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Abstract

Topic models provide a useful method for
dimensionality reduction and exploratory
data analysis in large text corpora. Most ap-
proaches to topic model learning have been
based on a maximum likelihood objective.
Efficient algorithms exist that attempt to
approximate this objective, but they have no
provable guarantees. Recently, algorithms
have been introduced that provide provable
bounds, but these algorithms are not practi-
cal because they are inefficient and not robust
to violations of model assumptions. In this
paper we present an algorithm for learning
topic models that is both provable and prac-
tical. The algorithm produces results com-
parable to the best MCMC implementations
while running orders of magnitude faster.

1. Introduction

Topic modeling is a popular method that learns
thematic structure from large document collections
without human supervision. The model is simple:
documents are mixtures of topics, which are modeled
as distributions over a vocabulary (Blei, 2012). Each
word token is generated by selecting a topic from a
document-specific distribution, and then selecting a
specific word from that topic-specific distribution.
Posterior inference over document-topic and topic-
word distributions is intractable — in the worst case
it is NP-hard even for just two topics (Arora et al.,
2012b). As a result, researchers have used approx-
imate inference techniques such as singular value
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decomposition (Deerwester et al., 1990), variational
inference (Blei et al., 2003), and MCMC (Griffiths &
Steyvers, 2004).

Recent work in theoretical computer science focuses
on designing provably polynomial-time algorithms
for topic modeling. These treat the topic modeling
problem as one of statistical recovery: assuming the
data was generated perfectly from the hypothesized
model using an unknown set of parameter values, the
goal is to recover the model parameters in polynomial
time given a reasonable number of samples.

Arora et al. (2012b) present an algorithm that prov-
ably recovers the parameters of topic models provided
that every topic contains at least one anchor word that
has non-zero probability only in that topic. If a docu-
ment contains this anchor word, then it is guaranteed
that the corresponding topic is among the set of top-
ics used to generate the document. The input for the
algorithm is the second-order moment matrix of word-
word co-occurrences. The algorithm proceeds in two
steps: a selection step that finds anchor words for each
topic, and a recovery step that reconstructs topic dis-
tributions given those anchor words.

Anandkumar et al. (2012) present a provable algo-
rithm based on third-order moments that does not re-
quire separability, but, unlike the algorithm of Arora
et al., assumes that topics are not correlated. Al-
though standard topic models like LDA (Blei et al.,
2003) assume that topic proportions in a document
are uncorrelated, there is strong evidence that topics
are dependent (Blei & Lafferty, 2007; Li & McCallum,
2007): economics and politics are more likely to co-
occur than economics and cooking.

Both algorithms run in polynomial time, but the
bounds that have been proven on their sample
complexity are weak and their empirical runtime
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performance is slow. It is also unclear how they
perform if the data does not satisfy the modeling
assumptions. Subsequent work improves efficiency:
Bittorf et al. (2012) and Gillis (2012) reduce the
number of linear programs to be solved in the anchor
word selection step. Gillis & Vavasis (2012) use linear
projection ideas to avoid linear programs entirely.

The contributions of the current paper are three-fold.
First, we present a combinatorial anchor selection al-
gorithm that does not require solving linear programs.
So long as the separability assumption holds, we prove
that this algorithm is stable in the presence of noise
and thus has polynomial sample complexity, running
in seconds on very large data sets. As the anchor se-
lection step is not a bottleneck, we do not empirically
compare similar algorithms that have appeared in
independent work by other authors (though not with a
similar proof of correctness, see Section 4 for details).
Second, we focus on the recovery step of Arora et al.
(2012b), which computes topic-word distributions us-
ing matrix inversions. This step, which does noticeably
affect performance, is sensitive to noise (whether from
sampling or from model lack-of-fit) and so has high
sample complexity and poor results even on synthetic
data. We present a simple probabilistic interpretation
of the recovery step that replaces matrix inversion
with gradient-based inference. Third, we present an
empirical comparison between recovery-based algo-
rithms and existing likelihood-based algorithms with
respect to empirical sample complexity on synthetic
distributions and performance of the algorithms on
real-world document corpora. Our algorithm performs
as well as collapsed Gibbs sampling on a variety of
metrics, and runs at least an order of magnitude faster,
and as much as fifty times faster on large datasets,
allowing real-time analysis of large data streams.

