
ORE Open Research Exeter

TITLE

A Practical and Efficient Bidirectional Access Control Scheme for Cloud-Edge Data Sharing

AUTHORS

Cui, J; Li, B; Zhong, H; et al.

JOURNAL

IEEE Transactions on Parallel and Distributed Systems

DEPOSITED IN ORE

21 September 2021

This version available at

http://hdl.handle.net/10871/127159

COPYRIGHT AND REUSE

Open Research Exeter makes this work available in accordance with publisher policies.

A NOTE ON VERSIONS

The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of
publication

http://hdl.handle.net/10871/127159

1

A Practical and Efficient Bidirectional Access
Control Scheme for Cloud-Edge Data Sharing

Jie Cui, Bei Li, Hong Zhong, Geyong Min, Yan Xu, Lu Liu

Abstract—The cloud computing paradigm provides numerous tempting advantages, enabling users to store and share their data

conveniently. However, users are naturally resistant to directly outsourcing their data to the cloud since the data often contain sensitive

information. Although several fine-grained access control schemes for cloud-data sharing have been proposed, most of them focus on

the access control of the encrypted data (e.g., restricting the decryption capabilities of the receivers). Distinct from the existing work,

this paper aims to address this challenging problem by developing a more practical bidirectional fine-grained access control scheme

that can restrict the capabilities of both senders and receivers. To this end, we systematically investigate the access control for cloud

data sharing. Inspired by the access control encryption (ACE), we propose a novel data sharing framework that combines the cloud

side and the edge side. The edge server is located in the middle of all the communications, checking and preventing illegal

communications according to the predefined access policy. Next, we develop an efficient access control algorithm by exploiting the

attribute-based encryption and proxy re-encryption for the proposed framework. The experimental results show that our scheme

exhibits superior performance in the encryption and decryption compared to the prior work.

Index Terms—Cloud computing, data sharing, access control, encryption, edge computing

✦

1 INTRODUCTION

THE cloud computing paradigm provides numerous
tempting advantages, such as powerful computation

capacity, flexible resource sharing and low cost. It enables
users to obtain desired services in an unprecedented and
convenient manner, regardless of time and location. Cloud
storage service, such as iCloud, Dropbox and Google Drive,
is one of the most fundamental services provided by cloud
computing [1]. By migrating the local data into the cloud,
users can enjoy convenient data management and sharing
at a low cost. With the development of the information
industry, the cloud storage will become more popular in
the future.

Traditionally, a fine-grained cloud-data sharing system
usually considers the receivers’ access control instead of the
senders’. Only the receiver who has the decryption right
can recover the message. It seems sufficient for a cloud data
sharing system. However, for the people who want to con-
trol the information flow in the system, this is not enough.
Consider an application where a company stores its top-
secret documents in the cloud and encrypts them using an
access policy that determines which employees are allowed
to decrypt the documents. Caused by mistakes or malice, a

• J. Cui, B. Li, H. Zhong and Y. Xu are with the Key Laboratory of Intelli-
gent Computing and Signal Processing of Ministry of Education, School
of Computer Science and Technology, Anhui University, Hefei 230039,
China, the Anhui Engineering Laboratory of IoT Security Technologies,
Anhui University, Hefei 230039, China, and the Institute of Physical
Science and Information Technology, Anhui University, Hefei 230039,
China (e-mail: zhongh@ahu.edu.cn).

• G. Min is with the Department of Computer Science, College of Engineer-
ing, Mathematics, and Physical Sciences, University of Exeter, Exeter,
EX4 4QF, U.K. (e-mail: g.min@exeter.ac.uk).

• L. Liu is with the School of Informatics, University of Leicester, LE1 7RH,
UK (email: l.liu@leicester.ac.uk).

legitimate employee may share the plaintext directly with
other employees who do not have the decryption rights. In
addition, a doctor may share a file to a businessman and a
man may share a video of campus violence to a student
through the public cloud storage. If the cloud server is
allowed to check the contents of the sharing file, it will
violate the user’s data privacy. Moreover, the senders can
avoid checking the contents by processing the sharing file,
e.g. changing the file type. As a result, how to construct a
cloud-data sharing system that can restrict the capabilities
of both senders and receivers while preserving the users’
privacy is an important and challenging problem.

The general solution to protecting the data privacy is to
employ a searchable encryption scheme (SE) to encrypt the
data files and potential keywords before uploading them to
the cloud. The encrypted data can be subsequently retrieved
with a corresponding keyword and decrypted by those who
have the decryption keys. However, how can the encrypted
data be shared efficiently. To enable a search on the data
file, it requires the sender to share his secret key with the re-
ceivers or stay online to generate the search trapdoor [2], [3].
To address this problem, Sun et al. [4] proposed an attribute-
based keyword search scheme, which provides fine-grained
search authorization. Then the file can be searched by those
whose attributes satisfy the access policy.

If all the users are honest, using the above method is
enough to address the aforementioned issue. But in reality,
we must consider the more complicated situation where a
sender may be dishonest. To cope with this issue, Damgård
et al. [5] initialized a study on a novel primitive called
access control encryption, which introduces a sanitizer to
route messages from senders to receivers. It gives different
privileges to different users, indicating which files they
can read and which files they can share. To prevent a
malicious sender from sending a message in plaintext or

2

in a screenshot, the sanitizer must secure the message
before broadcasting it to the receivers. If the cloud server
is used to perform as the sanitizer, it will put a heavy
burden on the cloud since the sanitizer must process each
message. Especially with the rapid development of Internet-
of-Things (IoT) technology, data sharing on the cloud has
incorporated many new features, such as real-time and data
transmission intensiveness [6]. For instance, in an electronic
health system, the data owner may upload health data to
the cloud server in real time, and the uploaded data need
to be sanitized and stored by the cloud server. If all the
processing is handed over to the cloud server, it will cause
huge computational pressure on the server. Furthermore, as
the cloud server is usually far away from the data owner,
there will be a large delay caused by data transmission. To
mitigate the computing burden and reduce the transmission
latency, we should simplify the sanitizer’s operations and
possibly outsource it to a third party, which is only semi-
trusted.

Inspired by the access control encryption, we propose
in this paper a novel bidirectional access control scheme
by exploiting attribute-based encryption and proxy re-
encryption. The concept of bidirectional was introduced
in proxy re-encryption [7], and we use it to describe the
access control that restricts the capabilities of both senders
and receivers. Specifically, we introduce the edge server to
perform as a sanitizer, which can reduce the burden of cloud
server. When the edge server receives a data file from a
sender, it will check the validity of the information flow by
the predefined access policy. We differentiate access policy
and access structure in our scheme. In the access control
encryption, the access policy is denoted by a predicate
P : [n]× [n]→ {0, 1}. A sender Si is allowed to send files to
a receiver Rj only when P (i, j) = 1. In our scheme, the ac-
cess policy is defined by the central authority and is formed
as P : S × S → {0, 1}, where S stands for the attributes
of the users (senders and receivers). In addition, the access
structure is used for the attribute-based encryption. When a
sender wants to send a file to a receiver, the attributes of the
sender and the receiver must satisfy the access policy, e.g.
the sender and the receiver must have the same attributes
(the real access policy can be more complicated). If the
information flow is valid, the edge server will perform a
signature authentication to verify the identity of the sender
and then re-encrypt the data file. The sanitized data file will
be sent to the receivers, and be decrypted by those whose
attributes satisfy the access structure in the ciphertext.

1.1 Motivation and Contribution

While numerous fine-grained access control schemes have
been proposed for data sharing in the cloud [8], [9], most of
them have concentrated on allowing fine-grained access to
the encrypted data (e.g., restricting the decryption abilities
of the receivers). However, when the sender is dishonest,
the data may be shared with the receivers who should not
get the ciphertext.

In this work, we are motivated to address the above men-
tioned problem and proposed a secure cloud data sharing
scheme that can achieve more practical bidirectional access
control. To achieve this goal, we construct an attribute-based

access control encryption (AACE) that fulfills the aforemen-
tioned bidirectional fine-grained access control. Specifically,
cryptographic alone is insufficient for the access control
encryption [10], and requires a sanitizer to process all the
communication between the senders and receivers. So we
construct a secure fine-grained data sharing scheme by com-
bining the cloud server and the edge server. The edge server
is located in the middle of all communications, checking
and preventing illegal communication. To the best of our
knowledge, no systematic investigation of data sharing for
cloud-edge computing has been conducted. To fill this gap,
this paper makes the following major contributions:

• We develop a novel fine-grained data sharing frame-
work that combines the cloud side and the edge side.
In our scheme, we employ the edge server to perform
as a sanitizer that re-encrypts and routes the messages
between the senders and the receivers according to the
predefined information flow access policy.

• We present a formal definition of the attribute-based
access control encryption (AACE) method and its corre-
sponding security model. We exploit the attribute based
keyword search to realize a fine-grained data access
control at the receiver side.

