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Chapter 1

Introduction

1.1 Motivation

A number of trends in high performance computing have increased the need for effective dy-
namic load balancing techniques. In particular, particle/plasma simulations, which have recently
become common, generally have much less favorable load distribution characteristics than con-
tinuum calculations, such as Navier-Stokes flow solvers. Even for continuum problems, the use
of dynamically adapted grids for moving boundaries and solution resolution necessitates run-
time load balancing to maintain efficiency. In the past ten years, researchers have proposed a
number of strategies for load balancing [5, 7, 8, 9, 13, 14, 15, 16, 19, 20, 22, 27, 30, 31, 32, 33].
Unfortunately, the majority of these techniques have (at least) one of seven deficiencies:

1) They are unscalable. Many load balancing schemes rely on the availability of global
knowledge of the load distribution in a system. The techniques in this thesis require only
local knowledge. (I.e., a computer need only know the loads of neighboring computers in
the physical network.)

2) Their effectiveness is not theoretically analyzable. Although many of the techniques
in the literature have a strong intuitive appeal, they may result in clearly or even patho-
logically suboptimal load distributions. The underlying load balancing mechanism in this
thesis has been subjected to rigorous mathematical analysis and has provable convergence
properties.

3) They are application-specific. Techniques that apply to specific data decompositions and
problem domains are inherently limited in their usefulness and poorly support the evolu-
tion of an application. The framework presented here is very generic, both in terms of its
programming interface and its methodology, and has been applied to several problems in
concurrent computing.

4) They have only been applied to small, “toy” problems on small numbers of proces-
sors. By not considering real applications running on large-scale machines, the propo-
nents of other methods have failed to demonstrate the practical utility of the techniques
they advocate. The work presented here is applied to two large-scale applications involv-
ing complex data structures with realistic physics and geometries.

1



2 CHAPTER 1. INTRODUCTION

5) They are too complex to reasonably implement. The complexity of many load balanc-
ing algorithms in the literature makes errors in their implementation highly likely. Effec-
tive implementations of these methods typically involve many details omitted from the
description of the algorithms. The methods presented in this thesis are quite simple, and
any subtleties are illuminated.

6) They destroy communication locality and are unable to incorporate communication
costs into load movement decisions. If communicating tasks are moved arbitrarilywithin
a machine, the benefits of resolving a load imbalance may be exceeded by higher com-
munication costs. The techniques presented here intrinsically preserve existing commu-
nication locality. Furthermore, the decomposition of the load balancing process provides
control over the degree to which this locality is maintained.

7) They are inherently synchronous in their operation. Many methods require that all of
the computers involved go through the load balancing phase simultaneously. The strate-
gies used in this thesis can be applied to everything from highly synchronous physics simu-
lations, where load evolves in a relatively smooth manner, to highly asynchronous transac-
tion processing systems and operating systems, where load injection occurs randomly[13,
14].

1.2 Problem Statement

The abstract goal of load balancing can be stated as follows:

Given a collection of tasks comprising a computation and a set of computers on which these
tasks may be executed, find the mapping of tasks to computers that results in each computer

having an approximately equal amount of work.

A mapping that balances the workload of the processors will typically increase the overall ef-
ficiency of a computation. Increasing the overall efficiency will typically reduce the run time
of the computation—that is the ultimate, practical goal. (As will be shown in Chapter 4, naive
balancing of the load does not necessary result in faster computation.)

In considering the load balancing problem it is important to distinguish between problem
decomposition and task mapping. Problem decomposition involves the exploitation of paral-
lelism in the control and data access of an algorithm. The result of this decomposition is a set
of communicating tasks that solve the problem in parallel. These tasks can then be mapped to
computers in a way that best fits the problem. One concern in task mapping is that each com-
puter have a roughly equal workload. This is the load balancing problem, as stated above. In
some cases the computation time associated with a given task can be determined a priori. In
such circumstances one can perform the task mapping before beginning the computation; this is
called static load balancing. For an important and increasingly common class of applications,
the workload for a particular task may change over the course of a computation and cannot be
estimated beforehand. For these applications the mapping of tasks to computers must change
dynamically, at runtime.
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1.3 Approach

A practical solution of the dynamic load balancing problem involves five distinct phases [32]:�

1) Load Evaluation: Some estimate of a computer’s load must be provided to first determine
that a load imbalance exists. Estimates of the work loads associated with individual tasks
must also be maintained to determine which tasks should be transferred to best balance
the computation.

2) Profitability Determination: Once the loads of the computers have been measured, the
presence of a load imbalance can be detected. If the cost of the imbalance exceeds the cost
of load balancing, then load balancing should be initiated.

3) Work Transfer Vector Calculation: Based on the measurements taken in the first phase,
the ideal work transfers necessary to balance the computation are calculated.

4) Task Selection: Tasks are selected for transfer or exchange to best fulfill the vectors pro-
vided by the previous step. Task selection is typically constrained by communication lo-
cality and storage requirement considerations.

5) Task Migration: Once selected, tasks are transferred from one computer to another; state
and communications channel integrity must be maintained to ensure algorithmic correct-
ness.

By decomposing the load balancing process into distinct phases, one can experiment in a “plug-
and-play” fashion with different strategies at each of the above steps, allowing the space of tech-
niques to be more fully and readily explored. This capability is severely lacking in many load
balancing strategies in the literature. Indeed, many of the current load balancing algorithms fail
to address several of the above concerns altogether. Most provide only the work transfer vectors
in step 3 above. While this may certainly be an important contribution, it does not comprise a
complete solution to the load balancing problem.

1.4 Contributions

This thesis presents a cohesive, practical load balancing framework that addresses all of the con-
cerns in Section 1.1 and provides all of the mechanisms in Section 1.2. As part of the work,
an improved work transfer vector calculation algorithm is presented, based on heat diffusion,
which better scales with the degree of accuracy required. Unlike previous efforts in this arena,
the techniques have been applied to two large-scale simulations. In the process, the work ex-
poses a deficiency in all current load balancing strategies, motivating further work in this area.

1.5 Assumptions and Notational Conventions

This thesis makes the following assumptions regarding the architecture to which the techniques
herein are applied:

�Actually, the authors of [32] divided the problem into four phases, merging “task selection” and “task migra-
tion” into a single step.
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1) The interconnect topology is a d-dimensional mesh withM��M�� � � � �Md�� nodes in each
dimension, respectively. The total number of nodes P is thus M� �M� � � � � �Md��.
Within this mesh, a computer may be identified either by a Cartesian d-tuple that represents
its position in each dimension or by a unique scalar identifier. The mesh may or may not
have wraparound connections to form a torus.

2) The software system provides a basic message-passing library with simple point-to-point
communication (send and receive operations) and basic global operations (global sum, for
example).

3) Access to an accurate (milli- to microsecond level) clock is provided.



Chapter 2

Methodology

This chapter presents a design methodology for a complete load balancing solution. As outlined
in Chapter 1, there are five steps comprising a practical approach to this problem. Combining
the phases gives the complete abstract load balancing algorithm, which is presented in Figure
2.1.

load balance(...)
evaluate load for each task and sum task loads at each computer
if profitable to load balance then

calculate transfer vectors between computers
select tasks to meet those transfer vectors
migrate selected tasks to their new computers

end if
end load balance

Figure 2.1: Abstract algorithm for load balancing.

The following sections elaborate on each step in the above algorithm, presenting various design
decisions that one encounters.

2.1 Load Evaluation

The efficacy of any load balancing scheme is directly dependent on the quality of load evalua-
tion. Good load measurement is necessary both to determine that a load imbalance exists and to
calculate how much work should be transferred to alleviate that imbalance. One can determine
the load associated with a given task analytically, empirically or by a combination of those two
methods.

5



6 CHAPTER 2. METHODOLOGY

2.1.1 Analytic Load Evaluation

The load for a task is estimated based on knowledge of the time complexity of the algorithm(s)
that task is executing along with the data structures on which it is operating. For example, if one
knew that a task involved merge sorting a list of 64 elements, one might estimate the load to be
384, since merge sort is an O�N log�N� sorting algorithm, and since �� log����� � ����� �
���. This method has the advantage that it is potentially very responsive to a task for which
the relative workload is changing rapidly over time. In particular, knowing that some parameter
which has a tremendous impact on a task’s load has changed would allow the load balancing
algorithm to anticipate that change ahead of time rather than responding to it after the fact. If
the number of particles in a grid cell has doubled in the last time step, for example, knowledge
of that fact would lead to different decisions than the assumption that the load for that cell will
remain relatively constant. The disadvantage of this method is that it requires a great deal of
work on the part of the programmer, and it may be quite inaccurate in any case. Specifically,
in analyzing the relative running times for an algorithm, neglecting the constants hidden by the
big-O notation may result in very inaccurate load estimates. Cache and paging anomalies as well
as other system dependent factors can easily skew the run time for a task by a large factor.

2.1.2 Empirical Load Evaluation

One way to easily overcome the performance peculiarities of a particular architecture is to mea-
sure the load of a task directly. Typical machines provide clocks with milli- to microsecond
level accuracy. One can use these timing facilities to time each task, providing accurate mea-
surements in the categories of execution time, idle time and communication overhead. In fact,
the user need not manually time the code at all. These timings can be easily taken at the library
level. A message passing library could certainly be instrumented to accumulate time into vari-
ous categories: any time between communication operations would be labeled as runtime, any
time actually sending or receiving data would be tagged as communication time and any time
waiting to receive a message would be accumulated as idle time. Thus, empirical load measure-
ment has the advantage of being very accurate and simple. Its accuracy is limited, however, to
situations in which the past load of a task is a good predictor of its future load. While the library
could certainly attempt to predict changes in a tasks load based on a load history, universally
good prediction requires some analysis on the part of the programmer.