Our algorithm inherits the provable guarantees of
Arora et al. (2012a;b) and results in simple, practical
implementations. We view this work as combining
the best of two approaches to machine learning: the
tractability of statistical recovery with the robustness
of maximum likelihood estimation.

2. Background

We consider the learning problem for a class of admix-
ture distributions that are frequently used for proba-
bilistic topic models. Examples of such distributions
include latent Dirichlet allocation (Blei et al., 2003),
correlated topic models (Blei & Lafferty, 2007), and
Pachinko allocation (Li & McCallum, 2007). We de-
note the number of words in the vocabulary by V and
the number of topics by K. Associated with each topic

k is a multinomial distribution over the words in the
vocabulary, which we will denote as the column vector
Ak of length V . Each of these topic models postulates
a particular prior distribution τ over the topic distri-
bution of a document. For example, in latent Dirichlet
allocation (LDA) τ is a Dirichlet distribution, and
for the correlated topic model τ is a logistic Normal
distribution. The generative process for a document d
begins by drawing the document’s topic distribution
Wd ∼ τ . Then, for each position i we sample a topic
assignment zi ∼Wd, and finally a word wi ∼ Azi .

We can combine the column vectors Ak for each of the
K topics to obtain the word-topic matrix A of dimen-
sion V × K. We can similarly combine the column
vectors Wd for M documents to obtain the topic-
document matrix W of dimension K×M . We empha-
size that W is unknown and stochastically generated:
we can never expect to be able to recover it. The
learning task that we consider is to find the word-topic
matrix A. For the case when τ is Dirichlet (LDA), we
also show how to learn hyperparameters of τ .

Maximum likelihood estimation of the word-topic
distributions is NP-hard even for two topics (Arora
et al., 2012b), and as a result researchers typically
use approximate methods. The most popular ap-
proaches are variational expectation maximization
(Blei et al., 2003), which optimizes a lower bound
on the likelihood, and Markov chain Monte Carlo
(McCallum, 2002), which asymptotically samples
from the posterior distribution.

Arora et al. (2012b) present an algorithm that prov-
ably learns the parameters of a topic model given sam-
ples from the model, provided that the word-topic dis-
tributions are separable (Donoho & Stodden, 2003):

Definition 2.1. The word-topic matrix A is p-
separable for p > 0 if for each topic k, there is some
word i such that Ai,k ≥ p and Ai,k′ = 0 for k′ 6= k.

Such a word is called an anchor word: when it
occurs in a document, it is a perfect indicator that the
document is at least partially about the corresponding
topic, since there is no other topic that could have
generated the word. Suppose that each document is
of length D ≥ 2, and let R = Eτ [WWT ] be the K×K
topic-topic covariance matrix. Let αk be the expected
proportion of topic k in a document generated accord-
ing to τ . The main result of Arora et al. (2012b) is:

Theorem 2.2. There is a polynomial time algorithm

that learns the parameters of a topic model if the

number of documents is at least

M = max

{

O

(

log V · a4K6

ǫ2p6γ2D

)

, O

(

logK · a2K4

γ2

)}

,
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Algorithm 1. High Level Algorithm

Input: Textual corpus D, Number of topics K,
Tolerance parameters ǫa, ǫb > 0.

Output: Word-topic matrix A, topic-topic matrix R
Q←Word Co-occurences(D)
Form {Q̄1, Q̄2, ...Q̄V }, the normalized rows of Q.
S ← FastAnchorWords({Q̄1, Q̄2, ...Q̄V }, K, ǫa)
(Algorithm 4)
A,R← RecoverKL(Q,S, ǫb) (Algorithm 3)
return A,R

where p is defined above, γ is the condition number of

R, and a = maxk,k′ αk/αk′ . The algorithm learns the

word-topic matrix A and the topic-topic covariance

matrix R up to additive error ǫ.

The Arora et al. (2012b) algorithm is not practical—it
must solve V linear programs to identify anchor
words, which is inefficient, and uses matrix inversion
to recover A and the parameters of τ , which is
unstable and sensitive to noise—but it forms the basis
of our improved method, Algorithm 1. Both anchor
selection and recovery take as input the V ×V matrix
of word-word co-occurrence counts Q, whose con-
struction is described in the supplementary material.
Q is normalized so that the sum of all entries is 1.