• In addition, we use proxy re-encryption and signature
authentication to realize the information flow control of
the sender side. This process is performed before the
file reaches the receivers. Even if the sender sends a file
in plaintext, the receivers will receive a re-encrypted
ciphertext.

• Then we provide a concrete attribute based access con-
trol encryption (AACE) and a data sharing construction
based on the proposed AACE. Compared with many
existing cloud data sharing constructions, which as-
sume the sender is fully honest, we use a more practical
threat model where the sender can also be malicious,
thus requiring a higher security guarantee.

1.2 Related Work

Sahai and Waters [11] invented the notion of attribute-based
encryption (ABE). Unlike the traditional public-key encryp-
tion, ABE provides a more fine-grained access control of the
encrypted data. Goyal et al. [12] introduced the definitions of
key-policy ABE (KP-ABE) and ciphertext-policy ABE (CP-
ABE). ABE has been shown to have applications in many
areas, e.g., electronic health-record (EHR) systems [13] and
searchable encryption [14], [15]. However, in public cloud
storage, CP-ABE is more practical [16]. Although a variety
of protocols [17], [18] have been designed for cloud access
control using CP-ABE, many other challenges still exist.

Xue et al. [20] proposed an access control scheme for
encrypted cloud storage by combining the owner-side and
cloud side. They exploited a hybrid attribute-based encryp-
tion and a digital signature to ensure the access control on
the data user and the integrity of the message, respectively.
However, they did not consider the condition that the
sender may be malicious. To enhance the access control
functionality, Damgård et al. [5] conducted a study on ac-
cess control encryption (ACE). They used a novel control
on the information flow, both in terms of what the users
could read, as well as what they could send. Additional

3

TABLE 1
The comparison between our scheme and the related access control encryption

Scheme Assumption Predicate Ciphertext Size Sanitizer’s Key Size
Damgård et al. [5] Section 3 DDH or DCR Arbitrary O(2n) O(n)
Damgård et al. [5] Section 4 iO Arbitrary O(n) O(1)
Kim and Wu [10] DDH, RSA and LWE Arbitrary O(n) O(1)
Han et al. [19] DPBDHE and q-SDH Arbitary O(N) O(1)
Our scheme DLIN Arbitrary O(N) O(1)

* we compare our scheme with related schemes for predicates π : 0, 1n× 0, 1n → 0, 1, where n and N denotes the number of identities and
related attributes, respectively.

ACE applications have been proposed [21], [22]. Kim and
Wu [10] reduced the construction of an ACE scheme to a
proxy re-encryption scheme and presented a generic ACE
construction for general policies. Motivated by ACE, Han
et al. [19] proposed an information-flow control scheme
based on ABE, which can prevent corrupt senders from
sending messages to unauthorized receivers. However, it
is inefficient and cannot be applied directly to cloud-data
sharing. In Table 1, we provide the comparison between our
scheme and the related access control encryption in terms
of assumption, predicate, ciphertext size and the sanitizer’s
key size.

Blaze et al. [23] first introduced the proxy re-encryption.
It allows a proxy to process the message without leaking
the information of the encrypted message. Liang et al. [24]
introduced a CP-ABE scheme that supports policy updating
through the proxy re-encryption technique. After that, nu-
merous CP-ABE with policy updating using the technique
of proxy re-encryption have been proposed [25], [26]. Proxy
re-encryption is also widely used in user revocation schemes
[27], [28]. However, the proxy re-encryption in our scheme is
different from the existing schemes because the senders do
not need to generate a transformation key and the proxy just
performs a re-randomization on the ciphertext. We exploit
the proxy re-encryption to prevent a malicious sender from
directly sending a plaintext or screenshot to the receivers.

Recently, edge computing has become a new comput-
ing paradigm [29]. It decentralizes the computing power
and storage resources of the cloud to edge nodes closer
to users to provide low latency and high quality services
[30], [31]. In addition, it offers context awareness, mobility
and scalability which makes it widely used in the IoT
environment [32], [33]. Wang et al. [34] presented a novel
cloud-edge computing framework, where the cloud server
mainly processes large-scale data, while the edge side is
used to provide real time service. Combining the cloud
side and edge side can bring numerous benefits [35]. For
example, applying them to a traditional data sharing system
can alleviate the burden on the cloud, and users can enjoy
a series of high-quality services at a low latency [36], [37].
Furthermore, it can reduce the network bandwidth usage
by mitigating the data transmission from users to the cloud
[38].

1.3 Outline

The rest of this paper is organized as follows. In Section
II, we introduce the preliminaries and cryptographic prim-
itives involved in our scheme. Then we provide formal
definitions of the system and security models in Section III.
Next, we present a concrete construction in Section IV. We

then present the security proof and experimental results in
Sections V and VI, respectively. Finally, we conclude this
work in Section VII.

2 PRELIMINARIES

In this section we will describe the preliminaries that are
associated with our scheme. All the notations used in this
paper are summarized in Table 2.

TABLE 2
Notations

Notations Definitions

AS A set of sender’s attributes
AR A set of receiver’s attributes
λ A security parameter
p A large prime
Mi The ith row of the matrixM
Mi,j The (i, j)th element of the matrixM
c N-dimensional vector (c1, · · · , cn)
gc (gc1 , · · · , gc2)
negl(λ) A negligible function of λ
π An access policy
|| Concatenation operations
H1, H2 Two secure hash function that map {0, 1}∗ → G
H3 A secure hash function that map {0, 1}∗ → Zp

2.1 Access Structure and Monotone Span Program

Definition 1. (Access Structure [12]). Let P1, . . . , Pn be a
set of attributes. A collection A ⊆ 2P1,...,Pn is monotone
if ∀B,C : if B ∈ A and B ⊆ C , then C ⊆ A. A monotone
access structure is a monotone collection A of non-empty
subsets of P1, . . . , Pn, i.e. A ⊆ 2P1,...,Pn \ {∅}.

If U stands for the universe of attributes, a Monotone
Span Program (MSP) over Zp is given by a labeled matrix
M of n1 × n2 and a mapping: ρ : {1, . . . , n1} → U , which
maps the i-th row of M to an attribute in U . Let S be a
subset of U and I = {i|i ∈ {1, . . . , n1}, ρ(i) ∈ S} stands
for the rows ofM(every row is labeled by one literal). The
MSP(M, ρ) accepts S if there exists coefficients {γi}i∈I such
that: ∑

i∈I

γiMi = (1, 0, 0, . . . , 0) (1)

2.2 Bilinear Map and Dual Paring Vector Spaces

Let G1 and G2 denote two cyclic multiplicative groups of
prime order p, g1 is the generators of G1 and g2 is the gener-
ator of G2. The bilinear pairing is a map e : G1 ×G2 → GT

with the following properties:

4

• Bilinear: for all g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zp, we
have e(ga1 , g

b
2) = e(g1, g2)

ab

• Non-degenerate: e(g1, g2) 6= 1.
• Computability: it is efficient to compute e(g1, g2) for

all g1 ∈ G1 and g2 ∈ G2. A pairing is asymmetric if
G1 6= G2 and no efficient computable homomorphism
exists between them.

Dual Paring Vector Spaces(p,GT ,V ,V ∗,C,C∗) [39] is a
tuple of a prime p, a cyclic group GT of order p, two n-
dimensional vectors V ,V ∗ and their canonical bases: C :=
(c1, . . . , cn) of V and C∗ := (c∗1, . . . , c

∗

n) of V ∗ generated
by Dual(Zn

p) that satisfy the “dual orthonormal”, meaning
that:

ci · c
∗

j =

{
0 (mod p), i 6= j

δ (mod p), i = j
(2)

where δ is a random element of Zp. Then for g1 ∈ G1 and
g2 ∈ G2, we have that

e(gci

1 , g
c∗

j

2) = 1

whenever i 6= j, and 1 stands for the identity element in
GT .

2.3 Decision Linear Assumption

Let pG = (p,G1, G2, GT , g1, g2, e) ← Gen(1λ), where
Gen(1λ) is an asymmetric group generator, g1 is the
generator of G1 and g2 is the generator of G2. Let
D := (gx1

1 , gx2

1 , gx1

2 , gx2

2 , gx1r1
1 , gx2r2

1 , gx1r1
2 , gx2r2

2), T0 :=

(gr1+r2
1 , gr1+r2

2), T1 := (gr1, g
r
2) where x1, x2, r1, r2, r

R
←−

Zp, the advantage for all PPT adversaries A in solving the
decision linear problem is defined as

AdvADLIN (λ) : =
∣∣∣Pr[A(1λ, pG, D, T0) = 1]−

Pr[A(1λ, pG, D, T1) = 1]
∣∣∣ ≤ negl(λ)

The probability is taken over the randomness used by
A. Note that it is hard for all probabilistic polynomial
time adversaries A to distinguish T0 from T1 for pG ←
Gen, x1, x2, r1, r2, r ← Zp.