2.1.3 Hybrid Load Evaluation

Coupling the accuracy of empirical load measurement with the predictive power of analytical
load estimation, hybrid techniques provide the best load evaluation method. Essentially this in-
volves using timing facilities to estimate the relevant constants in the timing calculations. One
can then more accurately predict the future load for a task. For example, if the previous time step
in a computation involved 1000 operations and took 15 seconds, the cost per operation is 0.015
seconds. If the next time step will involve 1500 or so operations, it will take approximately 22.5
seconds. (Of course, this is a simple linear example in which purely analytic estimation would
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have performed just as well. The benefit occurs when a time step involves operations of varying
types, whose individual times cannot be determined a priori.)

2.2 Load Balance Initiation

For load balancing to be useful, one must first determine when to load balance. Doing so is com-
prised of two phases: detecting that a load imbalance exists and determining if the cost of load
balancing exceeds its possible benefits.

2.2.1 Load Imbalance Detection

Load imbalances can be detected in a synchronous fashion by comparing individual computer
workloads to the global workload average or in an asynchronous fashion in which computers
“notice” when their percent idle time exceeds a certain threshold.

Synchronous Load Imbalance Detection. Most scientific codes have inherent synchroniza-
tion points. In particular, global norm calculations and other determination detection mecha-
nisms typically involve a global sum or some other reduction operation, the results of which are
checked by each task involved. These barrier operations provide an natural, clean point at which
to initiate load balancing. When a barrier is initiated, the average load of all of the computers
is determined. If the aggregate efficiency is below some user-specified limit, the workload is
considered to be imbalanced.

Asynchronous Load Imbalance Detection. A load imbalance can also be detected in an asyn-
chronous fashion. A task can keep track of a window of load history. If its percent utilization
during this period drops below a critical threshold, it can issue a global request for load balanc-
ing. If the number of pending requests for load balancing exceeds some limit, then the com-
putation would be deemed imbalanced. (Another, simpler criteria for designating an individual
computer as underloaded would be to request load balancing whenever a computer has been idle
continuously for longer than some specified time.)

2.2.2 Profitability Determination

Even if a load imbalance exists, it may be better not to load balance, simply because the cost of
load balancing would exceed the benefits of a better work distribution. The time required to load
balance can be measured directly using available facilities. The expected reduction in run time
due to load balancing can be estimated loosely by assuming efficiency will be increased to 100
percent or more precisely by maintaining a history of the improvement in past load balancing
steps. If the expected improvement exceeds the cost of load balancing, the next stage in the load
balancing process should begin.
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2.3 Work Transfer Vector Calculation

After determining that it is advantageous to load balance, one must calculate how much work
should ideally be transferred from one computer to another. (Deciding which tasks to move is a
separate issue.) Algorithms for calculating these inter-computer transfer vectors should exhibit
provable properties of correctness and termination. This section presents various algorithms for
calculating work transfer vectors, along with some discussion of the properties of each.

2.3.1 Heat Diffusion

Heat diffusion provides an intuitive, correct and scalable mechanism for determining where work
should be migrated in unbalanced computation. Diffusion was first presented as a method for
load balancing in [7]. This work had certain limitations, as pointed out in [13]. Diffusion was
also explored in [32] and was found to be superior to other load balancing strategies. A more
general diffusive strategy is given in [13, 14]. This method uses a fully implicit differencing
scheme to solve the heat equation on a multi-dimensional mesh to a specified accuracy.

Algorithm. The basic diffusion algorithm presented in [13, 14] is given in Figure 2.2. This
method has a number of weaknesses in terms of its compatibility with the methodology of this
thesis as well as its performance relative to the desired accuracy. To remedy these shortcomings,

diffuse(...)

� ��
�

ln�
ln ��

����

�
while not converged do

u
���
i �� ui

for k �� 	 to � do
send u�k���i to all neighbors j � �i

receive u�k���j from all neighbors j � �i

u
�k�
i ��

u
���
i

���� 
 �
����

P
j��i u

�k���
j

end for
ui �� u

���
i

send ui to all neighbors j � �i

receive uj from all neighbors j � �i

exchange ��ui � uj� units of work with each neighbor j � �i

end while
end diffuse

Figure 2.2: The basic, first-order accurate diffusion algorithm. ui and �i denote the work load
and set of neighbors, respectively, of computer i. � is desired maximum imbalance and accuracy
of the diffusion algorithm.
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diffuse(...)
�� ��

p
�

� ��
�

ln�
ln ���

�����

�
ti�j �� � for each neighbor j � �i

send ui to all neighbors j � �i

receive uj from all neighbors j � �i

while umax � �	 
 ��uavg do
ti�j �� ti�j 


��
�
�ui � uj� for each neighbor j � �i

u
���
i �� ui 


��
�
�
P

j��i uj�� �ui�
for k �� 	 to � do

send u�k���i to all neighbors j � �i

receive u�k���j from all neighbors j � �i

u
�k�
i �

u
���
i

��	�� 
 ��
����	���

P
j��i u

�k���
j

end for
ui �� u

���
i

send ui to all neighbors j � �i

receive uj from all neighbors j � �i

ti�j �� ti�j 

��
�
�ui � uj� for each neighbor j � �i

end while
end diffuse

Figure 2.3: The improved, second-order accurate diffusion algorithm. ui and�i denote the work
load and set of neighbors, respectively, of computer i. � is desired maximum imbalance and
accuracy of the diffusion algorithm. ti�j is the work transfer vector from computer i to computer
j.

a few modifications were made. In particular, the actual movement of work is moved outside
of the loop, which now simply accumulates transfer vectors. A variety of experiments estab-
lished that satisfying many small transfer vectors was costly and ineffective versus satisfying
large transfer vectors once. A more specific convergence criteria was also utilized. Finally, a
second-order accurate, unconditionally stable differencing scheme was used to improve the con-
vergence rate by allowing larger time steps to be taken without adding substantial complexity.
The resulting algorithm is presented in Figure 2.3.

Both algorithms assume the mesh is a three-dimensional torus (i.e., periodic boundary condi-
tions). To adapt the routines for non-torus meshes, simply substitute the load of the computer on
the mesh’s boundary for the load(s) of its nonexistent wrap-around neighbor(s). (This is equiv-
alent to using the Neumann boundary condition ux � uy � uz � �.) To modify the algorithms
for arbitrary, d-dimensional meshes, substitute factors of d

� and d for each factor of 3 or 6, re-
spectively, in the numerical calculations.



10 CHAPTER 2. METHODOLOGY

Derivation. The heat equation in three dimensions is:

ut � r�u � uxx 
 uyy 
 uzz (2.1)

A common method of solving (2.1) is by using finite differencing schemes [1, 4, 23, 34]. Let ��x
denote the discrete Laplacian operator in the x dimension:

��xui�j�k � ui���j�k � �ui�j�k 
 ui���j�k

Define ��y and ��z similarly. Since the spatial discretization is arbitrary, take it to be one. Let the
temporal discretization � vary so that � � � � 	. (2.1) can be differenced in either an explicit
manner (sometimes referred to as a forward in time scheme):

u
�n���
i�j�k � u

�n�
i�j�k � ����x 
 ��y 
 ��z�u

�n�
i�j�k (2.2)

or an implicit manner (sometimes referred to as a backward in time scheme):

u
�n���
i�j�k � u

�n�
i�j�k � ����x 
 ��y 
 ��z�u

�n���
i�j�k (2.3)

The advantage of (2.2) is that it is very simple computationally. However, one must restrict
the value of� so that � � � � �


 . � (2.3) is preferable to (2.2) because it is unconditionally stable,
irrespective of the value of �. The disadvantage is that (2.3) involves the solution of a system
of equations. This task can be accomplished via a Jacobi iteration, as was done in Algorithm 1.
As shown in [13, 14], the number of iterations required is bounded by a small constant.

Unfortunately, the temporal discretization error in (2.3) is O��� (i.e., the scheme is first order
accurate in time). Reducing the error to O���� would allow larger time steps to be taken for the
same accuracy, reducing the number of steps required for convergence. One method that does
this is the Crank-Nicholson differencing scheme:

u
�n���
i�j�k � u

�n�
i�j�k �

�

�
���x 
 ��y 
 ��z��u

�n���
i�j�k 
 u

�n�
i�j�k� (2.4)

This scheme is unconditionally stable in the same manner as (2.3), but since the scheme is cen-
tered at n
		�, its truncation error is O���� (i.e., it is second order accurate in time) [18]. Thus,
we can increase our time step to �� �

p
�, for the same accuracy as a first-order scheme.

