
Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5758 (print) ISSN 2224-896X (online)

Vol 1, No.2, 2011

29 | P a g e
www.iiste.org

A Practical Approach for Implementation of Public Key

Infrastructure for Digital Signatures

M. Indra Sena Reddy
1*

 P.J. Bhat
2
 Rajeev Chetwavani

3
 and K.Subba Reddy

2. R. G. M. College of Enginereing & Technology, Nandyal, A.P, India.

3. School of Economics, Peking University, 176 Zhong Guan Cun Street, Beijing 100086, China

4. ISRO, Satellite centre, Bangalore, India.

5. R. G. M. College of Enginereing & Technology, Nandyal, A.P, India.

* E-mail of the corresponding author: mir555mittapalli@gmail.com

Abstract

In an organization with its own Private Network , it is not just enough to transfer the documents from

one person to another, but also it needs to ensure that the document retains its integrity, confirms the

authenticity of the sender, provides privacy, if required and it is safe against repudiations. To address

these, it is proposed to establish a public key infrastructure (PKI) for digital signatures with in the

organizations. Public key infrastructure provides robust and rigorous security measures to protect user

data and credentials. In this paper, it is proposed that documents are digitally signed on before being

sent as an authentication measure. The trust between two parties and digital signatures are reinforced

by components of public key infrastructure (PKI) namely Public Key Cryptography, Certificate

Authority (CA), Certificates, Certificate Repository (CR), and also a simple application to demonstrate

the same would also be attempted.

Keywords: Open SSL, Public Key Infrastructure, Digital signatures, Certificate Authority, Certificate

Repository.

1. Introduction

Many applications require agreeing on a shared secret. It would be nice to be able to authenticate

messages without needing to share a secret. Public key cryptography makes this possible. If a person

signs a message with his secret signing key, then anyone can use his public key to verify that he signed

the message. Essentially, the public key and private key are interchangeable. If a person encrypts a

message with his private key, anyone can decrypt it. If a person didn't encrypt the message, using his

public key to decrypt the message would result in garbage. This popular scheme called DSA (the

Digital Signature Algorithm) for Digital Signing, which the SSL protocol and the Open SSL library

both support.

An attacker might establish a proxy connection to the intended server, and then just eavesdrop on all

data. Such an attack is called a "man-in-the-middle" attack. This attack is possible because public key

cryptography provides no means of establishing trust when used on its own. Public Key Infrastructure

(PKI) provides the means to establish trust by binding public keys and identities, thus giving

reasonable assurance that we're communicating securely with who we think we are.

Using public key cryptography, we can be sure that only the encrypted data can be decrypted with the

corresponding private key. If we combine this with the use of a message digest algorithm to compute a

signature, we can be sure that the encrypted data has not been tampered with. What's missing is some

means of ensuring that the party we're communicating with is actually who they say they are. In other

words, trust has not been established. This is where PKI fits in.

2. Literature review

Public key cryptography was conceived by Diffie and Hellman (1976, 1977) and Rivest, Shamir in and

Adleman designed the RSA Cryptosystems (1978), the first public key system. Each public key

cryptosystem has its own technical features, however they all share the property that given an

encryption key it is computationally infeasible to determine the decryption key and vice versa.

Theoretically, no confidential information needs to be exchanged before secure communication is

possible. Everyone has access to the recipient’s public key and even though the communication is

private, the message cannot be authenticated. This shows that public key cryptography on its own is not

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5758 (print) ISSN 2224-896X (online)

Vol 1, No.2, 2011

30 | P a g e
www.iiste.org

enough. If traditional paper based commerce are to be reproduced in the electronic environment, the

following are required:

• Security policies to define the rules under which cryptographic systems should operate

• Products to generate store and manage certificates and their associated keys

• Procedures to dictate how keys and certificates are generated and distributed

A trusted and authenticated key distribution infrastructure is necessary to support the use of public keys

in a public network such as the Internet. Recent efforts in standardization have seen developments on a

number of fronts.

2.1 Evolution of PKI standards

The X.509 Recommendation provides a useful basis for defining data formats and procedures for the

distribution of public keys via certificates that are digitally signed by CAs. X.509 does not however

include a profile to specify the supporting requirements for many of the certificate’s sub- fields,

extensions or for some data values.

The standards effort produced an outline for PKI of X.509 Version 3 certificates as well as Version 2

Certificate Revocation Lists. The Internet PKI profile went through eleven draft versions before

becoming RFC 2459 Housley et al (1999). Other profiles have been developed for particular

algorithms to make use of RFC 2459.

The development of the PKI management protocols has gone though a number of iterations. RFC 2510

Adams and Farrell (1999) was developed to specify a message protocol to be used between entities in a

PKI. The need for an enrolment protocol and the preference to use PKCS#10 message format as the

certificate request syntax lead to two parallel developments.

