that in each
iteration of the Partition algorithm, W (H) decreases by
at least 1.

In each round we remove all the subclusters contained
in U∗. Therefore, W (H) decreases by w`+1(U

∗), i.e., by
at least 3 out(U∗). After that we add clusters Ri returned
by AssurePrecondition(U∗) and W (H) increases byP

i
w`+1(Ri). Using Lemma 5 we obtainX

i

w`+1(Ri) =
X

i

out(Ri) ≤ 2 out(U∗) .

Thus in each iteration W (H) decreases by at least out(U∗).
Since the capacity function c(.) is normalized, out(U∗) ≥ 1,
which yields the lemma.

We have proved that the algorithm Partition termi-
nates and since the algorithm does not terminate unless the
throughput fraction of the CMCF-problem in H is greater
than qmin, we can conclude that finally H fulfills the through-
put property. This finishes the proof of Lemma 4

Theorem 11. Let σ denote the gap between an approxi-
mate sparsest cut and the throughput fraction of a CMCF-
problem on a graph G. Then a hierarchical decomposition of
G that guarantees a competitive ratio of O(log2 n ·σ2) for the
oblivious routing problem can be constructed in polynomial
time.

Proof. Combining Theorem 1 and Lemma 4 gives the
theorem.

Remark 12. If in the algorithm AssurePrecondition
the subroutine for approximating a sparsest cut is replaced
by an exact algorithm, the competitive ratio of the resulting
oblivious routing scheme is O(log2 n · σ).

Proof. If a cut in the AssurePrecondition algorithm
is computed optimally the precondition holds with λ =
O(logn) for every cluster. Therefore, we could compute a
partitioning for which the throughput fraction of the CMCF-
problem would be at least qmin = 1/(24·σ·λ). Since the height
of the decomposition tree remains logarithmic, Theorem 1
implies that the oblivious routing scheme yields a competitive
ratio of O(log2 n · σ).

Note that this version of the construction algorithm is not
polynomial since computing a sparsest cut is NP-hard. But

this modification of our construction algorithm proves the
existence of an oblivious routing scheme with competitive
ratio O(log3 n). Hence, it achieves the same result as in [11]
but with a much simpler proof.

For planar networks [11] proves the existence of an oblivi-
ous routing scheme with competitive ratio O(log2 n). Since
the sparsest cut gap σ is constant for planar networks, The-
orem 11 shows that for such graphs a hierarchical decompo-
sition with competitve ratio O(log2 n) can be constructed in
polynomial time. Hence, there is no asymptotical difference
for the competitive ratio on planar networks between the
nonconstructive result of [11] and our constructive result.

5. REFERENCES
[1] J. Aspens, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts.

On-line load balancing with applications to machine
scheduling and virtual circuit routing. In Proc. of the
25th ACM Symp. on Theory of Computing (STOC),
pages 623–631, 1993.

[2] Y. Aumann and Y. Rabani. An O(log k) approximate
min-cut max-flow theorem and approximation
algorithm. SIAM Journal on Computing, 27(1):291–301,
1998.

[3] B. Awerbuch and Y. Azar. Local optimization of global
objectives: competitive distributed deadlock resolution
and resource allocation. In Proc. of the 35th IEEE
Symp. on Foundations of Computer Science (FOCS),
pages 240–249, 1994.

[4] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Räcke.
Optimal oblivious routing in polynomial time. In Proc.
of the 35th ACM Symp. on Theory of Computing
(STOC), 2003. to appear.

[5] A. Borodin and J. Hopcroft. Routing, merging and
sorting on parallel models of computation. Journal of
Computer and System Sciences, 30(1):130–145, 1985.

[6] C. Harrelson, K. Hildrum, and S. Rao. A
polynomial-time tree decomposition to minimize
congestion. These proceedings, 2003.

[7] C. Kaklamanis, D. Krizanc, and A. Tsantilas. Tight
bounds for oblivious routing in the hypercube. In Proc.
of the 2nd ACM Symp. on Parallel Algorithms and
Architectures (SPAA), pages 31–36, 1990.

[8] P. Klein, S. A. Plotkin, and S. Rao. Excluded minors,
network decomposition, and multicommodity flow. In
Proc. of the 25th ACM Symp. on Theory of Computing
(STOC), pages 682–690, 1993.

[9] B. M. Maggs, F. Meyer auf der Heide, B. Vöcking, and
M. Westermann. Exploiting locality for networks of
limited bandwidth. In Proc. of the 38th IEEE Symp. on
Foundations of Computer Science (FOCS), pages
284–293, 1997.

