A Practical Approach to Access
Heterogeneous and Distributed Databases

Fernando de Ferreira Rezende, Ulrich Hermsen, Georgiane de Sa Oliveira,
Renata Costa Guedes Pereira, and Jochen Riitschlin

DaimlerChrysler AG — Research and Technology — Dept. FT3/EK — P.O.Box 2360
89081 Ulm — Germany
jochen.ruetchlin@daimlerchrysler.com

Abstract. A common problem within most large corporations nowadays is the
diversity of database systems that are employed by their many departments in
the development of a product. Usually, the total corporate data resource is
characterized by multi-vendor database servers which, unfortunately, have no
ability to relate data from heterogeneous data sources. In this paper, we present
a database access interface which allows users to formulate SQL2 queries in a
homogeneous way against a federation of heterogeneous databases. The
database heterogeneity is not only completely hidden from the user, but what
the user really perceives is a global database schema which can be queried as
though all data reside in a single local database when, in fact, most of the data
are distributed over heterogeneous, autonomous, and remote data sources.
Further, the users can navigate through the database complex and compare,
join, and relate information via a single graphic interface.

1 Introduction

Large corporations are often penalized by the problem of diversity of software
systems. The many departments involved in the development of a product usually use
different software tools; of course, each of them employs its own and familiar tools
which help them to solve their problems, or their part of the complete product
development work, in some way. Particularly in the field of the engine development,
such tools vary mainly among simulation, CAD, testbenchs, and calculation tools. On
the other hand, this diversity problem, or in other words the heterogeneity problem, is
reflected in the many different sources of data used by the engineers to collect the
necessary data for the product development as well. Usually, but by no means in all
the cases, these data are managed by Database Management Systems (DBMSs) and
stored in databases (DBs). Hence, the data are distributed along departmental and
functional lines, leading to fragmented data resources. Such data distribution
contributes to the emergence of the so-called islands of information. Thus, the data
are lastly organized and managed by a mix of different DB systems (DBSs) from
different software vendors. At both levels of this software diversity — the tools and
DBSs levels — there exists the problem of communication between the software. The
tools usually do not understand or are able to communicate with each other. And
further, the autonomous DBSs have no ability to relate data from the heterogeneous
data sources within the organization. The keyword to solve the heterogeneity problem
at all levels is integration — tool as well as DB integration.

In the project MEntAs (Engine Development Assistant) — an innovation project at
DaimlerChrysler Research and Technology — we have to cope with both sides of this
M. Jarke, A. Oberweis (Eds.): CAiSE’99, LNCS 1626, pp. 317-332, 1999.
© Springer-Verlag Berlin Heidelberg 1999

318 Fernando de Ferreira Rezende et al.

heterogeneity problem. On one side, the several software tools employed by the
engineers must be integrated; in the sense that the data produced by one tool can be
automatically consumed by the next tools used in the engine development process.
This data production and consumption among the tools generates a kind of data- and
workflow, which is then managed and controlled by a Workflow Management System.
On the other side, the several DBs must be integrated as well. In this paper, we will
particularly give emphasis to this side of the software integration in the project
MEntAs. We show how we have solved the DB heterogeneity problem in MEntAs in
a very user-friendly way. We leave the discussion of our panacea to the problem of
software tool integration in MEntAs to a later opportunity.

The problem that the engineers mainly have with the DB heterogeneity is to collect
the information in the many data sources and, additionally, to correlate and to
compare the data. The DBs are usually encapsulated by the applications, so that the
engineer cannot have direct access to the data stored in them. Hence, they must use
the many different interfaces provided by such applications to each DB. Furthermore,
such interfaces are limited to a number of pre-defined queries that can be executed
against a single DB. Since the process of designing and developing a new engine
concept is extremely creative, the engineers often feel themselves limited in their
creativity because such interfaces are not satisfactory in providing data from different
data sources, in comparing and joining these data.

Our solution to this problem in MEntAs is based upon a DB Middleware System
[1]. On top of a DB middleware system, we have designed and implemented a DB
access interface which allows engineers to formulate queries in a homogeneous way
against a federation of heterogencous DBs. The queries follow the ISO standard
SQL2 (Structured Query Language [2, 3]) for DB manipulation. By means of a
Graphic User Interface (GUI), the engineers are friendly guided in the process of
creating their own queries which may even traverse the boundaries of a DBS and
involve the DB complex integrated in the federation. On processing the queries, the
DB heterogeneity is not only completely hidden from the users. But what they really
perceive is a global DB schema which can be queried as though all data reside in a
single local DB when, in fact, most of the data are distributed over heterogeneous and
remote data sources. Further, the engineers can navigate through the DB complex and
compare, join, and relate information via a single, homogeneous graphic interface. By
such a means, the right data are put available to the engineer much more comfortably
and, most importantly, much faster than in usual developing environments.

This paper is organized as follows. In Sect. 2, we sketch the architecture of our DB
access interface and explain its components separately. In Sect. 3, we deliberate on
the functionality of the interface, showing how it looks like and how the engineer
interacts with it. Finally, we conclude the paper in Sect. 4.