3. Topic Recovery via Bayes’ Rule

We introduce a new recovery method based on a prob-
abilistic framework. The original recovery procedure
(which we call “Recover”) from Arora et al. (2012b) is
as follows. First, it permutes the Q matrix so that the
first K rows and columns correspond to the anchor
words. We will use the notation QS to refer to the first
K rows, and QS,S for the first K rows and just the
first K columns. If constructed from infinitely many
documents, Q would be the second-order moment
matrix Q = E[AWWTAT ] = AE[WWT ]AT = ARAT ,
with the following block structure:

Q = ARAT =

(

D
U

)

R
(

D UT
)

=

(

DRD DRUT

URD URUT

)

where D is a diagonal matrix of size K × K whose
rows correspond to anchor words. Next, it solves for
A and R using the algebraic manipulations outlined
in Algorithm 2.

For finite data, the matrix inversion in Algorithm 2
results in substantial imprecision. The returned A and
R matrices can even contain small negative values, re-
quiring a subsequent projection onto the simplex. As
shown in Section 5, the original Recover algorithm per-
forms poorly relative to a likelihood-based algorithm.

Algorithm 2. Original Recover (Arora et al., 2012b)

Input: Matrix Q, Set of anchor words S
Output: Matrices A,R

Permute rows and columns of Q
Compute ~pS = QS

~1 (equals DR~1)
Solve for ~z: QS,S~z = ~pS (Diag(~z) equals D−1)
Solve for AT = (QS,SDiag(~z))−1QT

S

Solve for R = Diag(~z)QS,SDiag(~z)
return A,R

Algorithm 3. RecoverKL

Input: Matrix Q, Set of anchor words S, tolerance
parameter ǫ.

Output: Matrices A,R
Normalize the rows of Q to form Q̄.
Store the normalization constants ~pw = Q~1.
Q̄sk is the row of Q̄ for the kth anchor word.
for i = 1, ..., V do

Solve Ci· = argmin~Ci
DKL(Q̄i||

∑

k∈S
Ci,kQ̄sk)

Subject to:
∑

k Ci,k = 1 and Ci,k ≥ 0
With tolerance: ǫ

end for

A′ = diag(~pw)C
Normalize the columns of A′ to form A.
R = A†QA†T

return A,R

One problem is that Recover uses only K rows of the
matrix Q (the rows for the anchor words), whereas Q is
of dimension V ×V . Although ignoring the remaining
V −K rows is sufficient for theoretical analysis, where
the remaining rows contain no additional information,
it is not sufficient for real data. Small sample sizes
may also make estimates of co-occurrences between a
word and the anchors inaccurate.

Here we adopt a new approach based on Bayes’ rule.
Consider any two words in a document w1 and w2, and
let z1 and z2 refer to their topic assignments. We will
use Ai,k to index the matrix of word-topic distribu-
tions, i.e. Ai,k = p(w1 = i|z1 = k) = p(w2 = i|z2 = k).
Given infinite data, the elements of the Q matrix
can be interpreted as Qi,j = p(w1 = i, w2 = j). The
row-normalized Q matrix, denoted Q̄, which plays a
role in both finding the anchor words and the recovery
step, can be interpreted as a conditional probability
Q̄i,j = p(w2 = j|w1 = i).

Denoting the indices of the anchor words as
S = {s1, s2, ..., sK}, the rows indexed by elements of
S are special in that every other row of Q̄ lies in the
convex hull of the rows indexed by the anchor words.



A Practical Algorithm for Topic Modeling with Provable Guarantees

To see this, first note that for an anchor word sk,

Q̄sk,j =
∑

k′

p(z1 = k′|w1 = sk)p(w2 = j|z1 = k′) (1)

=p(w2 = j|z1 = k), (2)

where (1) uses the fact that in an admixture model
w2⊥w1 | z1, and (2) is because p(z1 = k|w1 = sk) = 1.
For any other word i, we have

Q̄i,j =
∑

k

p(z1 = k|w1 = i)p(w2 = j|z1 = k).