Examination of (2.4) reveals the following system of equations:

A�n��� � Bu�n� (2.5)

where A is a matrix with 	
��� terms along the diagonal and six� ��
� off-diagonal terms in each

row/ column, and whereB is a matrix with 	���� terms along the diagonal and six ��
� off-diagonal

terms in each row/column. Inverting A and rewriting (2.5) results in:

u�n��� � A��Bu�n� (2.6)

�Specifically, for meshes of arbitrary dimensionality d, � must satisfy � � � � �
�d.
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(2.6) can be satisfied via a Jacobi iteration by letting A � D�T , where D is the diagonal of A.
Therefore, (2.6) becomes:

�D � T �u�n��� � Bu�n�

which, by multiplying through by D��, can be rewritten as:

u�n��� � D��Tu�n��� 
D��Bu�n�

This equation can be established by the following Jacobi iteration:

h
u�n���

i�m���
� D��T

h
u�n���

i�m�

D��Bu�n� (2.7)

where u�n������� � Bu�n�. Note that D�� has diagonal entries �
��	�� , and D��T has six ��

����	���

off-diagonal terms in each row/column. The sum of the entries in each row/column of D��T
is thus 	��

��	��
. Given that, the Gers̆gorin disk theorem implies that the eigenvalues of D��T are

bounded by 	��
��	��

, and a theorem due to Hirsch gives the spectral radius [28]:



�
D��T

�
�

���

	 
 ���
(2.8)

The accuracy of the Jacobi iteration is a function of the spectral radius [28]:


� � � (2.9)

(2.8) and (2.9) imply that an accuracy of � will be achieved in a number of iterations specified
by:

� �
�

ln�
ln ���

�����

�
(2.10)

Finally, to calculate the change in the transfer vectors to/from each neighboring computer,
simply substitute ui�j�k for the load ui��j��k� of the neighbor in question in (2.4) and subtract (2.4)
from the resulting equation. This leaves:

��

�

�
u
�n���
i�j�k � u

�n���
i��j��k�

�



��

�

�
u
�n�
i�j�k � u

�n�
i��j��k�

�

Proof of Consistency, Stability and Convergence. The consistency of the Crank-Nicholson
differencing scheme is demonstrated in the following derivation, modified from that of von Neu-
mann [1]:

�uxx 
 uyy 
 uzz� jn���� �
	

�
�uxx 
 uyy 
 uzz� jn�� 
�uxx 
 uyy 
 uzz� jn�

�
	

�
���x 
 ��y 
 ��z��u

�n���
i�j�k 
 u

�n�
i�j�k�

� ut jn����
�

	

��
�u�n���i�j�k 
 u

�n�
i�j�k� 
 O����� (2.11)
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Rearranging (2.11) gives us the familiar form in (2.4) above. Notice that as � goes to zero, the
discretization error in (2.11) also goes to zero. Therefore, (2.4) is said to be consistent with the
diffusion equation given in (2.1).

As shown in equation (2.6), the Crank-Nicholson scheme is equivalent to the repeated mul-
tiplication of the original vector u��� by the matrixA��B. If the eigenvalues ofA��B are all less
than one in absolute value, then the iteration (2.6) is stable [1, 11]. The proof of upper bound
on these eigenvalues for the three-dimensional case follows in a manner similar to that for the
one-dimensional case given in [1].

First, note that A and B can be rewritten as follows:

A � I 
 ��C (2.12)

B � I � ��C (2.13)

where C is a matrix with 3’s along the diagonal and six off-diagonal��
� ’s in each row/column.

Let � represent an eigenvalue ofA��B, and x the corresponding eigenvector. Each must satisfy:

�B �A��x � �

Substitution of A and B into the above according to (2.12) and (2.13) yields:�
	� �

	 
 �
I � ��C

�
x � �

Examination of this reveals that the eigenvalues � of C can be expressed by:

� � ����
	� �

	 
 �
(2.14)

The eigenvectors of C are the same as those for A��B. Solving (2.14) for � produces:

� �
	� ���

	 
 ���

From the definition of C and the fact that jC � �Ij � �, one gets:

�i�j�k � �

�
sin�

i

M�

 sin�

j

M�

 sin�

k

M�

�
(2.15)

for i � f���M�� 	g, j � f���M�� 	g and k � f���M�� 	g. By substituting (2.15) into (2.14),
the eigenvalues of A��B are finally obtained:

�i�j�k �
	 � ���

�
sin� i�

M�

 sin� j�

M�

 sin� k�

M	

�
	 
 ���

�
sin� i�

M�

 sin� j�

M�

 sin� k�

M	

� (2.16)

(Note that this result is similar to that obtained by Fourier analysis of the two-dimensional case
in [34].) From (2.16), one can see that for any �i�j�k and all �� �

p
� � �, j�i�j�kj � 	. Hence,

the method is stable.
Given that the Crank-Nicholson differencing scheme (2.4) is consistent and stable, then it is

also convergent, by the Lax equivalence theorem [1].
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2.3.2 Gradient Methods

Gradient load balancing methods have been explored extensively in the literature [20, 22, 32].
The basic idea is that each computer classifies itself to be either lightly loaded, properly loaded
or heavily loaded by comparing its load to predetermined thresholds, called “low” and “high wa-
ter marks.” Lightly loaded computers inform their neighbors of their status. This information
is propagated to any overloaded computers within a fixed radius (typically the dimensions of
the network). Once propagated, a gradient map is constructed to route work from overloaded to
underloaded computers. As pointed out in [22, 32], this model may result in over- or undertrans-
fers of work to lightly loaded processors. Transferring too much work is a very serious problem.
For example, if a computer has twice the average workload of the other computers, the compu-
tation can have a maximum efficiency of fifty percent. On the other hand, if a computer has
half as much work as the average, the efficiency can still be as high as �P � �

�
�	P , where P is

the number of processors. The authors of [22] present a workaround in which computers check
that an underloaded processor is still underloaded before committing to the transfer, which is
then conducted directly from the overloaded to underloaded processor. This has the advantage
of eliminating much of the cost of transferring load via intermediate computers. Despite these
improvements, the gradient model is still fundamentally flawed. At best, it is little more than a
heuristic. At worst, it can lead to very undesirable behavior. And while it does have the scala-
bility of diffusive strategies, it has been shown to be inferior in its performance [32].

2.3.3 Hierarchical Methods

In hierarchical or multi-level techniques, computers are initially organized into (two) large groups
which are balanced between one another. These groups are then recursively divided and load
balanced. (The loads of the groups at each level are first determined by having the computers
group themselves recursively, summing the total loads of the subgroups to get the load of the
new group they comprise.) Hierarchical techniques are explored in [16, 32].� The hierarchical
method does achieve effective load balance, and it does so in a number of steps logarithmic in
the number of computers. However, the algorithm inherently neglects to attempt to minimize the
distance and volume of work transferred to achieve load balance. For communication intensive
applications the resulting disruption of existing locality in task mapping may have a severe im-
pact. In such situations, the diffusive strategy better preserves existing communication locality.
Even when communication is not an issue, the diffusive strategy has been shown to perform as
well, with less work transfer [32].

2.3.4 Domain-Specific Methods

The literature contains a number of load balancing methods for specific problem areas. While
these methods certainly lack the generality of the techniques above, they may offer better per-

�The algorithm presented in [16] is referred to as a “new,” “diffusive” method, when in fact it is neither. The
same algorithm is presented in [32], and neither presentation bears any resemblance to a diffusive technique such
as that given above.
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formance under certain circumstances.

Recursive Bisection Methods. Recursive bisection methods operate by recursively partitioning
the problem domain to achieve load balance and to reduce communication costs. Most presen-
tations of these techniques appear in the context of static load balancing [2, 33], although for-
mulations appropriate for dynamic domain repartitioning do exist [30, 31]. While many meth-
ods exist for repartitioning a computation, including various geometrically based techniques, the
most interesting methods utilize the spectral properties of a matrix encapsulating the adjacency
in the computation. Unfortunately, these methods have a fairly high computational cost. They
also blur the distinct phases of load balancing presented in Chapter 1. The combination of these
limitations makes such techniques unsuitable for use in a general purpose load balancing frame-
work.

“Strip” Methods. Heuristics for load balancing particle simulations (relevant to this thesis be-
cause of the two applications targeted in Chapter 4) are presented in [9, 19]. Both of these meth-
ods partition the physical problem domain in one dimension, then dynamically adjust the parti-
tion boundaries to track changes in particle density. The algorithm in [9] uses a global particle
count to determine how many particles each computer should have for good load balance. In
some sense, the algorithm is little different from the hierarchical methods presented above. In
[19], a method which very coarsely approximates diffusion is used. Basically, computers re-
peatedly transfer fixed, small amounts of work to underloaded neighbors until a balanced state
is reached. It should be noted that the author makes dubious claims regarding the superiority of
this technique to diffusive methods based on improper comparisons. In short, the author com-
pares the worst case convergence of the diffusive strategy to an average case problem for the
strip method. In any case, due to the lack of rigorously analyzable convergence properties, this
algorithm was deemed inappropriate for general use.

2.4 Task Selection

Once work transfer vectors between computers have been calculated, it is necessary to determine
which tasks should be moved to meet those vectors. The quality of task selection directly impacts
the ultimate quality of the load balancing. Hence, it is worthwhile to investigate the many options
that are available.

2.4.1 Task Transfer Options

There are two options in satisfying a transfer vector between two computers. One can attempt to
move tasks unidirectionally from one computer to another, or one can exchange tasks between
the two computers, resulting in a net transfer of work. The former is cheaper computationally,
because there many fewer options to consider. However, if the average task’s workload is high
relative to the magnitude of the transfer vectors, it may be very difficult to achieve a good load
balance. On the other hand, by exchanging tasks one can potentially satisfy small transfer vec-
tors by swapping two tasks of roughly the same load. The relative advantages of one method
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over the other may depend to a large extent on the granularity at which a computation has been
decomposed. If many tasks (say twenty or more) are mapped to each computer, the transfer-only
option may perform well given the relatively small workload of each task, and it will certainly
have a much lower cost than considering all the tasks on any pair of computers between which
an exchange could be made. If only a few tasks are located at each computer, exchanges will
likely be necessary when the transfer vectors are small.