3 SYSTEM MODEL AND SECURITY MODEL

In this section, we describe the cloud-edge data sharing
framework proposed in our scheme. Furthermore, the se-
curity definitions are provided.

3.1 System Model

As shown in Fig. 1, the access control system consists of
five entities: cloud server, edge server, central authority, data
owners and data users.

• Central Authority (CA) is a fully trusted party that
initializes the system and generates the secret keys
for users (senders and receivers). In addition, it will
publish an information flow policy π : S×S → {0, 1} to
define the relationship between the attributes of senders
and receivers.

• Cloud Server (CS) is a semi-trusted party that provides
data storage service for users. When the receiver re-
quests a data file, cloud server will check whether the
receiver can decrypt the data file before downloading.

• Edge Server (ES) is a semi-trusted party that processes
the requests from the senders. To prevent malicious
senders from transmitting files to receivers, the edge
server will check the access policy to ensure that
the sender can share files with the receivers and re-
randomize the ciphertext. The edge server can cache
the data file for user downloading when it has sufficient
storage.

• Sender is the publisher of files. All the communications
must be routed by the edge server. Therefore, as shown
in the system model, the data file cannot be uploaded
to the cloud server directly.

• Receiver obtains data files from the edge server and
the cloud server. When the sender and the receiver are
located in the same area, the receiver can obtain the
shared file from the edge server directly. Otherwise, the
data file can be transferred to the edge server close to
the receiver and then forward to the receiver.

Remark 1. It is worth nothing that in practical applications,
there will be multiple edge servers, and there will be senders
and receivers in the area of each edge server. When the sender
and the receiver are in the same edge area, the time to upload
and download files is reduced. Otherwise, the receiver can get the
shared files from the cloud server through the closer edge server.
When the edge server has enough memory, it can cache the data
files. Because a group of users have the same decryption rights in
attribute based encryption, other users with the same decryption
rights can directly get the cached shared files from the edge server
when they download the files, thus reducing the download delay.

To achieve the fine-grained access control (provided in
Table 3), we consider three types of control among the
entities in our system:

TABLE 3
Fine-grained access control in our scheme

Access control Legal Receiver Illegal Receiver
Legal Sender X ×
Illegal Sender × ×

• Control I: Sender uses the attribute-based encryption to
encrypt the data file, which ensures the fine-grained
access control on receivers.

• Control II: The edge server ensures the validity of the
information flow through the predefined access policy.
If sender’s and receiver’s attributes satisfy the policy,
the communication will go on.

• Control III: The cloud server verifies whether the re-
ceiver can decrypt the data file before downloading,
which prevents a malicious receiver from downloading
the data files.

Next, we give the formal definition of attribute-based
access control encryption (AACE).

• Setup(1λ) → (msk,mpk): On inputting a security
parameter λ, the algorithm returns the master public
key mpk and the master secret key msk.

• Keygen(msk,AU, idi) → ski: On inputting the mas-
ter secret key msk and a set of attributes AU along with
an identity idi, the algorithm returns a secret key sk.

• Encrypt(mpk, (M, ρ), ski,msg) → ct: On inputting
the master public key mpk, access structure (M, ρ), a

5

Fig. 1. System model

message msg ∈ M and the sender’s secret key ski, the
algorithm returns a ciphertext ct.

• Sanitize(ct,mpk)→ ct′: On inputting a ciphertext ct
and the master public key mpk, the algorithm returns
the sanitized ciphertext ct′ or a invalid symbol ⊥.

• Decrypt(ct′, skj) → msg′: On inputting a sanitized
ciphertext ct′ and the receiver’s secret key skj , the
algorithm outputs a message msg′ or an invalid symbol
⊥.

Definition 2. (Correctness). An attribute based access con-
trol scheme ΠAACE is correct if for all messages msg ∈
M , and all attributes AS , AR ∈ U where π(AS , AR) =
1. Let (mpk ,msk) ← setup(1λ), sk ← keygen, ct ←
encrypt(ski ,msg), we have that

Pr[decrypt(skj , sanitize(mpk, ct)) = msg] = 1− negl(λ).

3.2 Security Model

The security notions (no-read up and no-write down) were
invented for the information flow control [10]. Recently,
it was improved to suit for an ACE scheme: the no-read
rule and the no-write rule [5]. In our scheme, the no-read
rule guarantees that only the privileged receivers should be
able to decrypt the data file. The no-write rule guarantees
that a sender can only share files with the receivers when
their attributes satisfy the access policy. Specifically, no
sender with attributes AS should be able to construct a
valid ciphertext which can be accessed by a receiver with
attributes AR whenever π(AS , AR) = 0. Here we give the
formal definitions.

Definition 3. (no-read rule). Let ΠAACE be an attribute based
access control encryption scheme. Given a security param-
eter λ and a bit b ∈ 0, 1, we define the no-read rule

experiment ExptreadΠAACE,A
(λ, b) between a challenger C and an

adversary A.

• setup: The challenger C runs setup(1λ) to obtain mpk,
msk, and gives mpk to A.

• key query: On inputting a set of attributes AU , the
challenger C returns a secret key sk = KeyGen(msk, S)
and gives it to A.

• challenge: On inputting a pair of messages
(msg0,msg1) and an access structure A, the challenger
C returns a ciphertext ct = Encrypt(mpk,A,msgb) and
gives it to A.

A outputs a bit b′ as the output of the game. An attribute
based access control encryption scheme is called no-read
rule security if the advantage for all PPT adversaries A is,

AdvAΠ (λ) : =
∣∣∣Pr[ExptreadΠ,A (λ, 0) = 1]−

Pr[ExptreadΠ,A (λ, 1) = 1]
∣∣∣ = negl(λ).

The no-read rule actually guarantees control I. An at-
tribute based access control encryption scheme that satisfies
the no-read rule security means that a non-privileged re-
ceiver cannot be able to decrypt the data file. And sender
anonymity is also required in the no-read rule. In our
scheme, we employ an anonymous identity to protect the
senders’ identity privacy.

Definition 4. (no-write rule). Let ΠAACE be an attribute
based access control encryption scheme. Given a security
parameter λ and a bit b ∈ 0, 1, we define the no-write rule
experiment ExptwriteΠAACE,A

(λ, b) between a challenger C and an
adversary A.

• setup: The challenger C runs Setup(1λ) to obtain mpk,
msk, and gives mpk to A.

6

• key query: On inputting a set of attributes AU , the
challenger C returns a secret key sk = KeyGen(msk, S)
and gives it to A.

• challenge: On inputting a ciphertext ct and an ac-
cess structure A, the challenger sets ct0 = ct.
Then it uniformly selects a message msg′ ←
M and returns a sanitized ciphertext ct1 =
Sanitize(Encrypt(mpk,A,msg′),A) and gives it to A.

A outputs a bit b′ as the output of the game. An attribute
based access control encryption scheme is called no-write
rule security if the advantage for all PPT adversaries A is,

AdvAΠ (λ) : =
∣∣Pr[Exptwrite

Π,A (λ, 0) = 1]−

Pr[Exptwrite
Π,A (λ, 1) = 1]

∣∣ = negl(λ).

The no-write rule actually guarantees control II, and
ensures that even a legal sender should not be able to share
files with the specified receiver if they do not satisfy the
access policy.

4 OUR CONSTRUCTION

In this section, we will describe the cloud-edge data sharing
system design. Firstly, we will give a detailed description
of the AACE algorithm. Then we will describe the specific
operations of the system.

4.1 The Proposed AACE Algorithm

First, function Setup() is run by the central authority (CA)
to generate the master public and secret key pair. The
process of this function is given in Function 1.

Function 1: Setup

INPUT: The secret parameter 1λ.
OUTPUT: The master public key mpk and master secret key msk.

1) CA runs an asymmetric group generator Gen(1λ) to obtain
(p,G1, G2, GT , e, g1, g2), where g1 and g2 are the generators
of G1 and G2, respectively.

2) Let S be a set of attributes. CA publishes a policy π : S × S
to define which senders can communicate with the specified
receivers. It then picks a1, a2, b1, b2 ← Z∗

p , d1, d2, d3 ← Zp.
3) Finally it returns (g1, g2, h1 = g

a1

2 , h2 = g
a2

2 , T1 =
e(g1, g2)d1a1+d3 , T2 = e(g1, g2)d2a2+d3) as the master pub-

lic key mpk, and outputs (a1, a2, b1, b2, g
d1
1 , g

d2
1 , g

d3
1) as the

master secret key msk.

Second, function KeyGen() is run by the central au-
thority (CA) to generate the public and secret key pair for
the user. The process is given in Function 2.

Third, function Encrypt() is run by the sender to en-
crypt the message. The process of this function is given in
Function 3.

Fourth, function Sanitize() is run by the edge server to
sanitize the ciphertext. The process of this function is given
in Function 4.