Denoting the probability p(z1 = k|w1 = i) as Ci,k,
we have Q̄i,j =

∑

k Ci,kQ̄sk,j . Since C is non-negative
and

∑

k Ci,k = 1, we have that any row of Q̄ lies in the
convex hull of the rows corresponding to the anchor
words. The mixing weights give us p(z1|w1 = i).
Using this together with p(w1 = i), we can recover
the A matrix simply by using Bayes’ rule:

p(w1 = i|z1 = k) =
p(z1 = k|w1 = i)p(w1 = i)

∑

i′ p(z1 = k|w1 = i′)p(w1 = i′)
.

Finally, we observe that p(w1 = i) is easy to solve for
since

∑

j Qi,j =
∑

j p(w1 = i, w2 = j) = p(w1 = i).

Our new algorithm finds, for each row of the empirical
row normalized co-occurrence matrix, Q̄i, the vector
of non-negative coefficients p(z1|w1 = i) that best
reconstruct it as a convex combination of the rows
that correspond to anchor words. Here “best” will
be measured using an objective function that allows
this step to be solved quickly and in parallel (inde-
pendently) for each word using the exponentiated
gradient algorithm. Once we have p(z1|w1), we recover
the A matrix using Bayes’ rule. The full algorithm
using KL divergence as an objective is found in Algo-
rithm 3. Further details of the exponentiated gradient
algorithm are given in the supplementary material.

We use KL divergence as the measure of reconstruc-
tion error because it lets the recovery procedure be
understood as maximum likelihood estimation. In
particular, the recovery procedure can be shown to
find the parameters p(w1), p(z1|w1), p(w2|z1) that
maximize the likelihood of the word co-occurence
counts (not the documents). However, the opti-
mization problem does not explicitly constrain the
parameters to correspond to an admixture model.

We define a similar algorithm using quadratic loss,
which we call RecoverL2. Remarkably, the running
time of this algorithm can be made independent of V .
The objective can be re-written in kernelized form as

||Q̄i−C
T
i Q̄S||

2 = ||Q̄i||
2−2Ci(Q̄SQ̄

T
i )+CT

i (Q̄SQ̄
T
S )Ci,

where Q̄SQ̄
T
S

is K × K and can be computed once
and used for all words, and Q̄SQ̄

T
i is K × 1 and can

be computed once prior to running the exponentiated
gradient algorithm for word i.

To recover the R matrix for an admixture model,
recall that Q = ARAT . We can find a least-squares
approximation to R by pre- and post-multiplying Q
by the pseudo-inverse A†. For the special case of
LDA we can learn the Dirichlet hyperparameters.
Recall that in applying Bayes’ rule we calculated
p(z1) =

∑

i′ p(z1|w1 = i′)p(w1 = i′). These values
for p(z) specify the Dirichlet hyperparameters up to
a constant scaling. This constant could be recovered
from the R matrix (Arora et al., 2012b), but in
practice we find it is better to choose it using a grid
search to maximize the likelihood of the training data.

We will see in Section 5 that our non-negative recov-
ery algorithm performs much better on a wide range
of performance metrics than the original Recover.
In the supplementary material we show that the
non-negative recovery algorithm also inherits the
theoretical guarantees of Arora et al. (2012b): given
polynomially many documents, it returns an estimate
Â at most ǫ from the true word-topic matrix A.

4. Efficiently Finding Anchor Words

We next consider the anchor selection step of the al-
gorithm, in which our goal is to find the anchor words.
In the infinite data case where we have infinitely
many documents, the convex hull of the rows in Q̄
will be a simplex where the vertices of this simplex
correspond to the anchor words. Given a set of V
points a1, a2, ...aV whose convex hull P is a simplex,
we wish to find the vertices of P .1 When we have a
finite number of documents, the rows of Q̄ are only
an approximation to their expectation: we are given a
set of points d1, d2, ...dV that are each a perturbation
of a1, a2, ...aV whose convex hull P defines a simplex.
We would like to find an approximation to the vertices
of P . The anchor word selection algorithm from
Arora et al. (2012a) tests whether or not each of the
V points is a vertex of the convex hull by solving
a linear program for each word. In this section we
describe a purely combinatorial algorithm for this task
that avoids linear programming altogether. The new
“FastAnchorWords” algorithm is given in Algorithm 4.

