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Abstract

Secure computer systems use both mandatory and dis-
cretionary access controls to restrict the flow of information
through legitimate communication channels such as files,
shared memory and process signals. Unfortunately, in prac-
tice one finds that computer systems are built such that users
are not limited to communicating only through the intended
communication channels. As a result, a well-founded con-
cern of security-conscious system designers is the potential
exploitation of system storage locations and timing facili-
ties to provide unforeseen communication channels to users.
These illegitimate channels are known as covert storage and
timing channels.

Prior to the presentation of this paper twenty years ago
the covert channel analysis that took place was mostly ad
hoc. Methods for discovering and dealing with these chan-
nels were mostly informal, and the formal methods were re-
stricted to a particular specification language. This paper
presents a methodology for discovering storage and timing
channels that can be used through all phases of the software
life cycle to increase confidence that all channels have been
identified. In the original paper the methodology was pre-
sented and applied to an example system having three dif-
ferent descriptions: English, formal specification, and high-
order language implementation. In this paper only the En-
glish requirements are considered. However, the paper also
presents how the methodology has evolved and the influence
it had on other work.

Keywords: Protection, confinement, flow analysis, covert
channels, storage channels, timing channels, validation.

1. Introduction

When performing a security analysis of a system, both
overt and covert channels of the system must be consid-
ered. Overt channels use the system’s protected data objects

to transfer information. That is, one subject writes into a
data object and another subject reads from the object. Sub-
jects in this context are not only active users, but are also
processes and procedures acting on behalf of users. The
channels, such as buffers, files, and 1/0 devices, are overt
because the entity used to hold the information is a data ob-
ject; that is, it is an object that is normally viewed as a data
container. Covert channels, in contrast, use entities not nor-
mally viewed as data objects to transfer information from
one subject to another. These nondata objects, such as file
locks, device busy flags, and the passing of time, are needed
to register the state of the system. This definition, which
was presented in the original paper, differs from that intro-
duced by Lampson in his original note on the confinement
problem [13], because the covert channels discussed in this
paper include both storage and timing channels.

Overt channels are controlled by enforcing the access
control policy of the system being designed and imple-
mented. This policy states when and how overt reads and
writes of data objects may be made. Part of the security
analysis must verify that the implementation of the system
correctly realizes the stated access control policy. Access
control is not addressed further in this paper.

Recognizing and dealing with storage and timing chan-
nels are more elusive. Objects used to hold the information
being transferred are normally not viewed as data objects,
but can often be manipulated maliciously in order to trans-
fer information. In addition, the use of a storage or timing
channel requires collusion between a subject with autho-
rization to information and an unauthorized subject. Al-
though there is concern that a user at a high security level
may use a covert channel to signal or leak information to a
user at a lower level, the major threat from a covert channel
is its potential to be employed by a Trojan horse.

There are many examples of these channels and methods
for blocking them [13, 14, 17, 19, 1, 12]. However, meth-
ods for discovering these channels have for the most part
been ad hoc, giving little assurance that all storage and tim-



ing channels have indeed been discovered. The most sys-
tematic of these methods validates a specification for a mul-
tilevel, secure version of Multics [1], where an automated
tool used formal specifications to generate tables describing
which objects were read or written by a particular operation.
However, before generating the tables each operation had to
be divided into different parts, each mediated by a different
subject. Previous work on flow analysis [18, 4] has also lo-
cated storage and timing channels; however, these systems,
like [1], were tightly coupled to a restricted subset of a par-
ticular specification language.

This paper presents the Shared Resource Matrix method-
ology, which is an approach that can be applied to a variety
of system description forms and can increase the assurance
(although it does not guarantee it) that all channels have
been found. It is easily reviewed, disregards resources that
are not shared, and is iterative as the design is refined or
changed. It can be used in all phases of the software life cy-
cle on systems whose constituent parts are in varying phases
of development.

The next section introduces the methodology. Section 3
applies the methodology to an example system, and Sec-
tion 4 discusses experience with the methodology. Finally,
the last section discusses what has happened to the Shared
Resource Matrix methodology in the last twenty years.