Finally, function Decrypt() is run by the data receiver
to recover the message. The process of this function is shown
in Function 5.

Function 2: KeyGen

INPUT: The master secret key msk, user identity idi and his
attribute sets AU .
OUTPUT: User’s secret key and public key.

1) Select r1, r2 ← Zp and compute:

sk0 = (sk0,1, sk0,2, sk0,3) = (gb1r12 , g
b2r2
2 , g

r1+r2
2)

2) For attributes y ∈ AU and t = 1, 2, CA selects σy ← Zp and
computes:

sky,t = H1(y1t)
b1r1
at ·H1(y2t)

b2r2
at ·H1(y3t)

r1+r2
at · g

σy
at
1

and sets sky = (sky,1, sky,2, sky,3), where sky,3 = g
−σy

1 .
3) Select σ′ and compute:

sk′t = g
dt
1 ·H2(11t)

b1r1
at ·H2(12t)

b2r2
at ·H2(13t)

r1+r2
at · g

σ′

at
1

and set sk′ = (sk′1, sk
′
2, sk

′
3), where sk′3 = g

d3
1 · g

−σ′

1 .
4) Run Dual(Z4

p) algorithm to obtain two orthonormal bases C

and C∗. And then choose α ∈ Z∗
p to compute pk = (T3 =

e(g1, g2)αc1c
∗

1 , h3 = g
c1

1 , h4 = g
c2

1 , h5 = g
H3(idi)
1) as the

public key and skθ = (α, g
c
∗

1

2 , g
c
∗

2

2) as the signature key.
5) Output the secret key (sk0, sky{y∈AU}, sk

′, skθ) and the pub-
lic key pk.

Function 3: Encrypt

INPUT: The master public key mpk, access structure (M, ρ) and a
message msg.
OUTPUT: The ciphertext CT .

1) The sender selects s1, s2 ← Zp and computes:

ct0 = (ct0,1, ct0,2, ct0,3) = (ga1s1
2 , g

a2s2
2 , g

s1+s2
2)

2) SupposeM is a n1×n2 rows matrix. Then for i ∈ {1, . . . , n1}

and l ∈ {1, 2, 3} it computes:

cti,l = H1(ρ(i)l1)
s1

·H1(ρ(i)l2)
s2

·

n2∏

j=1

[H2(jl1)
s1

·H2(jl2)
s2]Mi,j

and sets cti = (cti,1, cti,2, cti,3).
3) Compute ct′ = T

s1
1 T

s2
2 · msg and set ct =

(ct0, ct1, . . . , ctn1
, ct′) as the ciphertext.

4) To prove the sender’s identity, it selects r ∈ Z∗
p and a set

of attributes AR satisfying the access structure (M, ρ) then
computes:

β = H3(h5||T ||CT ||AS ||AR), θ = g
(α+rβ)c∗

1
−rc∗

2

2

where AS is a subset of the sender’s attributes that satisfy the
access policy π(AS , AR) = 1 and T is the current time.

5) Then the sender sends (ct, pk, T,AS , AR, θ, (M, ρ)) as the
ciphertext CT to the edge server.

4.2 System Operations

The AACE scheme is designed for cloud-edge data sharing.
The whole process of AACE includes system initialization,
user registration, file sharing, file sanitize, and file access
operations. The main operations are shown in Fig.2.

1) System initialization: In this phase, CA runs the setup al-
gorithm to obtain a master public key mpk and master
secret key msk.

2) User registration: When a user enters the data sharing
system for the first time, CA will run keygen→ (pk, sk)

7

Function 4: Sanitize

INPUT: The ciphertext CT .
OUTPUT: The sanitized ciphertext CT ′.

1) Edge server first checks the freshness of the message, and
rejects the message if it is not fresh.

2) Edge server then checks whether the sender can share data

files with the receiver through the access policy π(AS , AR)
?
=

1. If the sender’s attributes and receiver’s attributes satisfy
the policy, edge server will verify the validity of the received
message.

3) Edge server checks whether the equation: e(gc1+βc2
1 , θ) =

T3 holds to verify the validity of the received message. If it
does not hold, the sanitizer rejects the message; Otherwise,
the edge server accepts the message.

4) If the above process succeeds, the edge server selects s′1, s
′
2 ←

Zp and rerandomizes the ciphertext:

ct′0 = (ct0,1 · h
s′1
1 , ct0,2 · h

s′2
2 , ct0,3 · g

s′1+s′2
2)

= (g
a1(s1+s′1)
2 , g

a2(s2+s′2)
2 , g

s1+s2+s′1+s′2
2)

5) For i ∈ {1, . . . , n1} and l ∈ {1, 2, 3} it computes:

ct′i,l = cti,l ·H1(ρ(i)l1)
s′1 ·H1(ρ(i)l2)

s′2

·

n2∏

j=1

[H2(jl1)
s′1 ·H2(jl2)

s′2]Mi,j

ct′′ = ct′ · T
s′1
1 · T

s′2
2 and set ct′i = (ct′i,1, ct

′
i,2, ct

′
i,3).

6) Finally it outputs the sanitized ciphertext CT ′ =
(ct′0, ct

′
1, . . . , ct

′
n1

, ct′′).

Function 5: Decrypt

INPUT: The master public key mpk, the sanitized ciphertext CT ′

and the secret key sk.
OUTPUT: The recorded message msg.

1) The receiver parses the ciphertext CT ′ as
CT = (ct0, ct1, . . . , ctn1

, ct′) and the secret key
sk = (sk0, skyy∈S , sk

′, skσ).
2) If the attributes in the secret key sk satisfy the access structure

(M, ρ) in ciphertext CT, then according to Eq. (1) we can
always find a set of constants γi{i=1,...,n1}

that satisfy the
equation, then compute:

C = ct
′
· e(

n1∏

i=1

ct
γi
i,1, sk0,1) · e(

n1∏

i=1

ct
γi
i,2, sk0,2)

· e(

n1∏

i=1

ct
γi
i,3, sk0,3)

D = e(sk′
1 ·

n1∏

i=1

sk
γi

ρ(i),1, ct0,1) · e(sk
′
2 ·

n1∏

i=1

sk
γi

ρ(i),2, ct0,2)

· e(sk′
3 ·

n1∏

i=1

sk
γi

ρ(i),3, ct0,3)

3) Then it recovers and outputs the message as msg = C
D

.

to generate a pair of keys, and return them to the user
(senders and receivers).

3) File sharing: The sender employs a searchable encryp-
tion scheme to encrypt data file and then uses the
proposed AACE algorithm to encrypt the encryption
key k and the associated file tag t. Let ctm = SE(k,m)
denote the encryption of the sharing data and ctk =
AACE.Encrypt(pp, (k, t)) to be the encryption of the

Fig. 2. System operations

keys and the file tag. After that, the sender computes
a token tkn = PRF (k, t) where PRF is a pseudo-
random function keyed by k. The token will be used
for the downloading authentication, since only the re-
ceivers whose attributes satisfy the access policy can
decrypt the ciphertext ctk. Then the token along with
(ctm, ctk) will be sent to the edge server.

4) File sanitizing: When the edge server receives tkn and
(ctm, ctk) from the sender, it first runs the sanitize

algorithm to process the ctk. If the sender can share
the data with the specified receivers, the edge server
will send (tkn, ctm) to the cloud server and broadcast
the sanitized ciphertext ct′k to all receivers.

5) File access: The receiver uses his secret key to decrypt
the ct′k, when the attributes in his keys satisfy the access
structure, then he can retrieve the message (k, t). Then
he computes tkn = PRF (k, t) and sends this to the
cloud server. If the token is valid, the cloud server will
retrieve the data file and send it to the edge server closer
to the receiver.

5 SECURITY ANALYSIS OF OUR SCHEME

In this section, we first analyze the correctness of our con-
struction and then provide a formal security proof of our
scheme. Specifically, we deduce the correctness and security
to the underlying primitive. From the proof we can conclude
that our scheme satisfies the no-read rule security and the
no-write rule security.