Our approach is to iteratively find the farthest point
from the subspace spanned by the anchor words found
so far. The main technical step is to show that if

1See Arora et al. (2012a) and Arora et al. (2012b) for
more details.



A Practical Algorithm for Topic Modeling with Provable Guarantees

Algorithm 4. FastAnchorWords

Input: V points {d1, d2, ...dV } in V dimensions, al-
most in a simplex with K vertices and ǫ > 0
Output: K points that are close to the vertices of the
simplex.

Project the points di to a randomly chosen
4 log V/ǫ2 dimensional subspace
S ← {di} s.t. di is the farthest point from the origin.
for i = 1 TO K − 1 do

Let dj be the point in {d1, . . . , dV } that has the
largest distance to span(S).

S ← S ∪ {dj}.
end for

S = {v′
1
, v′

2
, ...v′K}.

for i = 1 TO K do

Let dj be the point that has the largest distance
to span({v′

1
, v′

2
, ..., v′K}\{v

′
i})

Update v′i to dj
end for

Return {v′
1
, v′

2
, ..., v′K}.

Notation: span(S) denotes the subspace spanned by the

points in the set S. We compute the distance from a point x

to the subspace span(S) by computing the norm of the pro-

jection of x onto the orthogonal complement of span(S).

one has already found r points S that are close to r
(distinct) anchor words, then the point that is farthest
from span(S) will also be close to a (new) anchor
word. Thus the procedure terminates with one point
close to each anchor word, even in the presence of
noise. A practical advantage of this procedure is that
when faced with many choices for a next anchor word
to find, our algorithm tends to find the one that is
most different from the ones we have found so far. The
algorithm terminates when it has found K anchors.
K is a tunable parameter of the overall algorithm that
determines how many topics are fitted to the dataset.

To precisely state the guarantees of our algorithm, we
use the following definition of robustness, which tries
to formalize the intuition that topics should be fairly
“distinct,” meaning that none lies close to the affine
hull of the rest.

Definition 4.1. A simplex P is γ-robust if for every
vertex v of P , the ℓ2 distance between v and the affine
hull of the rest of the vertices is at least γ.

Remark: In the overall picture, the robustness of the
polytope P spanned by the given points is related to
the (unknown) parameters of the topic model. For
example, in LDA, this γ is related to the largest ratio
of any pair of hyper-parameters in the model.

Our goal is to find a set of points that are close to the
vertices of the simplex, defined as follows:

Definition 4.2. Let a1, a2, ...aV be a set of points
whose convex hull P is a simplex with vertices
v1, v2, ...vK . Then we say ai ǫ-covers vj if, whenever
ai is written as a convex combination of the vertices,
ai =

∑

j cjvj , then cj ≥ 1 − ǫ. Furthermore we say
that a set of K points ǫ-covers the vertices if each
vertex is ǫ covered by some point in the set.

Suppose there is a set of points A = a1, a2, ...aV
whose convex hull P is γ-robust and has vertices
v1, v2, ...vK (which appear in A) and that we are given
a perturbation d1, d2, ...dV of the points so that for
each i, ‖ai − di‖ ≤ ǫ.

Theorem 4.3. Under the conditions stated in the

previous paragraph, and if ǫ < γ3/20K, then there

is a combinatorial algorithm that given {d1, . . . , dV }
runs in time Õ(V 2 +V K/ǫ2)2 and outputs a subset of

{d1, . . . , dV } of size K that O(ǫ/γ)-covers the vertices.

We note that variants of this algorithm have appeared
in other contexts. Our analysis rests on the following
lemmas, whose proof we defer to the supplementary
material. Suppose the algorithm has found a set S of
k points that are each δ-close to distinct vertices in
{v1, v2, ..., vK} and that δ < γ/20K.

Lemma 4.4. The point dj found by the algorithm

must be δ = O(ǫ/γ2) close to some vertex vi. In

particular, the corresponding aj O(ǫ/γ2)-covers vi.

This lemma is used to show that the error does not
accumulate too badly in our algorithm, since δ only
depends on ǫ, γ (not on the δ used in the previous
step of the algorithm). This prevents the error from
accumulating exponentially in the dimension of the
problem, which would be catastrophic for our proof.