2 The Client/Server Architecture of the DB Access Interface

For the DB access interface in MEntAs, we have chosen a client/server architectural
approach. This decision was mainly taken due to three reasons: scalability,
parallelism, and multi-tier characteristic. Client/server architectures can scale up very
well by simply adding to them new hardware power or software components
whenever necessary. In addition, client/server computing has a natural parallelism:
many clients submit many independent requests to the server that can be processed in

A Practical Approach to Access Heterogeneous and Distributed Databases 319

parallel, and furthermore, parallelism directly means better performance and so faster
results. Finally, client/server architectures have the important feature of being multi-
tier; they can be integrated to and take part in other architectures, new components
can be added or dropped out, the server can play the role of a client, and the other way
around, a client can be a server, etc.

Client/server architectures may be differentiated according to the way the data are
transferred and the distribution of tasks is organized. The three most important forms
are: Page Server, Object Server, and Query Server (the reader is referred to [4, 5, 6, 7]
for more details on these approaches). We consider the client/server architecture of
the MEntAs DB access interface as being a simple but very effective example of a
query server approach (Fig. 1).

‘ Grepht User hterface ‘
CLIENTS Consistency Securty Thterface
M onior Contoler Cache Connector,
‘ RM Istubs ‘
TCP/ TP RM I
RM ISkektons
SERVER Consstency Securiy Resuls Database
M onior Contwoler | Factory Connector
TCP/TP DBC
DATABASE SERVER Database M Hdkware System

S— éiﬁéé

Fig. 1. Architecture of the MEntAs DB access interface.

Essentially, a query server works on the basis of contexts. A context normally
comprises a set of complex objects and may be specified for example by means of
MQL or SQL/XNF statements [8]. In the case of MEntAs, the contexts can be viewed
as the SQL2 statements created by the own engineers via the GUI. The evaluation of
such statements takes place in the server, where the objects are derived and stored in a
transfer buffer. By means of operations such as projections, selections, and joins, the
object views are tailored to the necessities of the users. In MEntAs, the essential
functionality and power of the SQL2 language is put available to the engineer to
create such operations. Hence, the volume of information to be transferred and
fetched into the client cache is significantly reduced and optimized. Additionally, this
approach is insensitive to cluster formations. Thus, ill-formed clusters do not affect
the whole parallelism and concurrency of the system, because no objects are
unnecessarily transferred to the client cache. Therefore, we hold the opinion that this
approach mostly fulfils the necessities of MEntAs due to all its distinguishing
qualities. This approach is a big research challenge, and up to now, it was followed
only by prototype systems. Examples are: AIM-P [9], PRIMA [10], ADMS-EWS
[11], XNF [8], Starburt’s Coexistence Approach [12], Persistence [13], KRISYS [14],
and PENGUIN [15].

Another important implementation decision we have taken during the design of the
MEntAs DB access interface was the choice of an adequate programming language.
Due to the broad range of hardware platforms and computer architectures employed
by the mechanical engineers in the engine development (the heterogeneity at the level
of hardware and software tools), we have committed for using Java as the

320 Fernando de Ferreira Rezende et al.

development environment and programming language, not only the client side but
also the server side. This has shown later to be the right decision, since the
development time was significantly reduced due to all facilities offered by Java, in
comparison with for example C or C++, and its platform independence.

2.1 Integrated Databases

The Integrated Databases are the many data sources integrated in MEntAs. In the
actual stage of the MEntAs development, these are all relational DBs [16]. Fig. 2
illustrates how the interconnection of heterogeneous DBs in MEntAs works. In order
to construct a global DB schema for the engine development, we have analyzed
together with the mechanical engineers the data models of each such DBs in order to
identify the crucial data for MEntAs. In this process, we have recognized semantic
differences, redundancies, synonyms, and homonyms. Thus, we could identify some
common points, or better, overlapping objects, which could then be exploited for
cross-DB join operations (DB navigation). After this analysis process, we have
defined a set of SQL2 views for each DB reflecting the analyzed data model. Those
views are created on top of the original DB by the corresponding department's DB
administrator (mainly due to security reasons). On the other side, we tell the
middleware system in our DB server that there are some views defined for it in a
remote DB on some node in the network. This is done by means of nickname
definitions in the middleware. By such a means, we bring the heterogeneous schemas
into a global, virtual one, which contains just the data relevant for MEntAs.

Fig. 2. The MEntAs approach towards integration of heterogeneous schemas in a global one.

2.2 Database Server

There are a lot of DB middleware systems commercially available in the market. The
choice of the most appropriate one for MEntAs was based on a very detailed
comparative analysis and performance evaluation. The complete results of our
evaluation have been thoroughly reported in [17, 1, 18]. In particular, we have
committed for using IBM’s DataJoiner in MEntAs [19]. However, it is convenient to
notice here that the client/server architecture of the MEntAs DB access interface is
independent of the middleware system being used. This is so because the
communication between the MEntAs server and the DB server, where the middleware
is located on, is performed via JDBC (Java Data Base Connectivity), a Java standard
for the access to relational DBs supporting the functionality and power of the SQL2

! We did not detect the use of object-oriented DBSs in any department involved in the engine
development process. Nevertheless, the integration of DBSs other than relational, as for
example hierarchical or network DBs, can be coped with by the DB middleware system
either, but with some limitations.