5.1 Correctness Analysis

For a valid signature θ = g
(α+rβ)c∗

1
−rc∗

2

2 , it holds

e(gc1+βc2

1 , θ) = e(gc1+βc2

1 , g
(α+rβ)c∗

1
−rc∗

2

2)

= e(g1, g2)
(α+rβ)c1c

∗

1−rβc2c
∗

2 = e(g1, g2)
αc1c

∗

1 = T3

For a sanitized ciphertext CT ′,

D = e(sk′
1 ·

n1∏

i=1

sk
γi

ρ(i),1, ct0,1) · e(sk
′
2 ·

n1∏

i=1

sk
γi

ρ(i),2, ct0,2)

· e(sk′
3 ·

n1∏

i=1

sk
γi

ρ(i),3, ct0,3)

= e(sk′
1, ct0,1) · e(sk

′
2, ct0,2) · e(sk

′
3, ct0,3) · e(

n1∏

i=1

sk
γi

ρ(i),1, ct0,1)

· e(

n1∏

i=1

sk
γi

ρ(i),2, ct0,2) · e(

n1∏

i=1

sk
γi

ρ(i),3, ct0,3)

8

Then we take the first component gdt

1 of sk′i and compute,

e(gd1

1 , ct0,1) · e(g
d2

1 , ct0,2) · e(g
d3

1 , ct0,3)

= e(g1, g2)
d1a1(s1+s′1) · e(g1, g2)

d2a2(s2+s′2)

· e(g1, g2)
d3(s1+s′1+s2+s′2) = T

s1+s′1
1 · T

s2+s′2
2

which can be divided by the ct′ in the sanitized ciphertext,
and for the rest components in C and D,

n1∏

i=1

ct
γi

i,l =

n1∏

i=1

·H1(ρ(i)l1)
(s1+s′1)γi

·H1(ρ(i)l2)
(s2+s′2)γi

·

n2∏

j=1

[H2(jl1)
(s1+s′1)

·H2(jl2)
(s2+s′2)]γiMi,j

=

n2∏

j=1

[H2(jl1)
(s1+s′1)

·H2(jl2)
(s2+s′2)]

∑n1
i=1

γiMi,j

·

n1∏

i=1

·H1(ρ(i)l1)
γi(s1+s′1)

·H1(ρ(i)l2)
γi(s2+s′2)

= H2(1l1)
(s1+s′1)

·H2(1l2)
(s2+s′2)

·

n1∏

i=1

·H1(ρ(i)l1)
γi(s1+s′1)

·H1(ρ(i)l2)
γi(s2+s′2)

Then it is easy to see that the rest components in C and D
are equal.

5.2 Security Analysis

Firstly, we will use some compact representations to sim-
plify the proof. Following [40], in our scheme, [x]1 stands
for gx1 , [y]2 stands for gy2 and [z]T stands for e(g1, g2)

z . For a
column vector v := (v1, . . . , vn)

T , [v]1 is a n-dimensional
tuple (gv1

1 , . . . , gvn

1)T . It is similar for a matrix M. And
for two matrices A,B, [ATB]T denotes e([A]1, [B]2). The
outputs of Samp(λ) is

Z :=

u1

0
1

0
u2

1

 , z⊥ :=

u−1
1

u−1
2

−1

 ,

where u1, u2
R
←− Z∗

p . If we set

A =

a1
0
1

0
a2
1

 , r =

[
r1
r2

]
, r′ =

r1
r2
r

then we can rewrite the DLIN assumption as

([A]1, [A]2, [Ar]1, [Ar]2) ≈ ([A]1, [A]2, [r
′]1, [r

′]2)

where the symbol ≈ means the former is indistinguishable
from the latter.

Theorem 1. Our attribute based access control encryption
scheme satisfies the no-read rule if no adversary can efficient
break the experiment ExptreadΠAACE,A

(λ, b) with a nonnegligible
probability.

Proof. We use a series of hybrid experiments to prove the
security. The zeroth hybrid experiment, Hyb0, is of course
the AACE security experiment ExptreadΠAACE,A

(λ, b). At first C
runs the setup algorithm to initialize the system and obtain
mpk and msk. It then generates the public-secret key pair
(pk, sk) ← keygen and gives mpk, pk to A. Upon receiving
a query from A, C runs the keygen algorithm as in the real

scheme to interact withA. WhenAmakes a challenge query
with a pair of messages msg0,msg1 ∈ M, the challenger
C answers the queries by computing the encrypt(sk,msgb)
algorithm.

We first revise the experiment. This modified form will
be the first hybrid experiment, Hyb1. The modified experi-
ment ExptreadΠAACE,A

(λ, b) is defined as follows

setup: Run the group generator to obtain the public
parameters as before. Then use the Samp(p) algorithm to

obtain (A,a⊥), (B, b⊥). Select d1, d2, d3
R
←− Zp and set

d = (d1, d2, d3)
T be a column vector. Finally, it outputs

mpk := ([A]2, [d
TA]T) and msk := (pp,A,B, [d]1).

key query: The challenger C maintains two lists L1 and
L2 to simulate the random oracle. The entries of L1 is
formed by (x,Wx) or (j,Uj) where x ∈ {0, 1}∗ and j ← Z∗

p

, and Wx,Uj are 3× 3 matrices over Zp. And the entries of
L2 is formed by (q, r) where q denotes the query that A will
make, and r is an element in G. When A makes a query of
xlt, for l ∈ {1, 2, 3} and t ∈ {1, 2}, C first checks whether
the query (xlt, r) has been queried in L2. If the query exists,
C returns r, otherwise C checks whether (x,Wx) in L1. If
yes, C will compute r := [(W T

x A)l,t]1, then returns r and
appends (xlt, r) to L2. Otherwise, it picks a random 3 × 3
matrices Wx and appends (x,Wx) to L1, then C computes
r as the former case and appends (xlt, r) to L2. Finally, r
is given to A. When the query is 0xlt, C checks whether
the query (0jlt, r) can be found in L2. If the query exists, C
returns r, otherwise C checks whether (j,Uj) in L1. If yes,
C will compute r := [(UT

j A)l,t]1, then append (0jlt, r) to
L2 and return r. Otherwise, it picks a random 3×3 matrices
Uj and appends (j,Uj) to L1, then C computes r as the
former case and appends (0jlt, r) to L2. Finally, r is given
to A. When the query is anything else, C checks whether
(q, r) has been queried in L2. If yes, then C returns r. Else, C
selects r′ ∈ G and appends (q, r′) to L2. Finally, r′ is given
to A.

Upon receiving a key query Q from A, C first checks
whether the query has been made. For every y ∈ Q,
if (y,Wy) or U1 cannot be found in list L1, then C
generates them in the above way. Otherwise C computes
sk0 = [Br]2, sky = [WyBr + σya

⊥], and sk′ = [d +
U1Br + σ′a⊥]1, where r1, r2, σ

′, σy are randomly picked
from Zp, and r denotes a 2-dimensional vector (r1, r2)

T .
Finally, (sk0, {sky}y∈S , sk

′) is given to A.

encryption query: When C receives a message msg and
an access policy (M, ρ) from A, C first checks whether the
query has been made. If [(W T

ρ(i)A)l,t]1 or [(UT
j A)l,t]1 can-

not be found in list L2, then C generates them in the above
way. Otherwise C computes ct0 = [As]2, cti = [W T

ρ(i)As +∑n2

j=1(M)i,jU
T
j As]1, and ct′ = [dTAs]T · msg, where s1

and s2 are randomly picked from Zp, and s denotes a 2-
dimensional vector (s1, s2)

T . Finally, (ct0, {cti}i=1,...,n1
, ct′)

is given to A.

sanitize query: When C receives a query of
(ct, AS , AR, θ, (M, ρ)), if AS and AR satisfies
π(AS , AR) = 1 and the signature is valid, then he checks
whether the query has been made. If [(W T

ρ(i)A)l,t]1
or [(UT

j A)l,t]1 cannot be found in list L2, then C
generates them as the Encryption query does. Otherwise
C computes ct′0 = ct0[As′]2, ct

′
i = cti[W

T
ρ(i)As′ +

9

∑n2

j=1(M)i,jU
T
j As′]1, and ct′′ = ct′[dTAs′]T , where

s1 and s2 are randomly picked from Zp, and s′

denotes a 2-dimensional vector (s′1, s
′
2)

T . Finally,
(ct′0, {ct

′
i}i=1,...,n1

, ct′′) is given to A.
challenge: A requests a pair of messages (msg0,msg1),

the challenger selects a random bit b and runs the encrypt
and sanitize algorithm to obtain a sanitized ciphertext ct′.
Finally, A outputs a bit b′.

Lemma 1. If ΠABE is a fully secure attribute scheme, then
the above construction is a secure attribute based access control
encryption scheme.

Proof. Suppose there exists an efficient adversary A that can
break the no-read rule experiment. Then we can construct
an adversary A′. A′ is given the input 1λ and access to
all the query oracle. When A makes an encryption query
on a message msg ∈ M, A′ runs a encryption query and
returns a ciphertext. When A queries its sanitize oracle on
a ciphertext ct, A′ runs a sanitize query and returns the
sanitized ciphertext. When A makes a challenge query and
outputs a bit b′.A′ outputs 1 ifA succeeds, and 0 otherwise.
We assume all the query oracle is random oracle, the view of
A when run as a subroutine of A′ is distributed identically
to the view of A in Πread

AACE,A. Thus

Pr|Πread
AACE,A′ = 1| − Pr|Πread

A = 1| = negl(λ)

Since the security of our attribute based access control
encryption can be reduced to the DLIN assumption, and the
detailed proof can be found in [41]. That means Pr|Πread

A =
1| = negl(λ) and thus Pr|Πread

AACE,A′ = 1| = negl(λ).
We can conclude that our attribute based access control
encryption satisfies the no-read rule.