2.4.2 Task Selection Algorithms

The problem of selecting which tasks to move is NP-complete, since it is simply the subset sum
problem [6]. Thus, exhaustive searches are necessary to decide the optimal solution, but much
cheaper approximation algorithms can often be used to great efficacy. In general, exhaustive
searches offer a large benefit only when the number of tasks is relatively small (less than 10
per computer). Under such circumstances, the cost of exhaustive search is fully acceptable (���

or even ��� possibilities can be considered in less than one second on most modern computers).
Note that for large numbers of tasks (more than 20 per computer), each task comprises an average
of five percent of a computer’s total workload. Thus, one would expect to be able to find a fairly
good set of tasks to move at relatively little cost with an approximation algorithm.

Best Fit/Exhaustive Searches. The best and most costly way of deciding which tasks to trans-
fer or exchange is by exhaustively considering all possible subsets of tasks that one could move.
For a set of N elements, there are �N subsets, so the cost of this search grows exponentially in
N . However, the search can be implemented very efficiently by using bit vectors to represent
the subsets and tight loops to calculate the subsets’ costs, resulting in a relatively small time per
iteration. Even so, as the number of tasks per computer becomes large, the cost of an exhaustive
search quickly becomes prohibitive. Fortunately, since the relative load of each task is decreas-
ing, it is much easier to satisfy a given transfer vector using partial searches or approximation
methods.

First Fit. In the transfer-only case, the first fit algorithm simply traverses a list of tasks, choosing
a particular task for transfer if its load does not exceed the unsatisfied portion of the transfer
vector. This is an O�N� algorithm, where N is the number of task from which work is being
transferred. The technique may work well when the number of tasks per computer is large but
may be arbitrarily poor in general.

There is also a first fit algorithm for the exchange case. The list of tasks on the computer from
which work is being transferred is traversed. Tasks that “fit” in the remaining transfer vector are
marked for transfer as above. If a task is too large, the algorithm attempts to offset it by using a
first fit transfer of tasks in the opposite direction. This algorithm requires O�MN� time, where
M is the number of tasks on the computer from which work is being transferred, and N is the
number of tasks on the computer to which work is being transferred.

Subset “Trimming.” The authors of [6] present a polynomial time approximation algorithm
for the subset sum problem. As given, the method can only be applied to one-way transfers and
not exchanges. Essentially what the algorithm does is build up a list of possible candidates for
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the optimal subset, removing those subsets whose sums are “close” to those of other subsets.
(The specification of “close” is up to the user.) By restricting the maximum number of subsets
under consideration to be proportional to the number of tasks under consideration, the algorithm
achieves polynomial running time. Ultimately, the algorithm will find a subset that has a sum
“close” to that of the optimal subset.

Simulated Annealing. Simulated annealing is loosely based on a physical situation that occurs
in state transitions such as crystallization. For example, if certain liquids are allowed to cool
slowly, the molecules comprising them will form a crystal representing the minimum possible
energy configuration. If the same liquid is cooled rapidly, the end product will be something
other than the minimum-energy crystal. In this context, greedy strategies such as first fit “cool”
the problem too quickly. By more slowly and thoroughly exploring the available options, a better
solution can often be found.

The fundamental algorithm in simulated annealing is the Metropolis algorithm [23]. Apply-
ing this technique to the subset sum problem requires that the following be provided:

� Current Configuration: Let C be the set of tasks which have been selected for trans-
fer/exchange. Initially, this set may be empty or may be provided by another algorithm
such as first fit.

� Rearrangement Procedure: LetR be a routine which permutes the current configuration
in some manner in an attempt to improve the solution. For example, one might randomly
replace a given task or subset of tasks with another task or subset of tasks. The magnitude
of the change should also be a function of the value of the current “temperature” T .

� Energy Function: The configuration energyE is simply the difference between the trans-
fer vector and the transfer that would result from that configuration.

� Annealing Schedule: A procedure S must be provided to adjust T when progress ceases
to be made at its current value.

The Metropolis algorithm repeatedly creates new configurations using R. The new configu-
rationR�C� is made the current configuration with a probability expf�E�R�C���E�C��	kTg,
where k is Boltzmann’s constant. (Note that if E�R�C�� � E�C�, the current configuration is
always changed. The important thing is that it is possible to change to a higher energy configu-
ration.) When the current configuration has failed to change for some time, T is updated via S.
When T reaches some minimum value, the algorithm stops.

2.4.3 Other Constraints

Other concerns may constrain task transfer options. In particular, transferring certain tasks may
exceed the available memory on the computers involved. Similarly, movement of certain tasks
may increase communication costs more than it improves the load balance. In such circum-
stances, it may be necessary to consider only a subset of the tasks on the computers in question.
While this may diminish the quality of transfer vector fulfillment, it will also reduce the cost of
task selection since there are fewer options to consider.
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Memory Requirements. The memory consumed by the state of a task must necessarily con-
strain its movement. Many current parallel architectures provide no support for virtual memory,
so there is a hard, fixed limit on the amount of available memory at each computer. Even if vir-
tual memory is provided, the cost of exceeding the amount of physical memory may well surpass
the cost of the load imbalance. The best way to avoid this problem is for the user to allocate and
free memory via intermediate routines such as task malloc() and task free(). This would allow
one to keep track of the total amount of memory allocated to a particular task, so that it would
only be moved to computers on which its state would fit.

Communication Locality. While the diffusion algorithm naturally preserves the existing com-
munication locality of an application, it may be the case that over time, a task will migrate a
considerable distance from the computers on which its neighbors in the communication graph
reside. Under such circumstances, the delays caused by additional network contention may off-
set the benefits of being able to freely move the task about. By keeping track of the frequency
and volume of communication over each of the channels, one can estimate the cost of having
the tasks at each end of the channel reside on the same computers, neighboring computers or
computers further apart in the network. Depending on the change in communications cost re-
sulting from a move, one may wish to restrict the computers to which a task can be moved or
even eliminate a task from consideration altogether.

2.5 Task Migration

In addition to selecting which tasks to move, a load balancing framework must also provide
mechanisms for actually moving those tasks from one computer to another. Task movement
must preserve the integrity of a task’s state, including any incoming messages in communica-
tion channels. Transportation of a task’s state typically requires assistance from the application,
especially when complex data structures such as linked lists or hash tables are involved. The
migration protocol may also need to handle errors such as memory allocation failures on the
destination computer and provide a fall-back protocol for such circumstances.

Like the earlier phases of load balancing, task migration can be implemented in a synchronous
or asynchronous fashion. This issue is primarily determined by maintenance of state and channel
integrity. Certainly a synchronous implementation simplifies the need for handling messages in
transit. In any case, a task must only be moved when its state is in a form consistent with any
user-provided routines to transport data structures. Many applications have transient state in-
formation in certain phases of the computation that may be difficult and/or costly to transport.
Allowing the user to specify when a task selected for movement should actually be moved is
certainly an easy way to avoid these difficulties. The issue then becomes whether all tasks must
declare their readiness before migration begins, or whether tasks are moved asynchronously on
an individual basis.



18 CHAPTER 2. METHODOLOGY

2.6 Summary

Building a load balancing algorithm requires that one instantiate a mechanism for each phase
detailed above. In doing so, one can custom tailor an implementation for the particular require-
ments of the target application(s). At each stage, one has the option of preserving or destroying
existing asynchrony and/or communications locality. For example, if one has a highly asyn-
chronous application which needs to be load balanced very infrequently, one might choose to
implement the load imbalance detection phase asynchronously, to avoid unnecessary overhead.
However, one may decide that the low cost of synchronizing at the few times when load balanc-
ing is necessary is more than offset by the simpler implementation of a synchronous approach
at the transfer vector calculation and task selection/migration phases.

Subsequent chapters in this thesis present a simple load balancing implementation based on
the methodology explained here. Because of the nature of the applications to which the algo-
rithm was applied, a synchronous, diffusive strategy was used. Details of this implementation
are given in Chapter 3, and the results of its application to two large-scale physics codes follows
in Chapter 4.



Chapter 3

Implementation

This chapter presents an implementation of load balancing based on the methodology given in
Chapter 2. The techniques were implemented in the context of the Concurrent Graph Library, an
applications framework which has been successfully applied to a number of large-scale irregu-
lar problems [29]. The chapter first presents an overview of the functionality of the Concurrent
Graph Library, then gives details on the specific instantiations of the load balancing phases out-
lined in the previous chapter.

3.1 The Concurrent Graph Library

The Concurrent Graph Library (hereafter referred to simply as the Graph Library) provides an
ideal framework in which to implement a practical load balancing algorithm. The Graph Library
eliminates the explicit mapping of work to processors found in prevalent concurrent program-
ming systems such as PVM and MPI [10, 12].� Under the Graph Library, the computational en-
tities are called “nodes,” which can be thought of as contexts of execution. Low-latency remote
procedure calls (RPC’s) are made over unidirectional channels from one node to another. The
mapping of nodes to computers is controlled by the Graph Library and is hidden from the user by
these communication channels. Thus, because the mapping of work to computers is not explicit,
it is possible to dynamically change this mapping, so long as the user provides some mechanism
for packing/unpacking the context of a node (i.e., the node’s state) into/from a contiguous buffer.
Figure 3.1 shows an example computational graph and its mapping to a set of computers. Figure
3.2 gives a schematic representation of the software structure of an individual node.

The above functionality is implemented on top of a computer-to-computer RPC mechanism.
Thus, once the low-level RPC has been implemented on a particular machine, the rest of the
library is immediately portable. As a result, the time to port an application under the Graph Li-
brary is typically a matter of hours instead of weeks.

Basic Functionality. The Graph Library provides two basic functions for communication and
synchronization of nodes:

�Actually, both of these systems support the some level of abstraction in the mapping of tasks to computers.
This capability is ignored in many implementations, however.