A Practical Approach to Access Heterogeneous and Distributed Databases 321

standard. Therefore, MEntAs can apply any DB middleware system which offers a
JDBC API without requiring great programming efforts for the modifications.
Currently, practically all DB middleware systems provide a JDBC API.

2.3 Communication

2.3.1 Server/Database Server Communication

In the case of MEntAs, the use of the JDBC API for the communication between the
server and the DB server is an adequate alternative since it is tailored to relational
data sources [20, 21] (refer to Fig. 1). In addition, practically all well-known DB
vendors offer a corresponding JDBC driver for their products. We can employ either a
JDBC driver of Type 2 or Type 3 [20]. Fig. 3 presents both approaches. In simple
words, as type 2 JDBC drivers are classified the ones which convert any JDBC
operation to the equivalent operation supported by the client API of the corresponding
DBS. Due to this particular feature, in order to apply a type 2 JDBC driver in the
MEntAs architecture, we need to install an instance of the DB (middleware) client
together with the MEntAs server (Fig. 3a). This type of driver has pros and cons. On
the one hand, the platform independence of our MEntAs server is limited, becoming
then restricted to the ones supported by the middleware vendor for its DB client. In
addition to that, a type 2 JDBC driver is only partially implemented in Java, since
many of its functionalities are provided by C libraries which are integrated in Java by
means of the JNI (Java Native Interfaces) API. Lastly, we have unfortunately found
out in the practice that the type 2 JDBC driver offered by our DB middleware vendor
cannot execute queries in parallel. It serializes all concurrent queries being performed
via all DB connections. In contrast, the type 2 JDBC drivers’ implementations have
shown to be more mature and stable than the type 3 drivers.

M EntAs Server pue v M EntAs Server

DBC DBC

II
o
(9]

Type 2 DBC Driver Type 3 DBC D

partaly T~
Database Clent &Eva

TCP/TP §

TCP/ IP

l 11~

e

=3
— S
DB Sexver
a) Type 2 DBC driver b) Type 3 DBC driver

Fig. 3. JDBC driver variations in the implementation of the MEntAs server.

In turn, the type 3 JDBC drivers are implemented in pure Java. They are able to
receive JDBC calls made via a DB independent network protocol (e.g., TCP/IP) and
pass them on to a special component located at the server side, usually called Java
Server, which then converts those calls to the corresponding operations
understandable by the particular DBS (Fig. 3b). By using this type of driver, we were
able to send concurrent queries to the DB server through different DB connections
and it has processed all of them in parallel without problems. Unfortunately, the
stability of the type 3 JDBC driver provided by our middleware vendor is not at all so
high as its counterpart type 2 driver.

322 Fernando de Ferreira Rezende et al.

In MEntAs, the use of a type 3 JDBC driver is certainly the better approach, due to
both its parallel query processing skills as well as its pure Java implementation. In the
practice however, we were forced to implement and thus support both variations of
the JDBC drivers in our architecture because of the low stability of the type 3 driver
currently available. Which of both driver variations is employed in MEntAs can be set
up by an input parameter when launching the MEntAs Server.

2.3.2 Client/Server Communication

The Remote Method Invocation (RMI) API is an efficient alternative for
implementing the communication between distributed Java applications [22]. By
means of RMI, distributed objects can be easily and elegantly implemented. Based on
the ISO standard TCP/IP protocol, tools and APIs are put available to the software
designer which enable a distribution at the object level. In comparison with for
example a distribution at the network level via sockets, the distributed objects
approach significantly shortens the development and implementation times, and in
addition, it drastically reduces maintenance costs.

In comparison with other approaches at the object level, like for example CORBA
[23, 24, 25], we believe that the performance of the RMI solution is better. In
addition, since in the MEntAs architecture only homogeneous (Java) objects are
distributed between clients and server, and hence just such objects must be considered
for the integration, the power of the CORBA approach to integrate heterogeneous
objects in a distributed environment is irrelevant in our particular case.

2.4 Database Connector

Management of DB Resources

In order to speed up the accesses to the DBs by the different components and at the
same time to guarantee a global control over the DB resources, the DB connector
manages connection objects by means of object buffers [26]. Object buffers allow the
sharing of instantiated objects. The main advantage of using object buffers is that,
since different calls to an object type do not cause a reinstantiation of such objects, no
time is dispensed for the creation of those objects. In addition, since the objects are
returned to the buffer after use, there is a reduction in the time spent for the garbage
collection. This approach boosts performance and minimizes memory use.

Our implementation of the object buffer for connecting objects works as follows.
By checking an object out of the object buffer, one receives an exclusive reference to
a connection object. This connection can then be used to process an SQL2 statement,
and thereafter by means of a checkin mechanism, it can be given back to the object
buffer. Generally, all connections can be reused an unlimited number of times.
However, in our case we have implemented a kind of timeout mechanism for the
connections. After a connection has been used a pre-defined and adjustable number of
times, we discard it and open a new again. In [26], a similar mechanism was
suggested using timestamps.