The Certificate Request Syntax was developed in the S/MIME WG which used PKCS#10 Yongge

Wang (1993) as the certification request message format. RFC 2510 Adams and Farrell (1999) and

Myers et al (1999) were developed to define an extended set of management messages that flow

between the components of the Internet PKI. It also included PKCS#10 as the certificate request

syntax.

Development of the operational protocols has been more straightforward. Two documents for LDAP

have been developed — one for defining LDAPv3 as an access protocol to repositories Wahl et al

(1997) and one for storing PKI information in an LDAP directory Boeyen et al (1999). Using FTP and

HTTP to retrieve certificates and CRLs from PKI repositories is specified in RFC 2585 Housley and

Hoffman (1998). The theoretical approach for working of PKI and digital signatures has been

explained elsewhere (Indrasena Reddy et al, 2011). The practical approach for working of open SSL

based PKI and digital signatures has been explained in the following sections.

3. Implementation of PKI

3.1 Setting up of the PKI

This involves two main steps

• The configuration file, openssl.cnf which is referred for three openssl commands. Namely, ca,

request and x509.

• Make the necessary changes to openssl.cnf present on linux system at location /etc/pki/tls. The

configure file openssl.cnf is shown below.

###

[req_distinguished_name]

countryName = Country Name (2 letter code)

countryName_default = IN

countryName_min = 2

countryName_max = 2

stateOrProvinceName = State or Province Name (full name)

stateOrProvinceName_default = A.P

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5758 (print) ISSN 2224-896X (online)

Vol 1, No.2, 2011

31 | P a g e
www.iiste.org

localityName = Locality Name (eg, city)

localityName_default = NANDYAL

0.organizationName = Organization Name (eg, company)

0.organizationName_default = RGMCET

organizationalUnitName = Organizational Unit Name (eg, section)

organizationalUnitName_default = CSE

###

the next step is creation of two new folders. This is as follows.

• Create two new folders named CA and PKI

mkdir /CA

mkdir /PKI

• Run the openssl command to generate the self signed root certificate

openssl genrsa -out /CA/cakey.pem 1024.

openssl req -new -x509 -extensions v3_ca -keyout /CA/cakey.pem -out cacert.pem -days 365 -

config /etc/pki/tls/openssl.cnf

o When this command is run it asks the user to enter a password for the root certificate. In this

case we have used ca123 as the password.

o The CA’s private key will be in the cakey.pem file.

o Using this private key and the configuration file for openssl.cnf, we create x509 v3 CA root

certificate named cacert.pem. This is a self signed root certificate.

3.2 Request a certificate

• Next run the shell script with a user name and password as command line arguments. This

password will be used to protect the p12 file.

The working of script as follows

• A check is made to ensure both the arguments have been entered.

• If the directory ‘/PKI’ does not contain the certificate of the specified user then, a new one is

created. This folder shall be used for storing the p12 and the certificate of that particular user.

• In the file /home/trainee/tr00750/indra/PKI//req.conf the necessary req and req_distinguished

information of the user is stored.

• The user’s pfx password is converted to octal format and along with the user’s name, is stored in a

file priv.password at the location /home/trainee/tr00750/indra/PKI/[user].

• Using the openssl command genrsa, a 1024 bit private key is generated and subsequently stored in

a file priv.pem at the location /PKI/[user].

• A request for a certificate contains the public key corresponding to user’s private key. Using the

openssl command req, the public key is extracted and later is stored in request.pem at the location

/PKI/[user].

• Next, we use openssl ca command. The CA uses it’s password to perform a digital signature on the

user’s request. The outcome of this operation is a Certificate of the user duly signed by the CA.

• Also, in our project we used PKCS#12 format as an enhanced security measure. The p12 file is

password protected file which contains the sensitive data such as private key of the user. So we use

the openssl pkcs12 command to generate the [user_name].p12 file.

• The previously, readable pem format certificate is finally encoded into the unreadable DER X509

standard.

• For convenience, we store the p12 files and certificates separately in folders /PKI/P12-files and

/PKI/Certificates respectively.

• The above procedure shown in the Figure 1.

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5758 (print) ISSN 2224-896X (online)

Vol 1, No.2, 2011

32 | P a g e
www.iiste.org

3.3 Signing a Document

In this section, we describe the procedure for performing digital signature on a document.

1. This method opens the file to be signed, reads it and then return the data contained.

2. After taking the p12 file-name and pfx password from the user, a keystore of the type

PKCS12_KEYSTORE_TYPE is created and the p12 file-name and it’s pfx password is stored in

the keystore.