19
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Figure 3.1: A computational graph of nine nodes (represented by shaded discs) mapped onto
four computers (represented by squares).

USER

Routines
Other

Physics
Routines

State
List

Comm.

LIBRARY

Figure 3.2: The software structure of a node. The user portion is comprised of the node’s state
and routines that act upon it. The library portion is comprised of the communication list and
auxiliary routines such as load balancing and visualization functions.
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� f(len, args)@chnl: This statement executes the function f with arguments args of length
len under the context of the node to which the channel chnl leads. (A sketch of the imple-
mentation of this is given in Figure 3.3.)

� barrier(redfun, globfun, barfun, contfun, len, args): When all nodes have called this rou-
tine, their input messages args, which are of length len, are combined using provided re-
duction operator redfun (if any). The global function globfun is called on computer zero
with the result of the reduction (this provides an easy way to output a termination condi-
tion or a “beginning of time step” message, for example). After this function completes,
the barrier function barfun (if any) is called at each node with the result of the reduction
operation. Finally, after the barrier function has completed at each node, the continuation
function contfun (if any) is called on each node. (A schematic of the execution of barrier()
is shown in Figure 3.4.)

The function executed using the node-to-node RPC executes to completion without preemption
or suspension. This eliminates the need for locks to ensure exclusive access to data structures,
for example. However, due to the lack of implicit sequencing in the model, additional effort is
required to ensure that such accesses happen in the proper order. To provide stronger sequencing,
such as guaranteeing that data structures have been initialized at each node before the computa-
tion functions are begun, the library provides the barrier() function. The peculiar form of the
barrier() function is a consequence of its typical use in scientific applications. A typical scien-
tific application is of the form given in Figure 3.5. Such an algorithm would be implemented
under the Graph Library as shown in Figure 3.6.

Node Adaptation and Movement Facilities. The Graph Library provides basic facilities to
support load balancing and granularity control. This functionality includes:

� node move(): The specified node is moved from one computer to another.
� node split(): The specified node is split into two nodes.
� node merge(): The specified pair of nodes are merged into a single node.

func(arglen, arg)@chnl
msglen := sizeof(fchnl.node,func,arglen,argg)
msg := fchnl.node,func,arglen,argg
node dispatch(msglen, msg)@chnl.comp

node dispatch(msglen, msg)
fnode,func,arglen,argg := msg
set node context(node)
func(arglen, arg)

end node dispatch

Figure 3.3: Schematic implementation of the node-to-node RPC.
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(nothing)

globfun()

contfun()

barfun()

redfun()

Figure 3.4: Schematic representation of barrier() execution.

These functions were designed to be completely local in nature. That is, the movement of a node
from one computer to another affects only those two computers plus any computers containing
nodes which communicate with the node that was moved. Similarly, the node division and com-
bination routines affect only the computer on which the node(s) reside plus the computers con-
taining neighboring nodes in the graph. For simplicity of implementation, all of these routines
are currently executed within a barrier() call for correctness; there is no semantic restriction on
when the routines are executed, however.

The node move() function moves the given node from its current computer to the specified
computer, as shown schematically in Figure 3.7. The user must provide the following support
functions:

� state pack: This function packs the node’s state into a contiguous buffer for transport to
the destination computer.

� state unpack: Once the node’s state has arrived at its new location, this function is used
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partition(...)
initialize data structures
do

communicate with neighbors
compute next iteration
gather termination information

while not all done
finalize computation

end partition

Figure 3.5: Abstract algorithm for typical scientific application.

to restore the state by unpacking data structures from a buffer.
� state free: This function frees the data structures comprising the node’s state on the orig-

inal computer.

The node’s communication list is handled automatically. The original node becomes a “ghost”
node, forwarding any incoming function invocations to the node’s new location and notifying
the originators of those messages to re-target their channels. When the ghost node has received
acknowledgments of this change from each of its neighbors in the graph, it disappears. In this
way, a node can be moved in the middle of a computation, without fear of message loss, and
updates are made on a “need-to-know” basis only.

The node split() function divides a given node into two nodes—a process illustrated in Fig-
ure 3.8. This function requires that the user provide the following support routines:

� state split: This function takes the original node’s state and produces two separate states,
which are incorporated into the new nodes.

� channel split: This routine re-maps the communication channels of the original node, de-
termining which are inherited by each of the nodes into which it was split.

� state free: This function frees the state of the original node.

Messages destined for the original node are handled automatically. Upon dividing, the original
node becomes a ghost node, forwarding each RPC that arrives to the appropriate child node.
As each message is forwarded, the ghost node tells the sender to re-route its communication
channels to point to the appropriate child node. When the re-mapping of all the channels has
been acknowledged, the ghost node disappears.

The node merge() function combines two given nodes into a single node. Figure 3.9 illus-
trates this process. The user must provide the following functions for this routine:

� state combine: This function combines the states of the two nodes into a single state,
which is incorporated into the final node.

� channel combine: Given the channels of the original two nodes, this routine produces the
set of channels for the new node.
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partition(...)
sent := false
num recvd := 0
barrier( , , initialize, send msgs, 0, NULL)

end partition

send msgs(...)
for each channel c to a neighbor do

recv msg( , )@c
sent := true
if num recvd = num neighbors then

sent := false
num recvd := 0
do compute(...)

end if
end send msgs

recv msg(...)
num recvd := num recvd + 1
if sent and num recvd = num neighbors then

sent := false
num recvd := 0
do compute(...)

end if
end recv msg

do compute(...)
compute(...)
barrier(and op, , check termination, send msgs, sizeof(is done), is done)

end do compute

check termination(is done)
if is done then

finalize(...)
exit()

end if
end check termination

Figure 3.6: Graph Library implementation of a typical scientific application.
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Figure 3.7: Phases of node move().
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Figure 3.8: Phases of node split().
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During

MERGE

Before

After

Figure 3.9: Phases of node merge().

� state free: This function frees the states of the original pair of nodes.

When the two nodes merge, one of them becomes a ghost node. The other node remains as-
is, incorporating the other node’s state information into its own. When a procedure invocation
arrives at the old, now-ghost node, it forwards the message to the new, now-combined node, after
which it tells the sender of the message to change its communication channels appropriately.
When these channel modifications have been acknowledged, the ghost node disappears.

Timing Routines. The Graph Library also provides a timing function at the computer level:

� computer time(): Returns the most accurate measurement of the time since execution
began. The value reported is in seconds and fractions thereof.

This function is the basis for load measurement as presented in the next section.

3.2 Implementation Specifics

This section presents instantiations of the load balancing components presented in the previous
chapter as well as implementation specifics for the Graph Library that motivate the associated
design decisions.

3.2.1 Low-Latency RPC Mechanism

As discussed in Section 3.1, the Graph Library itself is an abstraction of a low-latency, RPC-
based programming model found in programming systems such Message-Driven C (MDC) [21].
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The RPC model used in the Graph Library allows the user to invoke a function with arguments
on a remote computer:

� f(len, args)@comp: This statement causes the remote invocation of the function f with
arguments args of length len on computer c.

As with the node-to-node RPC, a function invoked remotely on a computer executes to com-
pletion without yielding flow of control. Once again, the user must guarantee the order but not
exclusivity of data structure access by such functions.

On architectures such as the J-Machine, this remote invocation can be implemented at the
hardware or microkernel level. On more traditional multicomputers, the computer-to-computer
RPC can easily be implemented using message passing routines, as shown in Figure 3.10.

3.2.2 Load Evaluation

The Graph Library and the low-latency RPC mechanism upon which it is layered provide excel-
lent frameworks for accurate load measurement. The measurement of load at the computer and
node level is described below.

Computer Load Evaluation. Measuring the load of a computer is a fairly simple task. As
shown above, a computer simply receives function pointers and arguments, calling the former
with the latter. When a computer is waiting for a RPC, it is idle. When it is executing a function,
it is busy. Since remotely-invoked functions have only a single point of entry and exit, timing is
easily accomplished by bracketing the call to the function in the dispatch loop with calls to com-
puter time(). A computer’s load information can be accessed by the load balancing routines to
determine when and how to balance the load.

The Graph Library also provides the functionality to time individual functions. This is ac-
complished by storing a function pointer and its associated timer in a hash table. (Note that sev-
eral functions may share a single time accumulator; thus it is possible to time classes of functions
easily.) Whenever a function is initiated via an RPC, it is looked up in the hash table, and if found,
the time for its execution is added to the appropriate accumulator. In this manner, it is possible

func(arglen, arg)@comp
send ffunc,arglen,argg to comp

dispatch loop()
while true do

recv ffunc,arglen,argg
func(arglen, arg)

end while
end dispatch loop

Figure 3.10: Schematic implementation of the computer-to-computer RPC.
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dispatch loop()
begin

while true do
idle start := computer time()
recv ffunc,arglen,argg
idle count := idle count + computer time() - idle start
busy start := computer time()
func(arglen, arg)
busy end := computer time()
busy count := busy count + busy end - busy start
lookup(comp func counters, func) := lookup(...) + busy end - busy start

end while
end

Figure 3.11: Schematic implementation of computer load measurement.

to extract non-user execution time (such as that due to load balancing) from the busy time for a
computer. Another way to extract non-user execution time is to sum the execution times for the
nodes on a computer and subtract that total from the execution time for the computer as a whole.
Once again, the difference is non-user time.

A schematic of the instrumented computer-to-computerRPC dispatch routine is given in Fig-
ure 3.11.