Management of Queries

The JDBC drivers’ implementation guidelines state that any Java object, which is no
longer being used and which consumes DB resources, should free all used DB
resources at the time it is caught by the Java’s garbage collector. Additionally, it is
supposed that the resources used during the execution of a statement should be
implicitly freed or reused with the next statement’s execution. By this way, the JDBC
API handling should be simplified, since the software designer would be alleviated
from the tasks of managing DB resources. Notwithstanding, unfortunately there exist

A Practical Approach to Access Heterogeneous and Distributed Databases 323

implementations of JDBC drivers which fulfil those guidelines only partially.
Moreover, the close coupling of the garbage collector with the management of DB
resources may be problematic and has shown us some disadvantages in the practice.
As a matter of fact, the Java’s garbage collector is automatically started whenever a
Java process becomes memory bound. At this same time, it releases then the
corresponding DB resources. On the other way around, the garbage collector is not
started when the DB resources, e.g. connections, must be released due to a high
overhead at the DB side. Hence, the triggering time for the garbage collector is
merely dictated by memory bound situations of Java processes and not of DB
processes. Due to that and to the fact that in MEntAs the overhead difference among
the Java and DB processes may vary enormously, we follow the approach of
explicitly freeing all DB resources by our own after each operation execution,
independently of the JDBC driver being used. Hence, on the one hand, we are not
subject to the faults of some driver implementations, and on the other hand, we have a
better control about the use of the DB resources.

2.5 Results Factory

The successful processing of a query by the DB connector activates the results factory
(Fig. 1). This component is used to create the result sets which are shown to the
engineer at the client. On the basis of the DB cursor, the results factory fills its result
object with a pre-defined, adjustable quantity of tuples by reading (nexr) the cursor
repeatedly. By this way, the results of a query are transported to the client neither all
at once nor tuple by tuple. On the contrary, the whole result table is divided into small
parts, the result sets, which are then sent asynchronously to the client. The time that
the engineer spends to visualize a result set is exploited by a prefetcher at the client
side to load more result sets into the client cache in background. Thus, the engineer
can smoothly navigate through the results, without having to wait an unnecessarily
long time for the next result sets from the server.

2.6 Interface Connector

Management of the Global Schema’s Meta-Information

The Interface Connector (Fig. 1) begins its work when the GUI is started at the client.
At login time, it establishes a connection with the server. By means of the server’s
RMI registry, the client receives a reference to a server object which is used as a
starting point for all other connections with the server. Via the server object, many
other objects are loaded into the client containing meta-information about the
integrated data sources in the DB server. The global schema’s meta-data comprehend:
Table - name, attributes, and commentary; Aftribute - name, commentary, and data
type. On the basis of these meta-data, a well-defined interface to the GUI is created,
by which means the GUI can show to the end-user the attributes of a table, can
present the commentary of an attribute/table as a help function, etc. Furthermore, with
the information about the data types of the attributes, the GUI can correlate each
attribute with its type-specific comparison operations.

Management of Error Codes and Messages

The error messages employed by the GUI to alert the end-user about any mal-function
in the system are caught by the interface connector at initialization time either. The
many different failure situations are characterized by an error code and its
corresponding error message. This code and message correspondence is stored in the
DB of the middleware and is loaded into a Java properties object at initialization time.

324 Fernando de Ferreira Rezende et al.

Management of Queries

As soon as the engineer has finished the interaction with the GUI to create a query,
the GUI produces a string containing the corresponding SQL2 statement. Thereafter,
the interface connector asynchronously sends the query to the server for processing.
At this time, the thread implementing this object blocks waiting for an answer from
the server. On receiving the awaited answer, this object produces an event of the
AWT (Abstract Window Toolkit) whose identifier carries information about the
success or failure of the query processing. In case of success, the GUI receives the
first result set, and in case of failure it receives an appropriate error code to inform the
engineer about his query’s fate. After showing the first result set, the interface
connector starts prefetching the next result sets from the server. Such a prefetching
runs in an own thread and creates cache objects containing the next result sets.

Storing Select Statements and Result Sets/Tables

The interface connector offers methods to store the generated SQL2 statement in the
DB of the middleware. This option to store pre-formulated SQL2 statements has
received a good acceptance from the engineers, since they do not need to formulate
frequently used queries over and over again. They only need to open the previously
saved select statements, and on the basis of an identifier and a commentary given by
their own, the complete select statement is sent to the server for processing by means
of a single mouse click. Besides the select statement, the result table can be similarly
stored in a text file for further visualization and processing by the user.

2.7 Cache

As shortly mentioned, the interface connector manages a cache at the client side for
temporarily storing the results of the queries (Fig. 1). The current implementation of
the MEntAs client generates for each executed query an instance of the cache class
(let us call it mini-cache). Such a mini-cache stores then the results of a single query.
This mini-cache also embodies a prefetcher, by means of which result sets are fetched
from the DB server even beyond the actual cursor position seen by the engineer.
Although this implementation of the cache contains sufficient functionality for the
first beta version we have delivered of MEntAs, it has proven to be too simple and
sometimes even ineffective in some cases. On the one hand, our actual cache storing
algorithms have had storage capacity problems whenever handling huge amounts of
data produced by some iceberg queries during the test phases. In addition, the
independent management of the results of different queries is not the best approach,
since each of them performs the same tasks in principle. A last point our cache is still
lacking of is the possibility to store and manage mapping information. We intend to
overcome these drawbacks in the next version of MEntAs by extending the actual
functionality of the cache with an implementation of the CAOS Cache approach [27].