[10] B. M. Maggs, G. L. Miller, O. Parekh, R. Ravi, and
S. L. M. Woo. Solving symmetric diagonally-dominant
systems by preconditioning. manuscript, 2003.

[11] H. Räcke. Minimizing congestion in general networks.
In Proc. of the 43th IEEE Symp. on Foundations of
Computer Science (FOCS), pages 43–52, 2002.

[12] P. Raghavan and C. D. Thompson. Randomized
rounding: A technique for provably good algorithms
and algorithmic proofs. Combinatorica, 7:365–374,
1981.

[13] L. G. Valiant and G. J. Brebner. Universal schemes for
parallel communication. In Proc. of the 13th ACM
Symp. on Theory of Computing (STOC), pages
263–277, 1981.

APPENDIX
A. PROOF OF CLAIM 9

Proof. Let ` be the level of a cluster H. Since H fulfills
the precondition and |A| ≤ 1

2
|H|, we have

λ · cap(A,B) ≥ w`(A) ≥ w`(U
∗ ∩A) . (3)

Analogously the ` + 1 level sets Hi fulfill the precondition
and for all i ∈ IS Ai ≤ 3

4
|Hi| and for all i ∈ IL Bi ≤ 3

4
|Hi|.

Thus,

∀i ∈ IS (λ+ 1) · cap(Ai, Bi) ≥ w`+1(Ai) + cap(Ai, Bi)

= out(Ai)

∀i ∈ IL (λ+ 1) · cap(Ai, Bi) ≥ w`+1(Bi) + cap(Ai, Bi)

= out(Bi) .

Similarly we have

λ ·
X
i∈IL

cap(Ai, Bi) ≥
X
i∈IL

w`+1(Bi) ≥
X
i∈IL

w`(Bi)

= w`(
]

i∈IL

Bi) = w`(U
∗ \A) .

Thus,

(λ+ 1) · cap(A,B) ≥(λ+ 1) ·
X
i∈IL

cap(Ai, Bi)

+ (λ+ 1) ·
X
i∈IS

cap(Ai, Bi)

≥w`(U
∗ \A) +

X
i∈IS

out(Ai) .

(4)

We also relate cap(A,B) to cap(U∗, H \ U∗).

cap(U∗, H \ U∗)

= cap(
]

i∈IL

Hi,
]

i∈IS

Hi)

= cap(
]

i∈IL

Ai,
]

i∈IS

Bi) + cap(
]

i∈IL

Ai,
]

i∈IS

Ai)

+ cap(
]

i∈IL

Bi,
]

i∈IS

Hi)

≤ cap(A,B) +
X
i∈IS

out(Ai) +
X
i∈IL

out(Bi)

≤ cap(A,B) + (λ+ 1) ·
X
i∈IS

cap(Ai, Bi)

+ (λ+ 1) ·
X
i∈IL

cap(Ai, Bi)

≤ cap(A,B) + (λ+ 1) · cap(A,B)

= (λ+ 2) · cap(A,B)

(5)

We use inequalities 3, 4 and 5 to bound the expression
out(U∗) +

P
i∈IS

out(Ai) as follows

out(U∗) +
X
i∈IS

out(Ai) ≤ cap(U∗, H \ U∗) + w`(U
∗)

+
X
i∈IS

out(Ai)

≤ cap(U∗, H \ U∗) + w`(U
∗ ∩A)

+ w`(U
∗ \A) +

X
i∈IS

out(Ai)

≤ cap(A,B) ((λ+ 2) + λ+ (λ+ 1))

≤ 4λ · cap(A,B) .

For the last inequality we utilized λ ≥ 3.

Now,

w`+1(A)

cap(A,B)
=

P
i cap(Ai, Hi)

cap(A,B)

=

P
i∈IL

cap(Ai, Hi) +
P

i∈IS
cap(Ai, Hi)

cap(A,B)

≤ 4λ ·
P

i∈IL
cap(Ai, Hi) +

P
i∈IS

cap(Ai, Hi)

out(U∗) +
P

i∈IS
out(Ai)

≤ 4λ ·
P

i∈IL
cap(Hi, Hi) +

P
i∈IS

out(Ai)

out(U∗) +
P

i∈IS
out(Ai)

= 4λ ·
w`+1(U

∗) +
P

i∈IS
out(Ai)

out(U∗) +
P

i∈IS
out(Ai)

≤ 4λ · w`+1(U
∗)

out(U∗)
,

where the last inequality follows since w`+1(U
∗) ≥ out(U∗).

This finishes the proof.

	Introduction
	Related work

	Preliminaries
	The hierarchical decomposition

	The routing scheme
	Construction of the decomposition
	REFERENCES -9pt
	Proof of Claim 9