After running the first phase of our algorithm, we run
a cleanup phase (the second loop in Alg. 4) that can
reduce the error in our algorithm.

Lemma 4.5. Suppose |S| = K−1 and each point in S
is δ = O(ǫ/γ2) < γ/20K close to distinct vertices vi’s,
the farthest point found by the algorithm is dj, then the

corresponding aj O(ǫ/γ)-covers the remaining vertex.

This algorithm can be seen as a greedy approach to
maximizing the volume of the simplex. This view
suggests other potential approaches for finding anchor

2To achieve this running time, we need to use (Ailon

& Chazelle, 2009) to project the points into Õ(1/ǫ2)
dimensional subspace. In practice we find setting di-
mension to 1000 works well. The running time is then
O(V 2 + 1000V K).
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words (where the goal is better solution quality rather
than run time), but that study is left as an open
question for future work.

Related work. The separability assumption has been
previously studied under the name “pure pixel as-
sumption” in the context of hyperspectral unmixing.
A number of algorithms have been proposed that over-
lap with ours including VCA (Nascimento & Dias,
2004), which differs in that there is no clean-up phase,
and N-FINDR (Gomez et al., 2007) which attempts
to greedily maximize the volume of a simplex whose
vertices are data points by changing one vertex at a
time. However these algorithms have only been proven
to work in the infinite data case, and for our algorithm
we are able to give provable guarantees even when the
data points are perturbed (e.g., as the result of sam-
pling noise). Recent work by Thurau et al. (2010), Ku-
mar et al. (2012) and Gillis & Vavasis (2012) designs
algorithms for non-negative matrix factorization un-
der the separability assumption. As mentioned above,
we do not focus empirical comparisons on anchor-word
selection variants as this step is not a bottleneck in our
overall algorithm (see Section 5.2).

5. Experimental Results

We compare three parameter recovery methods,
Recover (Arora et al., 2012b), RecoverKL, and Recov-
erL2, with a Gibbs sampling implementation (McCal-
lum, 2002).3 Linear programming-based anchor word
finding is too slow to be comparable, so we use Fas-
tAnchorWords for all three recovery algorithms. Using
Gibbs sampling we obtain the word-topic distributions
by averaging over 10 saved states, each separated by
100 iterations, after 1000 burn-in iterations.

5.1. Methodology

We train models on two synthetic data sets to evaluate
performance when model assumptions are correct, and
on real documents to evaluate real-world performance.
To ensure that synthetic documents resemble the
dimensionality and sparsity characteristics of real
data, we generate semi-synthetic corpora. For each
real corpus, we train a model using MCMC and then
generate new documents using the parameters of that
model (these parameters are not guaranteed to be
separable; we found that about 80% of topics fitted
by MCMC had anchor words).

3We were not able to obtain Anandkumar et al.
(2012)’s implementation of their algorithm, and our own
implementation is too slow to be practical. We found that
MALLET’s Gibbs sampling is faster than lda-c, a popular
variational method.

We use two real-world data sets, a large corpus of
New York Times articles (295k documents, vocabu-
lary size 15k, mean document length 298) and a small
corpus of NIPS abstracts (1100 documents, vocab-
ulary size 2500, mean length 68). Vocabularies were
pruned with document frequency cutoffs. We generate
semi-synthetic corpora of various sizes from models
trained with K = 100 from NY Times and NIPS,
with document lengths set to 300 and 70, respectively,
and with document-topic distributions drawn from a
Dirichlet with symmetric hyperparameters 0.03.

We use a variety of metrics to evaluate the learned
models. For the semi-synthetic corpora, we compute
the reconstruction error between the true word-
topic distributions and the learned distributions. In
particular, given a learned matrix Â and the true
matrix A, we use bipartite matching to align topics,
and then evaluate the ℓ1 distance between each pair
of topics. When true parameters are not available, a
standard evaluation for topic models is to compute
held-out probability, the probability of previously
unseen documents under the learned model. This com-
putation is intractable in general, but there are reliable
approximations (Wallach et al., 2009; Buntine, 2009).