2.8 Consistency Monitor

There are mainly two potential sources of problems to be coped with during DB
integration — schematic differences in the DBs as well as differences in the data
representations. To cope with these problems is the main goal of the local and global
consistency monitors (Fig. 1).

Management of Entry Points

In order to support the very important feature of DB navigation, we have identified in
the integrated DBs’ data models common data which serve the purpose of entry
points. In simple words, for our purposes DB entry points are entities’ attributes

A Practical Approach to Access Heterogeneous and Distributed Databases 325

which carry the same semantic information. Being so, they can be used for join
operations which can cross DBs’ boundaries.

Parser

The consistency monitor takes care of differences in the data representations of the
integrated DBs. As an example of such differences, the identification of an engine in
the MENTAS DB has been modeled according to the standard created by Mercedes-
Benz, namely an engine must be identified by a Type, an Specification, and a Sample
of Construction. Hence, we have simply created three attributes in the engine table to
accommodate such information. Unfortunately, this standard and simple engine
identification is, in surprisingly all cases, not at all followed by the data models of the
integrated DBs. In a DB, one can find the engine type concatenated with the sample
of construction by a dot in a single attribute, in another hyphens are used instead of
dots to merge the engine type with the specification, in another there are no dots or
hyphens at all and the engine type is merged with the specification in a single attribute
whereas the sample of construction is represented in a completely different attribute,
and so forth. All these peculiarities must be considered by the consistency monitor in
order to make the navigation through the integrated DBs possible. On the one hand,
without the intervention of the consistency monitor, the middleware is in most cases
simply not able to compare the data due to the so different data representations, and
thus the joins result in no matches. On the other hand, by using simple rules to resolve
schematic heterogeneity of the type one-to-many attributes, as suggested by [28]
where an operator for concatenating attributes is proposed to solve such problems, the
middleware cannot join the data either, because many special characters are
commonly used as separators in the attributes. And worse, in particular cases such
separators seem to be simply ad-hoc chosen by the input data typewriter.

In order to bridge this heterogeneity, the consistency monitor manages complex
grammatical rules which bring the DB schemas as well as the different data
representations into a platform common to all DBs, on which basis the data can be
securely compared, joined, and related to each other. These rules have been defined
during the data modeling activities which resulted in the MEntAs global schema
construction. However, notice that this common data representation is not followed in
the integrated DBs’ data models (with exception of the MENTAS DB itself). These
are autonomous DBs and should not be changed to fulfil the MEntAs requirements.
Thus, the consistency monitor must not only parse the input data to this common
representation but also the corresponding data in the integrated DBs. Otherwise, the
data as entered by the user and parsed could not be compared to the original data
representations. Furthermore, since it would be very inefficient to parse all the huge
amount of data in the tables where the entry points are contained in every time a
navigation is taking place, we employ mapping tables. These are managed in the DB
of the middleware and store the entry points previously parsed. All this functionality
builds the basis to drive the navigation between the DBs.

Management of Mapping Tables

The mapping tables are automatically generated when the MEntAs server is firstly
started. At this time, the consistency monitor scans all the entry points in the affected
tables in the remote, integrated DBs, parses them accordingly, and finally generates
the mapping tables containing the entry points in the pre-defined common
representation. In addition to that, the mapping tables also contain an attribute for the
entry points as represented in the original DBs. These are then used as a kind of

326 Fernando de Ferreira Rezende et al.

pointer to the tuples in the original tables. Hence, whenever a navigation is requested
by the engineer, the (parsed) entry point as defined in the where clause is compared to
the corresponding data in the mapping tables. Furthermore, by means of the attribute
containing the entry point as originally represented, i.e. the pointers, the whole tuples
can be found in the original tables. Hence, our mapping tables allow for a very
efficient DB navigation because the entry points are all contained in those in the exact
same representation as required for the navigation.

Another advanced feature of our consistency monitor is the shadow mechanism
used in the generation of the mapping tables. For each entry point requiring schema
mapping, the consistency monitor manages two mapping tables — a current and a
shadow version. The current mapping tables give support to all MEntAs clients during
the DB navigation. On the other hand, since the mapping tables’ generation can be a
time consuming operation depending on the original table’s size, whenever asked for
the consistency monitor starts asynchronous threads which generate the mapping
tables in background using their shadow counterparts. When they have finished, it
simply changes the current information it manages about the mapping tables, marking
the current as shadows and the shadows as current. Of course, synchronization aspects
and deadlock problems are appropriately coped with by the consistency monitor by
means of refined routines employed in the table generation. By such a means, during
the generation of the mapping tables, the engineers are blocked in their DB navigation
operations only for a very short period of time, namely the time required to change
the mapping table current information — a simple, single DB write operation.

2.9 Security Controller

Essentially, the main tasks of the local security controller are to manage the users’
access rights as well as to encrypt and decrypt any data for the network transport (Fig.
1). On the other hand, the security controller plays a kernel role at the server side. It is
responsible for managing the user data, access rights to the DBs, and for encrypting
the data to the transport to the clients. The security controller is built upon the security
mechanisms provided by both the operating system, namely UNIX at the server side
[29], and Java [30]. Furthermore, it exploits the DB access controls and the
corresponding fine granularity access rights’ granting mechanisms supported by the
DBMS. These mechanisms provide the basis for the security management in MEntAs.