The call to this method is as follows:

userKeyStore = loadKeyStoreFromPFXFile(keyStoreFileName, password);

3. The private key is read from the keystore and a call is made to the signDocument as follows:

privateKeyC =getPrivateKey(userKeyStore, password);

byte[] digitalSignature = signDocument(documentToSign, privateKey);

The Digital Signature Algorithm (DSA) is used for digitally signing the document, the Java methods

used to accomplish this task.

4.The above procedure shown in the Figure 2.

3.4 Verification of the Signature

In this section, we describe the procedure for verifying the digital signature on a document.

The verification of the digital signature is performed using a JSP program.

Here are some of the major code snippets:

1. In this paper it is assumed that the PKI functions are performed centrally at a server. Therefore user

interested in using its verification services is provided with a UI coded in JSP.

Here is an extract from the program that accepts the file to be verified, the signature file and

sender’s id.

###

<html:form type="demo.SignedFileUploadActionForm" action="/public/SignedFileUpload"

method="post" enctype="multipart/form-data">

<table border=0 align=center>

<tr>

<td> File to be Verified:</td>

<td><html:file property="uploadFile" size="40" /></td>

</tr>

<tr>

<td> Digital signature: </td>

<td><html:file property="sigFile" size="40"/></td>

</tr>

<tr>

<td>Senders id: </td>

<td><html:text property="senderid" size="40"/> <input type=button

value="Search" style="color:green;font-size:15px;font-weight:bold" onclick="showSearch()">

</td>

</tr>

<tr><td>
</td></tr>

<tr>

<td align=center colspan=2><html:submit property="submit" value="Verify Signature"

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5758 (print) ISSN 2224-896X (online)

Vol 1, No.2, 2011

33 | P a g e
www.iiste.org

style="color:green;font-size:20px;font-weight:bold" /></td>

</tr>

</table>

<hr>

</html:form>

###

2. For the successful verification of the document, digitally signed document, signature and sender’s

id are necessary.

The following snippets illustrate how these are stored for later access.

###

private SignedFileUploadActionForm mActionForm = null;

private FormFile mReceivedFile = null;

private byte[] mReceivedFileData = null

private CertPath mCertPath = null;

private X509Certificate mCertificate = null;

private byte[] mSignature = null;

private String mSignatureBase64Encoded;

private String senderid;

{

throw new Exception("No file received. Please upload some file.");

}

mReceivedFileData = mReceivedFile.getFileData();

}

###

3. The call to the method which reads the certificate:

 This method has means to map sender id to the [sender-id].cert. All users’ certificates are

stored in server’s ‘Certificates’ folder.

4. Signature is going to be verified here.

###

verifyDocumentSignature boolean signatureValid = DigitalSignatureUtils.(

mReceivedFileData, mCertificate, mSignature);

public static boolean verifyDocumentSignature(byte[] aDocument,

X509Certificate aCertificate, byte[] aSignature)throws GeneralSecurityException {

PublicKey publicKey = aCertificate.getPublicKey();

boolean valid = verifyDocumentSignature(aDocument, publicKey, aSignature);

###

 The following method receives the public key that has been extracted from x509 certificate by

the above method. Using this public key and the document that was signed with the Digital Signature

Algorithm, the signature is verified.

###

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5758 (print) ISSN 2224-896X (online)

Vol 1, No.2, 2011

34 | P a g e
www.iiste.org

public static boolean verifyDocumentSignature(byte[] aDocument,

PublicKey aPublicKey, byte[] aSignature)

throws GeneralSecurityException {

Signature signatureAlgorithm =

Signature.getInstance(DIGITAL_SIGNATURE_ALGORITHM_NAME);

signatureAlgorithm.initVerify(aPublicKey);

signatureAlgorithm.update(aDocument);

boolean valid = signatureAlgorithm.verify(aSignature);

return valid;

}

###

5. Verifying certificate:

verifyReceivedCertificate();

In order to check validity of the x509 certificate of the user, the validity of the issuer needs to be

checked. This is accomplished by adding the CA(issuer)‘s root certificate to a directory to which the

program has direct access to. Finally using the verify method, as was earlier, the validity and

authenticity of the user’s certificate is checked against the x509 certificate of the issuer.

6. The above procedure shown in the Figure 4.

3.5 Encrypt the digitally signed document

In this section, we describe the procedure for encrypt the digitally signed document.

 Encrypt the digitally signed document is performed on any document of choice using a Java

program.

Here are some of the major code snippets:

1. I n our project we can generate an AES key using keyGenerator initialise the

a. key size to 128 bit.

2. Generate a secret key for the symmetric encryption.

3. Encrypt the signed document using symmetric key or secret key.

4. Encrypt the secret key with the receivers public key.

5. For the sending the document, encrypted signed document, encrypted symmetic key and

sender’s id are necessary.