Topic models are useful because they provide in-
terpretable latent dimensions. We can evaluate the
semantic quality of individual topics using a metric
called Coherence (Mimno et al., 2011). This metric has
been shown to correlate well with human judgments
of topic quality. If we perfectly reconstruct topics, all
the high-probability words in a topic should co-occur
frequently, otherwise, the model may be mixing unre-
lated concepts. Given a set of words W, coherence is

Coherence(W) =
∑

w1,w2∈W

log
D(w1, w2) + ǫ

D(w2)
, (3)

where D(w) and D(w1, w2) are the number of doc-
uments with at least one instance of w, and of w1

and w2, respectively. We set ǫ = 0.01 to avoid taking
the log of zero for words that never co-occur (Stevens
et al., 2012). Coherence measures the quality of indi-
vidual topics, but does not measure redundancy, so we
measure inter-topic similarity. For each topic, we
gather the set of the N most probable words. We then
count how many of those words do not appear in any
other topic’s set ofN most probable words. Some over-
lap is expected due to semantic ambiguity, but lower
numbers of unique words indicate less useful models.

5.2. Efficiency

The Recover algorithms, in Python, are faster than a
heavily optimized Java Gibbs sampling implementa-



A Practical Algorithm for Topic Modeling with Provable Guarantees

0

1000

2000

3000

0 25000 50000 75000 100000

Documents

S
e

c
o

n
d

s

Algorithm

Gibbs

Recover

RecoverL2

RecoverKL

Figure 1. Training time on synthetic NIPS documents.
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Figure 2. ℓ1 error for learning semi-synthetic LDA models
with K = 100 topics (top: based on NY Times, bottom:
based on NIPS abstracts). The horizontal lines indicate
the ℓ1 error of K uniform distributions.

tion (Yao et al., 2009). Fig. 1 shows the time to train
models on synthetic corpora on a single machine.
Gibbs sampling is linear in the corpus size. RecoverL2
is also linear (ρ = 0.79), but only varies from 33 to
50 seconds. Estimating Q is linear, but takes only
7 seconds for the largest corpus. FastAnchorWords
takes less than 6 seconds for all corpora.

5.3. Semi-synthetic documents

The new algorithms have good ℓ1 reconstruction error
on semi-synthetic documents, especially for larger cor-
pora. Results for semi-synthetic corpora drawn from
topics trained on NY Times articles are shown in Fig.
2 (top) for corpus sizes ranging from 50k to 2M syn-
thetic documents. In addition, we report results for
the three Recover algorithms on “infinite data,” that
is, the true Q matrix from the model used to gen-
erate the documents. Error bars show variation be-
tween topics. Recover performs poorly in all but the
noiseless, infinite data setting. Gibbs sampling has the
lowest ℓ1 on smaller corpora. However, for the larger
corpora the new RecoverL2 and RecoverKL algorithms
have the lowest ℓ1 error and smaller variance (running
sampling longer may reduce MCMC error further).
Results for semi-synthetic corpora drawn from NIPS
topics are shown in Fig. 2 (bottom), and are similar.

Effect of separability. Notice that in Fig. 2, Re-
cover does not achieve zero ℓ1 error even with noiseless

“infinite” data. Here we show that this is due to lack
of separability, and that the new recovery algorithms
are more robust to violations of the separability as-
sumption. In our semi-synthetic corpora, documents
are generated from an LDA model, but the topic-word
distributions are learned from data and may not satisfy
the anchor words assumption. We now add a synthetic
anchor word to each topic that is, by construction,
unique to that topic. We assign the synthetic anchor
word a probability equal to the most probable word
in the original topic. This causes the distribution to
sum to greater than 1.0, so we renormalize. Results are
shown in Fig. 3. The ℓ1 error goes to zero for Recover,
and close to zero for RecoverKL and RecoverL2 (not
zero because we do not solve to perfect optimality).