3 The Functionality of the Graphic User Interface

3.1 The Data Representation

Nowadays, even with innumerous object models being proposed in the literature [31,
32, 33, 34, 35], the Entity Relationship Model (ER model [36]) is still spread out and
employed in the industry for modeling DBs, and herewith relational DBs [16]. In
MEntAs, we have chosen the ER model as the main mechanism for the data
representation. Essentially, the data model of each integrated DB is shown to the
engineer in the main interface of the GUI (refer to Fig. 4). By means of clicking with
the mouse in the presented ER model, the engineer can start formulating his own
SQL2 queries. It contains the following components: Menu list comprehends the main
system commands; Schema field shows the ER diagram of the current DB; Query
field shows the current select statement that is being built by the user (editable); and
Help display: shows a helping text according to the current mouse position.

A Practical Approach to Access Heterogeneous and Distributed Databases 327

schema o
- \
query
feH
st F e [T eemmer |
["I
wenr |
PRy i |
i

Fig. 4. The main window of MEntAs’s DB access interface.

3.2 Formulating the Queries

In order to formulate a query, the user must focus the desired entity with the mouse
and right click it. On doing that, a popup menu is activated with the following options
(Fig. 5): Select specifies the projection for the select statement; Where defines the
condition of the select; Order by specifies a sort ordering for showing the results; and
Other Databases enables the navigation through the other integrated DBs.

S|

e

Dredee g

i O nivwnny F

Lt rere

Fig. 5. Popup menu in the entities for formulating the queries.

3.2.1 Select/From

On choosing the select item in the popup menu of the schema field (refer to Fig. 5),
the user receives a window containing all the attributes of the entity (Fig. 6). In
particular, this same component is reused every time the user is asked to select some
items of a list (let us generically refer to it as the select window). By means of mouse
clicks, the user can select the attributes for the projection.

328 Fernando de Ferreira Rezende et al.

3.22 Where

On choosing the where item in the popup menu (Fig. 5), the select window is firstly
shown to the user (Fig. 6). After that, the user can exactly define the condition for his
select statement (Fig. 7).

(e] ! FamM I

Fig. 7. Showing the attributes for the condition definition.

3.23 Order by

The order by item of the popup menu (Fig. 5) allows the user to define a sort ordering
for attributes. Similarly as before, the user firstly selects the attributes for the order-by
definition (Fig. 6). Thereafter, he can choose the order of sorting (Fig. 8).

[T - |
Fipgun rww s oo o Eokey i e wlivion e

e = i relram I EcEning

AT I [rackns
(] | \'.IIIIl

Fig. 8. Showing the attributes for the sort ordering.

3.3 The Results Interface

The results are presented to the user by means of the results interface (Fig. 9). Its
components are: Menu list is similar to the main interface; Query field shows the user-
formulated select statement as executed by the DB server; Table/Attribute field

A Practical Approach to Access Heterogeneous and Distributed Databases 329

presents the table and attribute names of the query’s projection; and Results field
presents the current result set in form of a table.

3.4 Joining Relations

The DB access interface of MEntAs allows users to make joins in a very friendly
way, without even having to know the semantic meaning of primary and foreign keys.
In principle, any relations that are related via a relationship can be joined. The only
things the user needs to do for this are, firstly, to formulate a query on one entity as
described in the previous sections, and secondly, to focus another related entity and
perform similar steps. By such a means, the join condition, namely primary (foreign)
key equals foreign (primary) key, is automatically generated by the GUI and
appended to the complete select statement.

L R e T I .~ -

=3
menu SRS
5t T
T E R R P Y e T g Ty =Ty vy Ty T TR TR T

Fa 1
quezy/ : -
fied

/'-\.: 5 sk T -..q. L :.r . : 2 AT
tabk/ T [i i k v
attrbute o -
feH . : 1
R [§ L
. + ;
. : -
n K [-]
; 5 : .
1esults —— .
en |l _af
e | S =

Fig. 9. The results interface.

In a very simple example, consider the ER diagram sketched in Fig. 4, and
furthermore, suppose the engineer clicks the entity engine (Motor) and defines a
projection on the engine's type and a condition to find all engines with Type equals
M111. Now, if he clicks the entity automobile (Fahrzeug), chooses for the projection
the automobile’s class, and confirms with the OK button, he will lastly receive all
automobile classes where the engine M1171 is built in. Internally, the GUI transforms
these interactions to the following SQL2 statement:

SELECT engine.type, automobile.class

FROM engine, automobile

WHERE engine.type = 'M111’ AND

engine.pk engine = automobile.fk engine automobile;

where pk_engine is the primary key of the entity engine, and fk_engine_automobile is
a foreign key of automobile referring to the engine’s primary key. This procedure of
joining two relations can be recursively cascaded to neighbor relations. Extending the
above example, if the engineer further clicks on the gear (Getriebe) and defines a

330 Fernando de Ferreira Rezende et al.

projection containing its Type, he will receive not only the automobile classes using
the engine M111 but also the respective gear types of those automobiles.