Node Load Evaluation. As with measuring the load of a computer, measuring a node’s load
is easy to do. Once again, one simply has to accumulate the time that a node spends executing
functions, since there is no preemption or suspension of a function called remotely. This load
information is individually associated with each node and will be used to determine which nodes
should be moved to alleviate a work imbalance.

As with computer-to-computer RPC’s, the Graph Library provides the capability for the user
to time individual RPC’s to nodes. (The function measurement routines for computers cannot
be used, because an RPC to a node is implemented by a node dispatch function, which is itself
an RPC to the appropriate computer.) Once again, this is done by storing function pointers and
time counters in a hash table, adding to the appropriate counter whenever one of its associated
functions is called. Depending on whether the hash table used is unique to a particular node
or is global for all of the nodes within a computer, functions (or classes thereof) can be timed
on a node-by-node basis or across all of the nodes within a computer, respectively. The Graph
Library provides both options.

The resulting instrumented dispatch routine for node-to-node RPC is given in Figure 3.12.
The Graph Library also provides a basic set of node load functions which may be supplied to

the load balancing routine. One returns the total run time for the given node since the computa-
tion began. The other returns the total run time for the node over a finite window of load balanc-
ing steps. A larger window dampens out spurious changes in the load of a node, prevent unnec-
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essary work movement. A smaller window allows a more rapid response to a rapidly changing
work load. Users may choose to use one of these two routines or provide one of their own as
outlined in the following section.

The above load measurement techniques form a good basis for load balancing decisions only
when past load is a good predictor of future load (i.e., the loads of nodes and the computers to
which they are mapped are not changing drastically relative to the frequency of load balancing).
While such an assumption holds for broad classes of applications, there certainly exist applica-
tions for which the load may vary greatly over a short time scale. In such situations, the user
can provide a function that returns the predicted load for a node, allowing the load balancing
routines to make better decisions. Note that the user may wish to use the node load information
gathered by the Graph Library to estimate relevant timing constants.

3.2.3 Load Balance Initiation

Since all of the applications currently using the Graph Library already contain synchronization
points (via barrier() calls), load balancing is initiated by the function call balance barrier(),
which is simply a special form of the barrier() operation:

� balance barrier(..., loadfun, mineff, packfun, unpackfun, freefun): When all nodes have
called this routine, their input messages args, which are of length len, are combined us-
ing redfun(). globfun() is called on computer zero with the result of the reduction. After
globfun() completes, the barrier function barfun() is called at each node with the result of
the reduction operation. After barfun() has completed everywhere, load balancing is con-
ducted if the efficiency is less than mineff. In this phase, the loads of each node are calcu-
lated using the provided loadfun() routine. If nodes are moved, the packfun(), unpackfun()
and freefun() provide the necessary support for node move() to function properly. After
load balancing is complete, contfun() is called on each node, which may now reside on
a different computer. (Figure 3.13 gives a schematic representation of the execution of
balance barrier().)

node dispatch(msglen, msg)
fnode,func,arglen,argg := msg
set node context(node)
busy start := computer time()
func(arglen, arg)
busy end := computer time()
node busy timer[node] := node busy timer[node] + busy end - busy start
lookup(global func counters, func) := lookup(...) + busy end - busy start
lookup(local func counters[node], func) := lookup(...) + busy end - busy start

end node dispatch

Figure 3.12: Schematic implementation of node load measurement.
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load_balance()

globfun()

contfun()

barfun()

redfun()

Figure 3.13: Schematic representation of balance barrier() execution.

As mentioned in the description above, each computer sums the loads of its nodes as cal-
culated using loadfun(), and if the average load for a computer is less than the mineff times the
maximum load for any computer, then the next stage of load balancing is begun. At this point,
the user determines the frequency at which balance barrier() is called.

3.2.4 Work Transfer Vector Calculation

Transfer vectors are calculated using the second-order accurate diffusive scheme presented in
Chapter 2. The initial value of ui is the load of the computer calculated in the previous step, and
the value of � is 	� mine� . Once the algorithm has converged to a state where the efficiency
meets the user’s specifications, nodes are selected for movement.
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3.2.5 Node Selection

Nodes are selected to satisfy a transfer vector using a combination of the methods presented in
Chapter 2. It was found early on that selecting nodes for exchange gave much better results than
one-way transfer. Furthermore, when the number of nodes was small, approximation methods
faired poorly in comparison to exhaustive searches. The Graph Library therefore uses the fol-
lowing strategy for deciding which nodes to transfer. If the total number of nodes on the comput-
ers involved in a transfer is less than 20, the optimal exchange is found via exhaustive search (on
target architectures, this search takes only a fraction of a second). For larger numbers of nodes,
the first-fit exchange strategy is used.

After nodes have been selected for transfer, a marker for each node to be transfered is sent to
the node’s new computer. This marker contains basic information such as the node’s load and the
number of its current computer. The node selection process is repeated using these markers to
satisfy whatever portion of the transfer vectors remains unfulfilled from previous selection steps.
The process of selecting/exchanging node markers is repeated until no markers are transferred.

The fact that this algorithm terminates is consequence of the following: All transfer vectors
are of some finite size. Each exchange of work reduces the transfer vector in question by at least
some minimum amount. I.e., for any given set of nodes, there are two subsets which would re-
sult in the minimum positive exchange of work. (Any transfer results in a net exchange of zero
work is not performed.) When all of the transfer vectors are less than this minimum possible ex-
change, no more node markers will move, and the algorithm will terminate. (This is, of course, a
very weak bound on time to termination—in practice, this phase requires a number of exchanges
roughly proportional to the severity of the imbalance and the diameter of the mesh.)

Note that it is possible for a marker to move an arbitrary distance from its original computer
(i.e., the movement is completely unconstrained). The applications targeted in Chapter 4 have a
very low communication cost, and the lack of locality preservation had little discernible effect
as a result.

3.2.6 Node Migration

Once the node markers have moved to their final destinations, a function is called remotely back
on the original computer to fetch the node itself. In this way, costly transfers of state information
occur only once, directly between a node’s original and final location, rather than between each
computer along the path the node’s marker took. The node migration protocol provides failsafe
mechanisms to handle cases in which a node transfer fails due to the memory constraints of pack-
ing/unpacking a node. If a node fails to move for this reason, it is marked as “immobile,” and
the load balancing process is restarted from the load balancing initiation phase. I.e., if the failure
to transfer that node results in a less-than-desirable efficiency, the library attempts to remedy the
situation.

Once again, this algorithm can be proven to terminate: Since there are a finite number of
nodes in the system, and each node move failure results in at least one node being marked “im-
mobile” and excluded from future consideration, the load balancing process can repeat due to
failure a finite number of times. In practice, the process typically repeats at most twice.
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3.3 Final Algorithm

The above instantiations of the phases of load balancing result in the final load balancing algo-
rithm for the Graph Library, which is presented in Figure 3.14. Results of using this algorithm
to load balance two applications are given in the next chapter.

load balance(...)

evaluate load for each task and sum task loads at each computer
for each node n do

node load[n] := loadfun(n)
computer load := computer load + node load[n]

end for

if profitable to load balance then
max computer load := global max(computer load)
avg computer load := global sum(computer load) / num computers
if avg computer load/max computer load � mineff then

do

calculate transfer vectors between computers
tv[] := diffuse()

select tasks to meet those transfer vectors
do

which nodes := select nodes(tv[])
move markers(which nodes)

while nodes selected � 0

migrate selected tasks to their new computers
for each marker m do

move node(m)

while failed moves � 0
end if

end load balance

Figure 3.14: Implemented algorithm for load balancing.



Chapter 4

Experiments

The load balancing algorithm presented in Chapter 3 was applied to two large-scale applications
running under the Graph Library. Both of these applications exhibit very poor load distribution
properties on relevant problems. This chapter gives a brief overview of these applications, in-
cluding the algorithms and the specific problems to which they are applied. It also provides per-
formance numbers before and after load balancing, demonstrating the practical efficacy of the
algorithm given in the previous chapter.

4.1 Direct Simulation Monte Carlo Application

Direct Simulation Monte Carlo (DSMC) is a technique for the simulation of collisional plasmas
and rarefied gases [24]. It is applied to particle flows where the Knudsen number� is too high
for continuum methods such as the Euler or Navier-Stokes equations and too low for collision-
less methods such as Particle-in-Cell. Like other gas and fluid modeling techniques, the DSMC
method is based on a spatial gridding of the physical problem domain. At each time step particles
may interact (collide) only with other particles in the same grid cell. DSMC techniques, as the
name implies, simulate the collision of particles using a stochastic model. I.e, collisions are not
detected directly by path intersection, but are chosen to occur by sampling a probability distri-
bution function that is based on parameters such as the density, relative velocities and collisional
cross-sections (or “diameters”) of the particles involved. Both by virtue of limiting iterations to
occur between particles within the same grid cell and by using a probabilistic model to simulate
the occurrence of collisions, the higher-order computation of all possible path intersections of
all particles is avoided. To maintain the physical validity of this model, the grid cell size must be
such that the mean free path of a particle spans several cells. When a collision occurs, depend-
ing on the species of particles involved, they may simply rebound off of one another, combine
chemically or cause one or the other to split (if either particle is a molecule). Once again, the
actual results are determined by probabilistic chemistry models which may have both theoreti-

�The Knudsen number is a measure of rarefaction. Specifically, it is the ratio of length the mean free (or colli-
sionless) path of a particle to the characteristic dimension (the ratio of particle density to the first spatial derivative
of the density).