2. The Shared Resource Matrix Methodology

Storage and timing channel analysis is performed in two
steps in the Shared Resource Matrix methodology. First,
all shared resources that can be referenced or modified by
a subject are enumerated, and then each resource is care-
fully examined to determine whether it can be used to
transfer information from one subject to another covertly.
The methodology assumes that the subjects of the system
are processes and that there is a single processor which is
shared by all of the processes. The processes may be local
or distributed; however, only one process may be active at
any one time.

To determine which shared resources can be modified or
referenced one must first identify the shared resources. A
shared resource is any object or collection of objects that
may be referenced or modified by more than one process.
It is necessary to further refine each shared resource by in-
dicating its attributes, because two processes may view dif-
ferent attributes of the same shared resource. For example,
one process may be able to determine only whether a shared
file is locked, while another process may only view the size
of the file. Attributes of all shared resources are indicated
in row headings of the Shared Resource Matrix. Table 1 is
a matrix for the sample system discussed in Section 3.

Next, one must determine all operation primitives of the
system being analyzed. Some examples of primitives are
Write-File, Read-File, Lock-File, and File-Locked. The

primitives of the system make up the column headings of
the Shared Resource Matrix.

After determining all of the row and column headings
one must determine for each attribute (the row headings)
whether the primitive indicated by the column heading
modifies or references that attribute. This is done by care-
fully reviewing the description for each of the primitives,
whether it is an English requirement, formal specification,
or implementation code. This task is performed differently
for each phase of the software life cycle (The example pre-
sented in Section 3 presents the details of applying the ap-
proach to English requirements.). The matrix generation is
completed when each element of the matrix has been con-
sidered and marked, indicating whether a modification or
reference could occur.

The generated matrix is then used to determine whether
any channels exist. Two types of channels are considered:
storage channels and timing channels. With a storage chan-
nel the sending process alters a particular data item, and the
receiving process detects and interprets the value of the al-
tered data to receive information covertly. With a timing
channel the sending process modulates the amount of time
required for the receiving process to perform a task or detect
a change in an attribute, and the receiving process interprets
this delay or lack of delay as information.

In order to have a storage channel, the following mini-
mum criteria must be satisfied:

(a) The sending and receiving processes must have access
to the same attribute of a shared resource.

(b) There must be some means by which the sending pro-
cess can force the shared attribute to change.

(c) There must be some means by which the receiving pro-
cess can detect the attribute change.

(d) There must be some mechanism for initiating the com-
munication between the sending and receiving pro-
cesses and for sequencing the events correctly. This
mechanism could be another channel with a smaller
bandwidth.

If criteria (a)-(c) are satisfied, one must find a scenario
that satisfies criterion (d). If such a scenario can be found,
a storage channel exists. This last step requires imagina-
tion and insight into the system being analyzed. However,
by using the Shared Resource Matrix approach, attributes
of shared resources that do not satisfy criteria (a)-(c) can
readily be identified and discarded.

Timing channels are discovered in a similar manner;
however, different criteria are used. The minimum crite-
ria necessary in order for a timing channel to exist are as
follows:

(a) The sending and receiving processes must have access
to the same attribute of a shared resource.



Primitive
Resource WRITE | READ LOCK UNLOCK| OPEN CLOSE | FILE FILE
Attributes FILE FILE FILE FILE FILE FILE LOCKED| OPENED
Process
ID
Access Rights R R R R
Buffer R M
File
ID
Security Classes R R R R
Locked By R M
Locked R R.M R.M R R
In-use Set R RM R.M R
Value M R
[ CurrentProc | R |R |R [R [ R | |

Table 1. Resource matrix filled in from English system description

(b) The receiving process must have access to a time ref-
erence, such as a real-time clock.

(c) The sender must be capable of modulating the re-
ceiver’s response time for detecting a change in the
shared attribute.

(d) There must be some mechanism for initiating the pro-
cesses and for sequencing the events.

Any time a processor is shared there is a shared attribute:
the response time of the CPU. A change in response time is
detected by the receiving process by monitoring the clock.

For a channel to be of concern, the sending and receiv-
ing processes must be in distinct protection domains and
must not be allowed to communicate with each other di-
rectly. Therefore, any channels that exist between processes
in the same protection domain can be ignored. In particular,
if a process can sense only modifications made by itself, no
channel exists.