Theorem 2. Our attributes access control encryption satisfies the
no-write rule if no adversary can efficiently break the experiment
ExptwriteΠAACE,A

(λ, b) with a nonnegligible probability.

Lemma 2. If no efficient adversary can forge a valid signature
with a nonnegligible probability, then our Construction satisfies
the no-write rule.

At the beginning, we will describe the experiment in the
same way to simplify the proof.

key query: When receiving an identity idi, C runs Dual(·)
to obtain two orthonormal bases C,C∗, and computes
pk = ([αd1d

∗
1]T , [d1]1, [d2]1), sk = (α, [d∗

1]2, [d
∗
2]2). Then

it returns (pk, sk), and pk is given to A.
signature query: When A makes a signature query, C

picks r
R
⇐= Zp and computes θ = [(α+r·H(msg))d∗

1−rd
∗
2]2

as the signature.
verify: On inputting a key pair (pk, sk), a message msg ∈

M , and a signature θ, it outputs 1 if and only if e([d1 +
H(msg)d2]1, θ) = [αd1d

∗
1]T .

challenge: A is given pk and the access to the signature
query oracle. We use Q to denote the query set thatAmakes.
Note thatA can make as many queries as it wants. Finally,A
outputs (msg, θ). A succeeds if and only if verify(msg, θ) =
1 and msg /∈ Q. In this case, the experimental output is
defined to be 1.

Proof. It is clear that for any malicious encryptor, if he can-
not forge a valid signature, the edge server would terminate

the communication and drop the message. The messages
will not be delivered to the receivers. So the no-write rule
is reduced to the security of the signature. Next, we will
provide the proof.

Lemma 3. If Π is a secure signature scheme and H is a secure
hash function, then the above construction is a secure signature
scheme.

Proof. Let Π′ denote the above construction, and A′ be an
efficient adversary. Q denotes a set of queries A has made,
whose entries are formed by (msg, θ), and let (msg′, θ′)
denote the final output of A′. We assume that msg′ /∈ Q.
We define col to be the event that H(msg) = H(msg′).
Then we have

Pr|Π
′(forge)
A′ = 1|

= Pr|Π
′(forge)
A′ = 1 ∧ col|+ Pr|Π

′(forge)
A′ = 1 ∧ col|

≤ Pr|col|+ Pr|Π
′(forge)
A′ = 1 ∧ col|

(3)

Subsequently, we show that both terms in the above
equation are negligible to complete the proof. Intuitively,
Pr|col| is negligible by the collision resistant of H , and the
second term is negligible. Firstly, we construct the following
algorithm to find a collision in H .

• Run key query to get pk and give it to A′.
• A′ makes a signature query of msgi, the algorithm

computes θ = [(α + r · H(msgi))d
∗
1 − rd∗

2]2 and adds
(msgi, θ) to the query list Q. Finally θ is given to A′.

• When A′ outputs (msg′, θ′), if there exists a message
msgi ∈ Q that H(msg′) = H(msgi), then the algo-
rithm outputs (msg′,msgi).

Let us analyze the above algorithm. When running the
above algorithm to get a signature, the view of A′ is dis-
tributed identically to the view of A′ in the experiment

Π
′(forge)
A′ . Particularly, the signature given to A′ in the above

algorithm has the same distribution as the signature that

A′ obtained in the experiment Π
′(forge)
A′ . Thus, when the

collision occurs, we have

Pr|Hash− colH = 1| = Pr|col|.

Since H is a secure hash function, we can conclude that
Pr|col| is negligible. We then show that the second term
is negligible. Let A be an adversary that attacks Πsig in

Π
′(forge)
A′ , the adversary A is given access to the signature

query as the above algorithm. When A′ makes a query
of msgi, A computes m̂sgi = H(msgi) and requests a
signature θ on m̂sgi. Finally, θ is given to A′. When A′

outputs (msg′, θ′), A outputs (H(m̂sg′), θ̂′).

Consider the above experiment Π
(forge)
A

, the view of A′

when run as a subroutine by A is distributed identically

to the view in the experiment Π
′(forge)
A′ . Whenever both

Π
′(forge)
A′ = 1 and the collision col does not occur, A outputs

a valid forgery. That means,

Pr|Π
(forge)
A

= 1| = Pr|Π
′(forge)
A′ ∧ col|

Since Π is a secure signature scheme, the detail proof can be
found in [42]. we can conclude that the former probability
is negligible. This concludes the proof of the lemma.

10

TABLE 4
Comparisons of computation overhead

Schemes Keygen Encrypt Sanitize Decrypt
Han et al. [19] (T + 2)e1 + 2e2 (2n1 + 5)e1 + (n1 + 5)e2 + 2et + 2p (n1 + 2)e1 + (n1 + 1)e2 + 14p (I + 3)p
HAPRE [26] 2e1 + (2T + 6)e2 + et (n1 + 1)e1 + (4n1)e2 + et n1et + (3n1 + 1)p 3p
Our scheme (9T + 20)e1 + 11e2 + et 6(n1n2 + n1)e1 + 7e2 + 2et 6(n1n2 + n1)e1 + 3e2 + 2et 6p

* e, p indicate the exponentiation and pairing operations, the subscripts of them indicate which group they operate on. T denotes the number
of attributes used in key generation, I denotes the number of attributes used in decryption.

5 10 15 20 25 30 35 40 45 50
Number of attributes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m
e
(s
)

Han
Our
HAPRE

(a) keygen

5 10 15 20 25 30 35 40 45 50
Number of attributes

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Ti
m
e
(s
)

Han
Our
HAPRE

(b) encrypt

5 10 15 20 25 30 35 40 45 50
Number of attributes

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ti
m
e
(s
)

Han
Our
HAPRE

(c) sanitize

5 10 15 20 25 30 35 40 45 50
Number of attributes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m
e
(s
)

Han
Our
HAPRE

(d) decrypt

Fig. 3. Computation overhead under the same settings.

TABLE 5
benchmark time of different operations (ms)

Groups Multiplication Exponentiation Hash Pairing
G1 0.002 0.879 0.062

4.778G2 0.021 6.118 16.322
GT 0.007 1.598 -

6 PERFORMANCE EVALUATION

In this section, the computation and communication over-
head of the proposed scheme are evaluated and compared
with other schemes [19], [26]. In Table 4, we provide a
comparison of computation overhead to analyze the perfor-
mance of these schemes in the key generation, encryption,
sanitization and decryption. Moreover, a comparison of
communication overhead is provided in Table 6 with regard
to the size of the user key, the size of the ciphertext and
the size of the sanitized ciphertext. They are the theoreti-
cal analysis of the proposed scheme and the comparative
schemes, and they indicate the reasons for the difference
between these schemes.

In order to verify the comparison in Table 4 and Table 6,
we implement these schemes using the charm 0.50 frame-
work in Python 3.6 on a laptop with Intel(R) Core(TM) i5-
4210M CPU and 8 GB memory running Ubuntu 18.04. Par-
ticularly, since the symmetric bilinear pairings have serious
security issues [43], we use the MNT224 curve for pairings.
We use the access policy like ‘A1 and A2 and · · · and An’
which ensures that all the n attributes are involved in the
decryption procedure. In our experiments, the running time
is computed by calculating the average of running each
procedure 10 times with the same input. The experimental
results can be found in Fig. 3 and Fig. 4. In Table 5 we list
the benchmark time (in millisecond) of different operations
on MNT224 curve.

First, we analyze the computation overhead of these
schemes. As shown in Table 5, the exponentiation and
pairing operations are the most time-consuming. And the
exponentiation operation on G2 requires much longer time

than the exponentiation operation on G1 and GT .

It can be seen from Table 4 that the scheme proposed
by Han et al. [19] requires the least exponential operation
on G2. The proposed scheme requires more exponentiation
operations on G1. And HAPRE [26] requires the most ex-
ponentiation operations on G2. Therefore, the experimental
results depicted in Fig. 3(a) show that the scheme of Han
et al. [19] performs best in key generation. The proposed
scheme does not perform very well, but it is fully secure
under standard assumption which achieves better security.
In addition, it is admissible for a central authority with
relatively large computation power.

From Table 4 we can find that the proposed scheme re-
quires the least exponentiation operations on G2. However,
HAPRE [26] requires the most exponentiation operations on
G2. Therefore, from the experimental results depicted in Fig.
3(b) we can see that the proposed scheme performs best in
encryption. Since the sanitization of the proposed scheme
and Han’s scheme [19] are similar to the encryption, we
will not analyze it separately. As HAPRE [26] is actually an
outsourcing decryption scheme, the sanitization requires a
large number of pairing operations to partially decrypt the
ciphertext. The experimental results can be found in Fig.
3(c). We can see that the proposed scheme still has superior
performance.