33
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partition(...)
load geometry data into partition
initialize state
calculate local statistics
gather/scatter to obtain global statistics
while time not exhausted do

move and collide particles for time step �t
send away particles that exit current partition
receive particles from neighboring partitions
update cells with arriving particles
gather/scatter to obtain global statistics
calculate termination condition based on global statistics

end while
end partition

Figure 4.1: Concurrent DSMC Algorithm

cal and empirical components. Based on particle distribution functions, macroscopic properties
such as pressure, temperature and species concentration can be calculated.

4.1.1 Description

Hawk is a three-dimensional concurrent DSMC application based on techniques developed by
Bird [24, 29]. It was written by Marc Rieffel of the Scalable Concurrent Programming Labo-
ratory in conjunction with researchers from the Intel Corporation and the Philips Laboratory at
Edwards Air Force Base. Hawk was developed with great care for software engineering. The
physics and chemistry modules are easily interchangeable, allowing the rapid incorporation of
proprietary modeling by end-users. Hawk is currently being applied to plasma reactor simula-
tions for the Intel Corporation.

Algorithm. The DSMC algorithm that executes at each partition of the problem is given in Fig-
ure 4.1. Each node in the concurrent graph represents a partition of physical space and executes
this algorithm. The state of a node is in essence the collection of particles contained in a region.
As stated in the description of the DSMC technique, collisions within each partition (and grid
cell therein) are calculated independently. The physics routines incorporate associated collision,
chemistry and surface models. Once collisions have occurred, any particles that exited from a
grid cell are migrated to their new cells, which may reside in different partitions. The commu-
nication list is used to implement these inter-partition transfers resulting from particle motion.

Problem of Interest. Plasma reactors are prominent in many stages of microprocessor fabri-
cation. Specifically, they are involved in the etching of and deposition onto a wafer substrate.
Improvements in reactor design could greatly impact the cost, quality and efficiency of fabrica-
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tion. Thus far, empirical studies have been the primary component of the reactor design process.
Such experiments are unfortunately both money- and time-consuming. Simulation provides a
cheaper development path. Before simulating unproven designs, however, one must first verify
simulation capabilities using available experimental data.

The Gaseous Electronics Conference (GEC) reactor is a standard reactor design that is be-
ing studied extensively. As such, it is a perfect target for parametric studies. The Hawk code
described above is currently being validated on the GEC reactor. A 580,000-cell grid for the
GEC reactor is shown in Figure 4.2. Of these cells, 330,000 cells represent regions of the reac-
tor through which particles may move; the remaining “dead” (particle-less) cells comprise re-
gions outside the reactor. Simulations of up to 2.8 million particles have been conducted using
this grid. In these simulations, ambient conditions such as the port inflow and surface temper-
atures are specified. From the movement of particles inside the reactor, important macroscopic
values such as particle density, temperature and velocity are calculated for each “live” grid cell.
Ultimately, when incorporated into surface chemistry models, these parameters will be used to
estimate rates of surface etching and material deposition.

4.1.2 Results

As the description of the GEC grid above details, only slightly more than 50 percent of the grid
cells actually contain particles. Even for those cells that do contain particles, the density can vary
by up to an order of magnitude, as shown in Figure 4.3. Consequently, one would expect that a
standard spatial decomposition and mapping of the grid would result in a very inefficient compu-
tation. This is indeed the case. The GEC grid was divided into 2,560 partitions and mapped onto
256 processors of an Intel Paragon. Because of the wide variance in particle density for each par-
tition, the overall efficiency of the computation was quite low, at approximately 11 percent. As
shown in Figure 4.4, this efficiency was improved to 86 percent by load balancing. This resulted
in an 88 percent reduction in the run time. Figure 4.5 shows the corresponding improvement in
workload distribution.

4.2 Particle-in-Cell Application

Particle-in-Cell (PIC) is a computational technique used for simulating highly rarefied particle
flows in the presence of an electromagnetic field. The Knudson number is so high in this regime
that the particles are considered to be collisionless. Particles are influenced by and contribute to
an ambient electromagnetic field. The fundamental feature of PIC is the order-reducing method
of calculating this interaction. A grid is superimposed on the computational domain. The elec-
tromagnetic effect of each particle with respect to the vertices of the grid cell containing it is
calculated. Then, the governing field equations are solved over grid points, typically using an
iterative solver. Once the field solver has converged, the effects of the new field are propagated
back to the particles by adjusting their trajectories accordingly. This reciprocal interaction is cal-
culated repeatedly throughout the computation until some termination criteria (such as particle
concentration) is reached.
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Figure 4.2: The 3-D grid for the GEC reactor.

Figure 4.3: Particle density cutplane for the GEC reactor.
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Figure 4.4: Run time breakdowns for 100 time steps of the DSMC code before and after load
balancing, respectively.
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Figure 4.5: Utilization distributions for the DSMC code before and after load balancing, respec-
tively.
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partition(...)
load geometry data into partition
initialize state
calculate local �t and norm
gather/scatter to obtain global �t and norm
while time not exhausted do

move particles by virtue of velocity and �t
extract particles that exit partition
send particles that exit to appropriate partition
receive new particles from neighboring partitions
update new particle positions within current partition
gather/scatter to obtain global norm
calculate termination condition based on global norm
while global norm � termination condition do

extract field at boundary of partition
send boundaries to neighbors
receive adjacent boundaries from neighbors
compute single iteration of the field solver
calculate new local norm
gather/scatter to obtain new global norm

end while
end while

end partition

Figure 4.6: Concurrent PIC Algorithm

4.2.1 Description

The Scalable Concurrent Programming Laboratory, in collaboration with the Space Power and
Propulsion Laboratory of the MIT Department of Aeronautics and Astronautics, has developed
a 3-D concurrent simulation capability called PlumePIC.

Algorithm. The PIC algorithm for a partition of the problem is presented in Figure 4.6. The
state associated with a node is comprised of a portion of the grid and the particles contained
within the corresponding portion of physical space. Each partition is solved independently and
appropriate boundary conditions are used to signify what should happen at the interface between
partitions. In addition, there is one non-physics boundary condition representing a cut in the do-
main. This boundary condition represents the fact that communication must be used to solve an
area of the field or transport particles. At each time step, the algorithm has two parts: Based on
some initial field, particles are injected into the domain and moved according to their velocities.
If a particle exits a partition, it is communicated to an appropriate neighboring partition. After
all particle movement has been conducted, the field is solved using communication to obtain in-
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formation related to the field in adjacent partitions. The communication list associated with each
node of the graph describes possible destinations for particles that move outside a partition and
data dependencies required to implement the field solver. The physics routines used in Figure
4.6 describe the dynamics of particle movement and the solution of the field.

Problem of Interest. Electric propulsion devices are under consideration for a number of space
missions, as well as station keeping applications for communications satellites. The issue of
spacecraft contamination resulting from this type of propulsion system is receiving increased
attention. Of particular interest are ion thrusters, which operate by electromagnetically ejecting a
stream of ions at high velocity. A problem arises because complete ionization cannot be achieved
at reasonable power levels. Hence, neutral gas is emitted at thermal speeds. The accelerated ions
collide with these slow neutrals and charge-exchange, producing fast neutrals and slow ions. The
latter can be influenced by local electric fields in the plume. The electric field structure in the
plume, as seen in experiments and in computational models, is radial. Consequently, slow ions
are pushed out of the beam and move back towards the spacecraft.

This ion backflow can cause a number of problems. It can contaminate spacecraft surfaces
(particularly, solar panel arrays or sensors), possibly leading to a current drain if the surface is
charged. It can also attenuate and otherwise interfere with electromagnetic waves sent to/from
the satellite. Accurate predictions of the structure and return flux levels of this backflow will
allow spacecraft designers to place the thrusters at locations where the backflow will be mini-
mized, yielding substantial improvements in the longevity of military and commercial satellites.

This phenomenon was studied in a simulation of the ESEX/Argos satellite. The grid used
was a regular grid with 9.4 million cells. The grid was partitioned into 1,575 blocks, which were
mapped onto 256-processor Cray T3D. At the end of the simulation, 34 million particles were
moving though the domain. Figure 4.7 shows the 3-D geometry as well as cutplanes of the ion
density, charge-exchange ion density and electric field at the end of the simulation.

4.2.2 Results

As Figure 4.7 shows, the distribution of particles throughout the domain is very irregular. More-
over, this distribution changes dramatically over time. As a result, any static mapping of grid
partitions to computers will result in large inefficiencies at some point in the computation. This
fact is illustrated in Figure 4.8, which shows that each computer spends a large percentage of its
time idle. Even after load balancing, the idle time for each computer, while often better, is still
very high. Certainly, the load balancing algorithm has not improved the work distribution to the
same extent that it did with the DSMC code. Closer examination reveals that this shortcoming
is due to the two-phase nature of the PIC code. The DSMC application is a single-phase com-
putation, so load balancing it is fairly straight-forward. The PIC code has two phases, particle
push and field solve, each with very different load distribution characteristics. As a result, bal-
ancing the total load of these two phases on any given computer does not balance the individual
phases of the computation. This fact is graphically illustrated in Figures 4.9 and 4.10. As one
can see, while the load distribution for the total load at each computer improves dramatically (at
least in the sense that the variance is greatly reduced), the load distributions for the two compo-
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Figure 4.7: 3-D ESEX/Argos geometry and cutplanes ion density, charge-exchange ion density
and electric field.