3.5 The Database Navigation

The DB navigation is based upon the concept of entry points. The DB entry points
create a kind of spatial relationships between the entities of the data models of the
integrated DBs. By selecting the Other Databases item in the popup menu of the main
interface (Fig. 5), the user indicates that he wants to make cross-DB join operations
via the entry point defined in the clicked entity. This is a very powerful feature by
means of which the engineer can catch from another DB any information of a
particular entity that is not contained in the current DB.

As a simple example, suppose the engineer currently queries the MENTAS DB,
and further, that he wants to be informed about the fluid dynamics of a particular
engine he is working on. Such information is not contained in the MENTAS DB itself
but in the Fluid DB. In this case, he can exploit the DB entry point defined in the
engine entity and navigate to the Fluid DB in order to select the desired fluid dynamic
information. Whenever choosing another DB for navigation, the engineer receives the
ER diagram of the corresponding DB sketched in the schema field of the main
interface. At this time, the necessary join conditions are automatically generated by
the GUI and appended to the select statement defined so far. Hence, the engineer can
simply go ahead specifying his select statement in the very same way as before.

4 Conclusions

In large corporations, the data are usually distributed along departmental and
functional lines, contributing to the emergence of islands of information.
Unfortunately, these data are managed and organized by multi-vendor DBSs, which
have no ability to relate data from heterogeneous and distributed data sources. In this
paper, we have presented a practical approach to overcome DB heterogeneity via a
homogeneous, user-friendly DB access interface. By means of it, engineers can create
their own SQL2 select statements which may even traverse DB boundaries. On
processing the queries against the DB federation, the DB heterogeneity is completely
hidden from the engineers which only perceive a global DB schema. This allows the
engineer to use his creativity and to find the right information much faster than in
usual developing environments.

Our interface is based upon a client/server architectural approach. The DB
middleware system provides a uniform and transparent view over the integrated
databases. The DB connector manages the communication connections with the
middleware system by using JDBC. The results factory produces sets of objects
containing parts of the whole result tables of the SQL2 statements, giving support to
the cache’s prefetcher. The interface connector intercepts the SQL2 statements
produced by the GUI and sends them to the server for processing via RMI. The cache
serves the purpose of temporarily storing result sets, allowing for a smooth navigation
through those. The consistency monitor allows for cross-DB operations. It brings the
data to a common platform by means of the parser’s grammatical rules, and employs
mapping table mechanisms which support a secure DB navigation. The security
controller manages users, authorizations, access rights, and encrypts/decrypts the data
for the transport. Finally, our platform independent GUI interacts with the engineers

A Practical Approach to Access Heterogeneous and Distributed Databases 331

in a very friendly way, and guides them in the process of generating their own SQL2
select statements against a federation of heterogeneous DBs transparently.

References

1.

hed

10.

11.

12.

13.

14.

16.

17.

18.

19.

Rezende, F.F., Hergula, K.: The Heterogeneity Problem and Middleware Technology:
Experiences with and Performance of Database Gateways. In: Proc. of the 24" VLDB,
USA, 1998. pp. 146-157.

Melton, J. (Ed.): Database Language SQL 2. ANSI, Washington, D.C., USA, 1990.

Date, C.J., Darwen, H.: A Guide to the SQL Standard. Addison-Wesley, 4™ Ed., USA, 1997.
Hérder, T., Mitschang, B., Nink, U., Ritter, N.: Workstation/Server Architectures for
Database-Based Engineering Applications (in German). Informatik Forschung &
Entwicklung, 1995.

Rezende, F.F., Hirder, T.: An Approach to Multi-User KBMS in Workstation/Server
Environments. In: Proc. of the 11" Brazilian Symposium on Data Base Systems, Sao
Carlos, Brazil, 1996. pp. 58-72.

DeWitt, D.J., Maier, D., Futtersack, P., Velez, F.: A Study of Three Alternative
Workstation/Server Architectures for Object-Oriented Databases. In: Proc. of the 16"
VLDB, Australia, 1990. pp. 107-121.

Rezende, F.F.: Transaction Services for Knowledge Base Management Systems - Modeling
Aspects, Architectural Issues, and Realization Techniques. infix Verlag, Germany, 1997.
Mitschang, B., Pirahesh, H., Pistor, P., Lindsay, B., Stidkamp, S.: SQL/XNF-Processing
Composite Objects as Abstractions over Relational Data. In: Proc. Int. Conf. on Data
Engineering, Austria, 1993.

Kiispert, K., Dadam, P., Giinauer, J.: Cooperative Object Buffer Management in the
Advanced Information Management Prototype. In: Proc. of the 13" VLDB, Brighton, UK.,
1987. pp. 483-492.

Harder, T., Hiibel, C., Meyer-Wegener, K., Mitschang, B.: Processing and Transaction
Concepts for Cooperation of Engineering Workstations and a Database Server. DKE, Vol.
3, 1988. pp. 87-107.

Roussopoulos, N., Delis, A.: Modern Client-Server DBMS Architectures. ACM SIGMOD
Record, Vol. 20, No. 3, Sept. 1991. pp. 52-61.