It can be seen from Table 4 that the decryption time is
mainly related to the number of pairing operations. HAPRE
[26] outsources a large number of pairing operations to the
sanitization step, so it needs the least decryption time. The
required pairing operation of decryption of Han et al. [19] is
linear with the number of attributes used in the decryption,
so it takes the most time. The pairing operation required in
decryption of the proposed scheme is independent of the
number of attributes, so it also has the better performance.
The experimental results can be found in Fig. 3(d). We can
see that the decryption of the proposed scheme only takes
about 0.02s. It is almost as good as HAPRE [26] which uses
outsourcing decryption. Besides, the computation overhead
of the proposed scheme in setup takes about 0.02s and it

11

TABLE 6
Comparisons of communication overhead

Schemes User key size Ciphertext size Sanitized ciphertext size
Han et al. [19] (T + 1)τG1 + 2τG2 (n1 + 5)τG1 + (n1 + 5)τG2 + 2τGT (n1 + 2)τG1 + (n1 + 1)τG2 + τGT

HAPRE [26] (T + 1)τG1 + (T + 2)τG2 (n1 + 1)τG1 + (2n1 + 1)τG2 + τGT 2τG1 + 2τG2 + τGT

Our scheme 3(T + 1)τG1 + 5τG2 3n1τG1 + 4τG2 + τGT 3n1τG1 + 3τG2 + τGT

* τG1, τG2, τGT are the sizes of elements in group G1, G2 and GT , respectively. T is the number of attributes. n1 is the rows of the access
matrixM. Note that the element on G2 is 3 times the size of the element on G1 in MNT224 curve.

10 20 30 40 50
Number of attributes

0
2
4
6
8

10
12
14

Si
ze
 (K

B)

Han
Our
HAPRE

(a) user key size

10 20 30 40 50
Number of attributes

0

5

10

15

20

25

Si
ze
 (K

B)

Han
Our
HAPRE

(b) ciphertext size

10 20 30 40 50
Number of attributes

0
2
4
6
8

10
12
14

Si
ze
 (K

B)

Han
Our
HAPRE

(c) sanitized ciphertext size

Fig. 4. Communication overhead under the same settings.

128 256 512 1024 2048 4096
File size (KB)

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

Ti
m
e
(s
)

With edge server
Without edge server

(a) upload file

128 256 512 1024 2048 4096
File size (KB)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Ti
m
e
(s
)

Case 1
Case 2
Case 3

(b) download file

Fig. 5. Transmission overhead

takes only about 0.04s for the edge server to determine
whether a sender can share files with the receiver, which
are both very small constants.

Second, we analyze the communication overhead of
these schemes. Before the analysis, we need to recall that
the element on G2 is 3 times the size of the element on G1

in the MNT224 curve. From Table 6, we can see that the
user key of Han et al. [19] has the fewest elements on G2.
The proposed scheme has the fewest elements on G2 in the
ciphertext. Furthermore, the sanitized ciphertext of HAPRE
[26] is partially decrypted, so the sanitized ciphertext in their
scheme is the smallest and does not change with the increase
of the number of attributes. The experimental results can be
found in Fig. 4. Note that the results are both evaluated by
encrypting a random element in GT . Because the sharing
data usually is very large, the typical method is to use a
KEM method wherein ABE is used to encrypt a random
element in GT and use the random element to generate a
key K . Then the shared data is encrypted using the key K
through an efficient symmetric encryption scheme. Thus the
communication cost is reduced to the cost of transmitting
an encryption of key K . Although the users’ key size in our
scheme is the largest in these schemes, in fact, even when
the number of attributes is 50, the key size is only about 14
KB.

In order to evaluate the overhead in the actual transmis-
sion process, we used three cloud servers to simulate the

local user, edge server and cloud server, respectively. The
local user and the edge server are located in the same city,
the cloud server is located in the other city. The bandwidth
is set to be 50Mbps and the size of the test file is from 128
KB to 4096 KB. The results are generated by caculating the
average of 100 statistics obtained every 5 minutes. It can
be seen from Fig. 5(a) that the upload time that the file is
sanitized by the edge server and then uploaded to the cloud
server is basically the same as the time that the file is directly
uploaded from the local to the cloud server for sanitization.
In Fig. 5(b), Case 1 represents that the data sender and the
data receiver are in the same area, and the data user can
download the file directly from the edge server; In Case 2,
the data sender and the data receiver are not in the same
area. In this case, the data file can be obtained from the
cloud server through the edge server close to the receiver;
In Case 3, when the edge server is not used, users need to
download files directly from the cloud server. The results
show that using the edge server to forward the file will
significantly reduce the time of downloading a data file in
Case 1. And in Case 2, the transmission time is basically the
same as the time of Case 3. Although the download process
in Case 2 may increase the communication overhead, it is
worth noting that in the attribute-based encryption, a group
of users usually have the same decryption rights. Therefore,
when the cloud server files are sent to the edge server,
other users with the same attributes can get the data directly
from the edge serve, thus reducing the transmission cost of
data download. The above analysis of experimental results
shows that we can use edge servers to process messages and
forward them, leading to the lower communication delay.
Therefore, our construction is efficient and practical.

7 CONCLUSION

In this paper, we proposed a novel practical attribute-
based access control encryption scheme for cloud-edge data
sharing, which not only enforces the access control of the
encrypted data, but also restricts the information flow of the
shared data. The scheme satisfied the no-read and no-write

12

rules, which means it is secure against malicious senders
and non-privileged receivers. Then, we presented the op-
erations of the cloud-edge data sharing system. Finally,
we implemented the proposed construction to investigate
its performance. The experimental results showed that the
proposed scheme is efficient and practical.

ACKNOWLEDGMENTS

The work was supported by the National Natural Sci-
ence Foundation of China (No. U1936220, No. 62011530046,
No. 61872001), the Special Fund for Key Program of
Science and Technology of Anhui Province, China (No.
202003A05020043), the Open Fund for Discipline Construc-
tion, Institute of Physical Science and Information Tech-
nology, Anhui University. The authors are very grateful to
the anonymous referees for their detailed comments and
suggestions regarding this paper.

REFERENCES

[1] J. Wei, W. Liu, and X. Hu, “Secure data sharing in cloud com-
puting using revocable-storage identity-based encryption,” IEEE
Transactions on Cloud Computing, pp. 1–1, 2016.

[2] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proceedings of the 2012 ACM Conference
on Computer and Communications Security. Association for Com-
puting Machinery, 2012, p. 965–976.

[3] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” IEEE
Transactions on Parallel and Distributed Systems, pp. 222–233, 2014.

[4] W. Sun, S. Yu, W. Lou, Y. Thomas, and H. Li, “Protecting your
right: Verifiable attribute-based keyword search with fine-grained
owner-enforced search authorization in the cloud,” in IEEE INFO-
COM 2014, 2014.

[5] I. Damgård, H. Haagh, and C. Orlandi, “Access control encryp-
tion: Enforcing information flow with cryptography,” in Theory of
Cryptography Conference. Springer, 2016, pp. 547–576.

[6] J. Li, Y. Zhang, J. Ning, X. Huang, G. S. Poh, and D. Wang,
“Attribute based encryption with privacy protection and account-
ability for cloudiot,” IEEE Transactions on Cloud Computing, 2020.

[7] R. Canetti and S. Hohenberger, “Chosen-ciphertext secure proxy
re-encryption,” in Acm Conference on Computer & Communications
Security, 2007.

[8] S. Xu, G. Yang, Y. Mu, and R. H. Deng, “Secure fine-grained access
control and data sharing for dynamic groups in the cloud,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 8, pp.
2101–2113, 2018.

[9] D. Zheng, B. Qin, Y. Li, and A. Tian, “Cloud-assisted attribute-
based data sharing with efficient user revocation in the internet
of things,” IEEE Wireless Communications, vol. 27, no. 3, pp. 18–23,
2020.

[10] S. Kim and D. J. Wu, “Access control encryption for general
policies from standard assumptions,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 2017, pp. 471–501.

[11] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2005, pp. 457–473.

[12] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,” in
Proceedings of the 13th ACM conference on Computer and communica-
tions security. Acm, 2006, pp. 89–98.

[13] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and
secure sharing of personal health records in cloud computing
using attribute-based encryption,” IEEE transactions on parallel and
distributed systems, vol. 24, no. 1, pp. 131–143, 2012.

[14] Q. Zheng, S. Xu, and G. Ateniese, “Vabks: Verifiable attribute-
based keyword search over outsourced encrypted data,” in IEEE
Infocom, 2015.

[15] J. Cui, H. Zhou, H. Zhong, and Y. Xu, “Akser: Attribute-based
keyword search with efficient revocation in cloud computing,”
Information Sciences, pp. 343–352, 2017.