6. The above procedure shown in the Figure 5.

3.6 Decrypt symmetric key and signed document

In this section, we describe the procedure for decrypt the symmetic key and signed document.

The decrypt symmetric key and signed document is performed using a JAVA program.

Here are some of the major code snippets:

1. Load the private key from specified file using the specified password to decrypt the symmetic

key .

// Load the keystore from specified file using the specified password

2. Private key and certification extacted from given keystore using given password to access the

keystore and the same password to access the private key.

3. The above procedure shown in the Figure 6.

4. Conclusions

In this paper, SSL provide an alternative to the TCP socket API that has security implemented within it.

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5758 (print) ISSN 2224-896X (online)

Vol 1, No.2, 2011

35 | P a g e
www.iiste.org

SSL provide a private channel between communicating applications, which ensure privacy of data,

authentication of the partners, and integrity. We have established means for establishing trust between

two parties who are communicating data and credentials on a network. We accomplish this by setting

up a private CA. A private CA exists for serving the sole purpose of acting as a trusted third party in a

closed company network.

A document is digitally signed before it is sent to receiver. The digital signature detects tampering in

transit and is non-repudiable. The CA reinforces the trust for the receiver. This is possible because the

CA’s signature on the sender’s certificate tells the receiver that the signature was not performed by any

random user in the network who was capable of generating a key pair. The signing and verification

services are located centrally at a server. This means that the private key needs transporting to the

server for signing. To ensure that the private key is not compromised in transit, we use p12 file to

securely transport the private key.

REFERENCES

Indrasena reddy,Bhat and Rajiv,(2011). Establishment of Public key Infrastructure for Digital

Signatures, Vol.2,No.6,pp 33-43

Pravir Chandra, Matt Messier, John Viega, (2002).Network security with Openssl, , O'reilly

Diffie, W. and Hellman, M. E.,(1976) New Directions inCryptography. IEEE Transactions on

Information Theory,22 , pp. 644-654.

Rivest, R., Shamir, A. and Adleman, L.,(1978) A Method for Obtaining Digital Signatures and Public

Key Cryptosystems. Communications of the ACM, 21, pp. 120-126.

Housley, R., Ford, W., Polk, W., and Solo, D., (1999) RFC 2459 "Internet X.509 Public Key

Infrastructure Certificate and CRL Profile",

Adams, C., Farrell, S., (1999) RFC 2510, “Internet X.509Public Key Infrastructure Certificate

Management Protocols",

Yongge Wang,(1993) PKCS#10, RSA, "The Public-Key Cryptography Standards ", RSA Data

Security Inc.,

Myers, M., Adams, C., Solo, D., and Kemp, D.,(1999) RFC 2511, "Internet X.509 Certificate Request

Message Format",

sWahl, M., Howes, T., Kille, S.(1997) RFC 2251"Lightweight Directory Access Protocol (v3)"

Housley, R., and Hoffman, P.,(1998) RFC 2585, "Internet X.509 Public Key Infrastructure Operational

Protocols: FTP and HTTP",

Carlisle Adams, Steve Lioyd, and Second Edition. Addison Wesley, s November (2002). Understanding

PKI: Concepts, standards, and Deployment Considerations,

Kaufman, Charlie, Perlman, Radia, Speciner, Mike(1995)” Network Security Private communication in

a Public world”, Prentice Hall,

William Stallings, (1999) Cryptography and Network Security: Principles and Practice, 2nd Edition,

Prentice ,Hall.

Diffe,W.and Hellman, M.E,(1976), New Directions in Cryptography. IEEE Transactions on

Information Theory, 22, pp. 644-654.

Rivets, R., A. and Adelman, L., (1978) A Method for Obtaining Digital signatures and Public Key

Cryptosystems. Communications of the ACM, 21, PP. 120-126.

Wahl, M., Howe’s, T., Kille, S.(1997) RFC 2251, “Lightweight Directory Access Protocol (V3).

www.certicom.com, Public- Key Infrastructure- The VeriSign Difference; VeriSign whitepaper (1999).

RSA Data Security ,” Understanding PKI” (1999).

Ray Hunt,(2002) ,“ PKI and Digital Certification Infrastructure”

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5758 (print) ISSN 2224-896X (online)

Vol 1, No.2, 2011

36 | P a g e
www.iiste.org

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5758 (print) ISSN 2224-896X (online)

Vol 1, No.2, 2011

37 | P a g e
www.iiste.org

Journal of Information Engineering and Applications www.iiste.org

ISSN 2224-5758 (print) ISSN 2224-896X (online)

Vol 1, No.2, 2011

38 | P a g e
www.iiste.org

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. Prospective authors of
IISTE journals can find the submission instruction on the following page:
http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified

submissions in a fast manner. All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than

those inseparable from gaining access to the internet itself. Printed version of the

journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/Journals/