Ananthanarayanan, R., Gottemukkala, V., Kéfer, W., Lehman, T.J., Pirahesh, H.: Using the
Coexistence Approach to Achieve Combined Functionality of Object-Oriented and
Relational Systems. In: Proc. of the ACM SIGMOD Int. Conf. on the Management of Data,
USA, May 1993. pp. 109-118.

Keller, A., Jensen, R., Agrawal, S.: Persistence Software: Bridging Object-Oriented
Programming and Relational Database. In: Proc. of the ACM SIGMOD Int. Conf. on the
Management of Data, Washington, D.C., USA, May 1993. pp. 523-528.

Thomas, J., Mitschang, B., Mattos, N.M., Dessloch, S.: Enhancing Knowledge Processing
in Client/Server Environments. In: Proc. of the 2" ACM Int. Conf. on Information and
Knowledge Management (CIKM’93), Washington, D.C., USA, Nov. 1993. pp. 324-334.

. Lee, B., Wiederhold, G.: Outer Joins and Filters for Instantiating Objects from Relational

Databases Through Views. IEEE Transactions on Knowledge and Data Engineering, Vol.
6, No. 1, 1994.

Cood, E.F.: A Relational Model of Data for Large Shared Data Banks. Communications of
the ACM, Vol. 13, 1970. pp. 377-387.

Rezende, F.F., Hergula, K., and Schneider, P.: A Comparative Analysis and Performance of
Database Gateways. Technical Report Nr. FT3/E-1998-001, DaimlerChrysler, Ulm,
Germany, March 1998.

Hergula, K., and Rezende, F.F.: A Detailed Analysis of Database Middleware Technologies
(in German). Technical Report Nr. FT3/E-1998-002, DaimlerChrysler, Ulm, Germany,
June 1998.

IBM Corporation: DB2 DataJoiner Administration Guide. IBM, 1997.

332

20.
21.

22.
23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

Fernando de Ferreira Rezende et al.

Sun Microsystems Inc. http://java.sun.com/products/jdbc/overview.html 1998.

Hamilton, G., Cattell, R., Fisher, M.: JDBC Database Access with Java: A Tutorial and
Annotated Reference, Addison-Wesley, USA, 1997.

Sun Microsystems Inc. http://java.sun.com/products/jdk/rmi/index.html} 1998.

Object Management Group. The Common Object Request Broker Architecture and
Specification (CORBA), OMG, Framingham, USA, 1992.

Object Management Group. The Common Object Request Broker Architecture and
Specification — Rev. 2.0, Technical Report, OMG, Framingham, USA, 1995.

Orfali, R., Harkey, D., Edwards, J.: The Essential Distributed Objects Survival Guide. John
Wiley & Sons, USA, 1994.

Davis, T.E.: Build your own Object Pool in Java to Boost Application Speed. JavaWorld,
http://www.javaworld.com/javaworld/jw-06-1998/jw-06-object-pool.html}, Jun. 1998.
Hermsen, U.: Design and Implementation of an Adaptable Cache in a Heterogeneous
Client/Server Environment (in German). M.S. Thesis, Univ. of Kaiserslautern, Germany,
1998.

Kim, W., Choi, L., Gala, S., Scheevel, M.: On Resolving Schematic Heterogeneity in
Multidatabase Systems. In: Kim, W. (Ed.), Modern Database Systems — The Object Model,
Interoperability, and Beyond, Addison-Wesley, USA, 1995. (Chapter 26).

Garfinkel, S., Spafford, G.: Practical Unix & Internet Security. O'Reilly & Associates Inc.,
USA, 1996.

Fritzinger, J.S., Mueller, M.: Java Security. White Paper, Sun Microsystems Inc., 1996.
Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., Zdonik, S.: The Object-
Oriented Database System Manifesto. In: Bancilhon, F., Delobel, C., Kanellakis, P. (Eds.),
Building an Object-Oriented Database System: The Story of 02, Morgan Kaufmann, USA,
1992. pp. 3-20. (Chapter 1).

Cattell, R.G.G. (Ed.): The Object Database Standard: ODMG-93. Morgan Kaufmann,
USA, 199%4.

Kim, W.: Introduction to Object-Oriented Databases. The MIT Press, Massachusetts, USA,
1990.

Loomis, M.E.S., Atwood, T., Cattell, R., Duhl, J., Ferran, G., Wade, D.. The ODMG
Object Model. Joop, Jun. 1993. pp. 64-69.

Stonebraker, M., Rowe, R.A., Lindsay, B.G., Gray, J.N., Carey, M., Brodie, M., Bernstein,
P., Beech, D.: Third-Generation Database System Manifesto. ACM SIGMOD Record, Vol.
19, No. 4, Dec. 1990.

Chen, P.P.: The Entity-Relationship Model: Toward a Unified View of Data. ACM
Transactions on Database Systems, Vol. 1, March 1976. pp. 9-37.

http://java.sun.com/products/jdbc/overview.html
http://java.sun.com/products/jdk/rmi/index.html
http://www.javaworld.com/javaworld/jw-06-1998/jw-06-object-pool.html

	1	Introduction
	2	The Client/Server Architecture of the DB Access Interface
	3	The Functionality of the Graphic User Interface
	4	Conclusions