[16] Y. Zhang, R. H. Deng, S. Xu, J. Sun, Q. Li, and D. Zheng,
“Attribute-based encryption for cloud computing access control:
A survey,” ACM Computing Surveys (CSUR), vol. 53, no. 4, pp.
1–41, 2020.

[17] W. Li, K. Xue, Y. Xue, and J. Hong, “Tmacs: A robust and ver-
ifiable threshold multi-authority access control system in public
cloud storage,” IEEE Transactions on parallel and distributed systems,
vol. 27, no. 5, pp. 1484–1496, 2015.

[18] J. Ning, X. Huang, W. Susilo, K. Liang, X. Liu, and Y. Zhang, “Dual
access control for cloud-based data storage and sharing,” IEEE
Transactions on Dependable and Secure Computing, 2020.

[19] J. Han, L. Chen, W. Susilo, X. Huang, A. Castiglione, and K. Liang,
“Fine-grained information flow control using attributes,” Informa-
tion Sciences, vol. 484, pp. 167–182, 2019.

[20] K. Xue, W. Chen, W. Li, J. Hong, and P. Hong, “Combining data
owner-side and cloud-side access control for encrypted cloud
storage,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 8, pp. 2062–2074, 2018.

[21] G. Fuchsbauer, R. Gay, L. Kowalczyk, and C. Orlandi, “Access
control encryption for equality, comparison, and more,” in IACR
International Workshop on Public Key Cryptography. Springer, 2017,
pp. 88–118.

[22] G. Tan, R. Zhang, H. Ma, and Y. Tao, “Access control encryption
based on lwe,” in Proceedings of the 4th ACM International Workshop
on ASIA Public-Key Cryptography. ACM, 2017, pp. 43–50.

[23] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and
atomic proxy cryptography,” Lecture Notes in Computer Science, vol.
1403, pp. 127–144, 1998.

[24] X. Liang, Z. Cao, H. Lin, and J. Shao, “Attribute based proxy re-
encryption with delegating capabilities,” in Proceedings of the 4th
International Symposium on Information, Computer, and Communica-
tions Security, 2009, pp. 276–286.

[25] Y. Yang, H. Zhu, H. Lu, J. Weng, Y. Zhang, and K.-K. R.
Choo, “Cloud based data sharing with fine-grained proxy re-
encryption,” Pervasive and Mobile Computing, vol. 28, pp. 122–134,
2016.

[26] H. Deng, Z. Qin, Q. Wu, Z. Guan, and Y. Zhou, “Flexible attribute-
based proxy re-encryption for efficient data sharing,” Information
Sciences, vol. 511, pp. 94–113, 2020.

[27] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing
with attribute revocation,” in Proceedings of the 5th ACM symposium
on information, computer and communications security, 2010, pp. 261–
270.

[28] S. Xu, G. Yang, and Y. Mu, “Revocable attribute-based encryption
with decryption key exposure resistance and ciphertext delega-
tion,” Information Sciences, vol. 479, pp. 116–134, 2019.

[29] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE internet of things journal, vol. 3, no. 5, pp.
637–646, 2016.

[30] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and
Y. Yang, “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 3, pp. 515–529, 2019.

[31] X. Xia, F. Chen, Q. He, J. C. Grundy, M. Abdelrazek, and H. Jin,
“Cost-effective app data distribution in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp.
31–44, 2020.

[32] T. Wang, L. Qiu, A. K. Sangaiah, A. Liu, M. Z. A. Bhuiyan, and
Y. Ma, “Edge-computing-based trustworthy data collection model
in the internet of things,” IEEE Internet of Things Journal, vol. 7,
no. 5, pp. 4218–4227, 2020.

[33] L. U. Khan, I. Yaqoob, N. H. Tran, S. A. Kazmi, T. N. Dang, and
C. S. Hong, “Edge computing enabled smart cities: A comprehen-
sive survey,” IEEE Internet of Things Journal, 2020.

[34] X. Wang, L. T. Yang, X. Xie, J. Jin, and M. J. Deen, “A cloud-edge
computing framework for cyber-physical-social services,” IEEE
Communications Magazine, vol. 55, no. 11, pp. 80–85, 2017.

[35] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and
L. Qi, “A computation offloading method over big data for iot-
enabled cloud-edge computing,” Future Generation Computer Sys-
tems, vol. 95, pp. 522–533, 2019.

[36] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Firework: Data
processing and sharing for hybrid cloud-edge analytics,” IEEE
Transactions on Parallel and Distributed Systems, 2018.

[37] F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service
placement problem in fog and edge computing,” ACM Computing
Surveys (CSUR), vol. 53, no. 3, pp. 1–35, 2020.

13

[38] E. Ahmed, A. Ahmed, I. Yaqoob, J. Shuja, A. Gani, M. Imran, and
M. Shoaib, “Bringing computation closer toward the user network:
Is edge computing the solution?” IEEE Communications Magazine,
vol. 55, no. 11, pp. 138–144, 2017.

[39] T. Okamoto and K. Takashima, “Hierarchical predicate encryption
for inner-products,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2009,
pp. 214–231.

[40] J. Chen, R. Gay, and H. Wee, “Improved dual system abe in prime-
order groups via predicate encodings,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 2015, pp. 595–624.

[41] S. Agrawal and M. Chase, “Fame: fast attribute-based message
encryption,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 665–682.

[42] J. Chen, H. W. Lim, S. Ling, H. Wang, and H. Wee, “Shorter ibe and
signatures via asymmetric pairings,” in International Conference on
Pairing-Based Cryptography. Springer, 2012, pp. 122–140.

[43] S. Galbraith, “New discrete logarithm records, and the death of
type 1 pairings,” 2014.

Jie Cui was born in Henan Province, China, in
1980. He received his Ph.D. degree in University
of Science and Technology of China in 2012. He
is currently a professor and Ph.D. supervisor of
the School of Computer Science and Technology
at Anhui University. His current research inter-
ests include applied cryptography, IoT security,
vehicular ad hoc network, cloud computing secu-
rity and software-defined networking (SDN). He
has over 100 scientific publications in reputable
journals (e.g. IEEE Transactions on Dependable

and Secure Computing, IEEE Transactions on Information Forensics
and Security, IEEE Journal on Selected Areas in Communications, IEEE
Transactions on Computers, IEEE Transactions on Vehicular Technol-
ogy, IEEE Transactions on Intelligent Transportation Systems, IEEE
Transactions on Network and Service Management, IEEE Transactions
on Emerging Topics in Computing, IEEE Transactions on Cloud Com-
puting and IEEE Transactions on Multimedia), academic books and
international conferences.

Bei Li is now a research student in the School of
Computer Science and Technology, Anhui Uni-
versity. His research focuses on cloud computing
security and edge computing security.

Hong Zhong was born in Anhui Province,
China, in 1965. She received her PhD degree
in computer science from University of Science
and Technology of China in 2005. She is cur-
rently a professor and Ph.D. supervisor of the
School of Computer Science and Technology
at Anhui University. Her research interests in-
clude applied cryptography, IoT security, vehic-
ular ad hoc network, cloud computing secu-
rity and software-defined networking (SDN). She
has over 150 scientific publications in reputable

journals (e.g. IEEE Transactions on Dependable and Secure Comput-
ing, IEEE Transactions on Information Forensics and Security, IEEE
Transactions on Parallel and Distributed Systems, IEEE Journal on
Selected Areas in Communications, IEEE Transactions on Multime-
dia, IEEE Transactions on Vehicular Technology, IEEE Transactions
on Intelligent Transportation Systems, IEEE Transactions on Network
and Service Management, IEEE Transactions on Cloud Computing and
IEEE Transactions on Big Data), academic books and international
conferences.

Geyong Min is a Professor of High Performance
Computing and Networking in the Department
of Computer Science within the College of En-
gineering, Mathematics and Physical Sciences
at the University of Exeter, United Kingdom. He
received the PhD degree in Computing Science
from the University of Glasgow, United King-
dom, in 2003, and the B.Sc. degree in Computer
Science from Huazhong University of Science
and Technology, China, in 1995. His research
interests include Computer Networks, Wireless

Communications, Parallel and Distributed Computing, Ubiquitous Com-
puting, Multimedia Systems, Modelling and Performance Engineering.

Yan Xu is currently an associate professor of
School of Computer Science and Technology at
Anhui University. She received the BS and MS
degrees from Shandong University in 2004 and
2007, respectively, and the PhD degree from
University of Science and Technology of China in
2015. Her research interests include information
security and applied cryptography.

Lu Liu is the Professor of Informatics and Head
of Department of Informatics in the University
of Leicester, UK. Prof Liu received the Ph.D.
degree from University of Surrey, UK and MSc
in Data Communication Systems from Brunel
University, UK. Prof Liu’s research interests are
in areas of cloud computing, service computing,
computer networks and peer-to-peer network-
ing. He is a Fellow of British Computer Society
(BCS).