nent phases remain very poor. Consequently, the overall efficiency is low. To see this effect on
a smaller scale, consider the case of two computers as shown in Figure 4.11: One has 50 units of
phase one work and 100 units of phase two work. The other computer has 100 phase one and 50
phase two units. Obviously, both computers have the same total amount of work. However, be-
cause there is synchronization between the completion of phase one by both computers before
phase two can begin, the computation is inefficient: The first computer must wait for the sec-
ond before both can start phase two, and the second computer must wait for the first before the
computation can complete. The above examples suggest that what one needs is a load balancing
strategy that jointly balances each phase of the computation. (One cannot alternate between two
distributions, for example, because the phases may be finely interleaved, making the cost of fre-
quent redistribution of work prohibitive.) One way of doing this is to consider a computer’s or
node’s load to be a vector, instead of a scalar, where each vector component is the load of a phase
of the computation for that computer. If each component is balanced separately, then the prob-
lems encountered above would be circumvented: Each computer would have a roughly equal
amount of work for each phase (implying that the total amount of work is also equal). Hence,
little or no idle time would occur at synchronization points between phases. Notice that the char-
acteristics of the PIC code also imply that, in general, one must assign multiple partitions to each
computer. Some regions of the grid will have a high particle-to-cell ratio. A partition in such a
region must be paired with a partition with a low particle-to-cell ratio to achieve effective load
balancing of both phases. A similar situation is illustrated in Figure 4.12.
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Figure 4.8: Run time breakdowns for 100 time steps of the PIC code, starting at several different
time steps. Each pair of adjacent bars show the average time components for each computer
before and after load balancing, respectively.
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Figure 4.9: Pre-load balancing utilization distributions for computers based on total work, field
solver work and particle push work.
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Figure 4.10: Post-load balancing utilization distributions for computers based on total work,
field solver work and particle push work.
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Computer 1 Computer 2
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Phase 2

Phase 1

Computer 1 Computer 2
IDLE

IDLE
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Add synchronization

Figure 4.11: Demonstration of low efficiency in a “balanced” system. In the above example,
both computers have the same total amount of work (i.e., they are load balanced in some sense).
However, because of synchronization interposed between the unbalanced phases, idle time is
introduced.
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Figure 4.12: The above bars represent a one-dimensional space in which phase one dominates
at one end and phase two dominates at the other. This domain cannot be divided evenly between
two computers by a single cut. A cut down the middle would balance the total load, but neither
of the component phases would be balanced. A cut anywhere else might either balance the first
or second phase but not both. The only way to achieve a balance is to assign multiple partitions
to each computer.
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Chapter 5

Alternative Methodologies

Presented here is a summary of the primary alternatives to the overall methodology espoused in
this thesis. Recall that alternatives to the components of the final algorithm have already been
discussed in detail in Chapter 2.

Two message passing libraries that provide levels of portability similar to the Graph Library
are the Parallel Virtual Machine (PVM) and the Message Passing Interface (MPI) [10, 12]. Un-
fortunately, the programming models supported by both of these libraries have severe limitations
with regard to providing a reasonable framework for adaption and load balancing. PVM pro-
vides facilities for task creation and destruction and can be augmented to support task movement
and load leveling [5]. These capabilities are implemented via a task identifier which abstracts
the mapping of tasks to computers. Because PVM does not incorporate the idea of a communi-
cation graph, the library cannot easily determine the extent to which information regarding task
creation, destruction and movement must be propagated. Consequently, it seems that updates to
the task mapping would be inefficient and/or unscalable. Furthermore, because of its message
buffering mechanisms, PVM is not thread-safe. While MPI does provide a better environment
for multithreaded applications, it precludes task adaption. The set of communicating tasks under
MPI is fixed at the beginning of program execution and cannot be changed during a computa-
tion. Of course, the limitations of both of these libraries can be circumvented by introducing
an intermediate software layer that further abstracts task mapping and inter-task communication
and better supports task adaption and movement. This is precisely what the Graph Library does.
In fact, the Graph Library has already been implemented on top of both PVM and MPI.

Two libraries that provide support for parallel programming similar to that of the Graph Li-
brary are particularly interesting. CHAOS provides a framework for data and control decompo-
sition of irregular, adaptive array-based codes via index translation and communication schedul-
ing [17]. It differs from our approach in that it is appropriate only for FORTRAN-style regular
data structures and in that the communication structure is determined implicitly by the reference
patterns in the code. (In fact, the CHAOS system is designed to work in conjunction with High-
Performance Fortran (HPF).) While the methods worked well for the two applications presented,
they appear to be ill-suited for applications with irregular data structures such as linked lists and
trees. Cilk provides a multithreaded environment with integrated load balancing [3]. In many
respects, the programming model is similar to that in MDC and the Graph Library. Because of
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certain design decisions, it is best applied to tree-structured computations, however, and does
not fit the SPMD style typical of scientific applications.

Most of the load balancing work in the literature considers only the subproblem that is de-
fined as “work transfer vector calculation” in this thesis, ignoring the other issues such as load
measurement and task selection. Such work includes gradient methods [20, 22], hierarchical
algorithms [16] and early diffusive techniques [7]. Techniques appropriate to specific problem
regimes include recursive bisection algorithms [30, 31, 33] and particle simulation methods [9,
19].

Other task-based approaches to load balancing include a scalable task pool [15], a heuristic
for transferring tasks between computers based on probability vectors [8] and a scalable, iterative
bidding model [27]. All of these techniques make assumptions, such as that of complete task
independence or task load uniformity, that are not applicable in the context of this thesis.

One paper which does address the entire load balancing problem and explores a broad range
of options to its solution is [32]. The authors of this paper also conclude that diffusive tech-
niques are superior on the basis of performance, scalability and efficiency. This paper also con-
siders other aspects of load balancing that were neglected in this thesis such as the aging of load
information and its effect on the performance of load balancing algorithms.



Chapter 6

Conclusion

This thesis demonstrates that a practical, comprehensive approach to load balancing is possible
and effective, but it also shows that substantial work remains to be done. In particular, while a
simple scalar approach to load balancing is useful for applications involving a single phase of
computation, the method fails to achieve high efficiencies for computations comprised of mul-
tiple phases, each with different load distribution properties. In addition, algorithmic improve-
ments such as faster-converging diffusion schemes and better approximation algorithms for task
selection need to be incorporated. The option of an asynchronous implementation begs explo-
ration. Dynamic granularity management via task adaption and improved software interfaces
would lessen the burden of the application developer.

The following six areas of improvement could dramatically increase the effectiveness, effi-
ciency and utility of the load balancing strategy presented in this thesis:

1) Consider load as a vector rather than a scalar quantity. The experiments with the PIC
code in Chapter 4 clearly demonstrate the limitations of the scalar view of load. While
the load balancing algorithm clearly achieved a good balance for the total load on each
computer, it failed to balance the components of the load. As a result, the overall effi-
ciency was low. Only by jointly balancing the phases comprising a computation can one
hope to achieve good overall load balance; viewing load as a vector is one way to accom-
plish this. It is also interesting to note that this is only possible through multiprocessing
approaches which map multiple tasks/nodes to a single computer. Thus, single-block ap-
proaches (which include the majority of the techniques in the literature) are doomed to
failure.

2) Use load balancing to drive task/node adaption. Task-based load balancing strategies
fail whenever the load of a single task exceeds the average load over all computers. No
matter where such a task is moved, the computer to which it is mapped will be overloaded.
By dividing the task through routines such as node split(), one can alleviate this problem
by providing viable work movement options. In general, adaption can be used to dynami-
cally manage the granularity of a computation so as to maintain the best number of tasks—
increasing or decreasing the available options as necessary.

3) Accelerate convergence of diffusion algorithm. Both the first- and second-order accu-
rate schemes converge slowly as a function of the size of the mesh network. The conver-
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gence becomes especially slow as high frequency components of the load distribution are
dampened, exposing low frequency components. Techniques such as multigrid dramati-
cally accelerate the convergence in such circumstances.

4) Incorporate better approximation algorithms for task selection. Because the user is
already specifying an accuracy tolerance for load balancing, it is completely acceptable to
use this specification to guide the exhaustiveness of task selection. The subset trimming
algorithm presented in Chapter 2 provides a way to do this for one-way transfers. Gener-
alizing the algorithm would provide a mechanism for exchanges of tasks as well.

5) Allow load balancing to be done asynchronously. Load balancing is currently imple-
mented in a barrier. This is not a necessity. Introducing asynchrony into the load balanc-
ing process would allow its cost to be overlapped with idle time on underloaded computers
and would not disrupt applications that do not have algorithmic synchronization points.

6) Improve the software interface to load balancing. While the software interface to load
balancing is quite simple—the user need only provide routines to pack and unpack a task’s
state—further improvements could be made. In particular, it would be possible to use
checkpointing routines to move a task’s state: The computer from which a task is being
moved would write a checkpoint, and the computer to which a task is being moved would
read that checkpoint. Of course, the checkpoint would not actually be written to disk but
rather transferred via message passing. In this way, the user can reuse software that is al-
ready necessary for any large-scale application. In addition, data structure libraries should
be modified to support automatic unpacking and packing of hte structures therein, better
supporting checkpointing, load balancing and routine message passing.

A practical solution to the dynamic load balancing problem is certainly within reach. This
thesis takes important steps toward that solution, both by performing well on a certain class of
applications and by exposing the limitations of current approaches through its failure on a more
general problem. This demonstration is particularly important since challenges more daunting
than those posed by the PIC code loom ahead. The DSMC code, in particular, will become con-
siderably more complex over the next few years. Like the PIC code, it will soon incorporate
a self-consistent field, as well as surface chemistry models, grid adaption and visualization ca-
pabilities. Consequently, a vector with several components will undoubtedly be needed to ad-
equately characterize the load. In that case and in others, this work thus prepares the way for
strategies that better support current and future applications.
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