Effect of correlation. The theoretical guarantees of
the new algorithms apply even if topics are correlated.
To test the empirical performance in the presence of
correlation, we generated new synthetic corpora from
the sameK = 100 model trained on NY Times articles.
Instead of a symmetric Dirichlet distribution, we use
a logistic Normal distribution with a block-structured
covariance matrix. We partition topics into 10 groups.
For each pair of topics in a group, we add a non-zero
off-diagonal element (ρ) to the covariance matrix. This
block structure is not necessarily realistic, but shows
the effect of correlation. Results for ρ = 0.05 and 0.1
are shown in Fig. 4. Recover performs much worse
with correlated topics than with LDA-generated cor-
pora (c.f. Fig. 2). The other three algorithms, espe-
cially Gibbs sampling, are more robust to correlation.
Performance consistently degrades as correlation in-
creases. For the recovery algorithms this is due to a
decrease in γ, the condition number of the R matrix.
With infinite data, ℓ1 error is equal to the ℓ1 error in
the uncorrelated synthetic corpus (non-zero because of
violations of the separability assumption).

5.4. Real documents

The new algorithms produce comparable quantitative
and qualitative results on real data. Fig. 5 shows three
metrics for both corpora. Error bars show the distribu-
tion of log probabilities across held-out documents (top
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Figure 3. When we add artificial anchor words before
generating synthetic documents, ℓ1 error goes to zero for
Recover and close to zero for RecoverKL and RecoverL2.
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Figure 4. ℓ1 error increases as we increase topic correlation
(top: ρ = 0.05, bottom: ρ = 0.1). Based on the NY
Times semi-synthetic model with 100 topics.

NIPS NYT

−7.5

−5.0

−2.5

0.0

−1000

−750

−500

−250

0

0

5

10

L
o

g
P

ro
b

P
e

rT
o

k
e

n
C

o
h

e
re

n
c
e

U
n

iq
u

e
W

o
rd

s

50 100 150 200 50 100 150 200

Topics

V
a

lu
e

Algorithm

Gibbs

Recover

RecoverL2

RecoverKL

Figure 5. Held-out probability (per token) is similar for
RecoverKL, RecoverL2, and Gibbs sampling. RecoverKL
and RecoverL2 have better coherence, but fewer unique
words than Gibbs. (Up is better for all three metrics.)

panel) and coherence and unique words across topics

(center and bottom panels). Held-out sets are 230
documents for NIPS and 59k for NY Times. For the
small NIPS corpus we average over 5 non-overlapping
train/test splits. The matrix inversion step in Recover
fails for the NIPS corpus so we modify the procedure
to use pseudoinverse. This modification is described
in the supplementary materials. In both corpora,
Recover produces noticeably worse held-out log proba-
bility per token than the other algorithms. Gibbs sam-
pling produces the best average held-out probability
(p < 0.0001 under a paired t-test), but the difference
is within the range of variability between documents.
We tried several methods for estimating hyperparam-
eters, but the observed differences did not change the
relative performance of algorithms. Gibbs sampling
has worse coherence than the Recover algorithms, but
produces more unique words per topic. These patterns
are consistent with semi-synthetic results for similarly
sized corpora (details are in supplementary material).

For each NY Times topic learned by RecoverL2 we
find the closest Gibbs topic by ℓ1 distance. The
closest, median, and farthest topic pairs are shown in
Table 1. We observe that when there is a difference,
recover-based topics tend to have more specific words
(Anaheim Angels vs. pitch).

Table 1. Example topic pairs from NY Times (closest ℓ1),
anchor words in bold. The UCI NY Times corpus includes
named-entity annotations, indicated by the zzz prefix. All
100 topics are shown in the supplementary material.

RecoverL2 run inning game hit season zzz anaheim angel

Gibbs run inning hit game ball pitch

RecoverL2 father family zzz elian boy court zzz miami

Gibbs zzz cuba zzz miami cuban zzz elian boy protest

RecoverL2 file sport read internet email zzz los angeles

Gibbs web site com www mail zzz internet

6. Conclusions

We present new algorithms for topic modeling, in-
spired by Arora et al. (2012b), which are efficient and
simple to implement yet maintain provable guarantees.
The running time of these algorithms is effectively in-
dependent of the size of the corpus. Empirical results
suggest that the sample complexity of these algorithms
is somewhat greater than MCMC, but, particularly
for the ℓ2 variant, they provide comparable results in
a fraction of the time. We have tried to use the output
of our algorithms as initialization for further opti-
mization (e.g. using MCMC) but have not yet found
a hybrid that out-performs either method by itself.
Finally, although we defer parallel implementations
to future work, these algorithms are parallelizable,
potentially supporting web-scale topic inference.
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