Many storage and timing channels are a necessary part
of the normal operation of the system; therefore, when a
channel has been identified it is necessary to determine the
bandwidth of the channel. That is, it is necessary to de-
termine how many bits per second can be transferred be-
tween two cooperating processes using the identified chan-
nel. By determining the baud rate for a channel, one can
decide whether to block the channel, add noise to decrease
its bandwidth, or simply ignore it.

3. Illustrating the Methodology on a Sample
System

The methodology has been successfully applied to the
design of a secure network front-end [5]; however, because

the software architecture is proprietary, it could not be re-
ported on in this paper. Instead, a pedagogical example is
used. The advantage of using a toy system is that the pro-
cess of applying the methodology is made more obvious to
the reader. The danger of this approach is that the exam-
ple begs the methodology, and the channels discovered may
appear to be obvious. The example system considered here
consists of two types of objects: processes and files. A pro-
cess may read or write a file, open or close a file for reading,
and lock or unlock a file for writing. It may also query to
see whether a file is locked or opened.

The intent of the example is to show how the Shared
Resource Matrix approach can be used through the entire
software life cycle to detect potential storage and timing
channels. Discovery of a channel in the early phases of the
software life cycle allows the designer to try to block the
channel before too many design decisions have been made.
However, constructing the matrix from an English descrip-
tion or a formal specification cannot uncover all channels.
Therefore, it is important that the methodology also be ap-
plied to later phases of the software life cycle, particularly
to implementation code. In the following sections an En-
glish description of the system is considered.

3.1. English Requirements for the Sample System

Each process has a constant set of access rights. An ac-
cess right consists of a security class and a read/write field.
The read/write field indicates whether the process can read,
write, or read and write objects of the indicated security
class. Each file has a constant set of security classes. A file
may be open for reading, locked for writing, or not in use. If
a file is open for reading, then its in-use set contains the id’s
of the processes that currently have the file open for reading.



If a file is locked for writing, then the value of its locked by
attribute is the process that locked it; only this process can
modify or unlock the file. For a process to read information
from a file, each member of the file’s security class set must
exist in the access rights set of the process with either read
or read/write access. If this is the case, then the process is
said to have read access for the file. Write access is defined
similarly.

Only one process, the current process, is active at a time.
Each operation is uninterruptable and runs to completion
before another is invoked. These restrictions avoid the com-
binatoric disaster that may result from introducing concur-
rency. More important, they are necessary if the system is to
be formally verified. The operations are discussed in more
detail in the following paragraphs.

The Write-File operation is used by a process to change
the contents of a file. If the file is locked by the current pro-
cess, the value of the file is modified to contain the contents
of the current process’s buffer.

The Read-File operation is used by a process to interro-
gate the contents of a file. If the current process is included
in the in-use set for the file specified, the value of the file is
copied to the current process’s buffer.

The Lock-File operation is used by a process to modify
the contents of a particular file. A process must lock a file
before modifying it and must unlock the file after the modi-
fication is complete. If the current process has write access
for the specified file, if the file specified is unlocked, and if
its in-use set is empty, then the file is locked, and its locked
by attribute is set to the id of the current process.

The Unlock-File operation makes a file accessible when
a process is done modifying its contents. If the specified
file’s locked by attribute is the current process, the file is
unlocked.

The Open-File operation is used by a process to initiate
retrieval of the contents of a file. This primitive guarantees
that no other process is modifying the contents of the file
being interrogated. If the current process has read access
for the specified file and the file is not locked, the current
process’s id is added to the in-use set for this file.

The Close-File operation is used when a process has
completed interrogation of a file and wants to release it so
that it can be modified. If the current process’s id is an
element of the in-use set for the specified file, then it is re-
moved from that set.

The File—Locked operation is used by a process to de-
termine whether a file is locked. If the current process has
write access for the specified file, then, if the file is locked,
a value of true is returned. If the file is unlocked the value
false is returned. If the current process lacks write access
for the specified file the result is undefined.

The File-Opened operation is used by a process to de-
termine whether a file is open for reading. If the current
process has write access for the specified file, then, if the

file’s in-use set is nonempty (i.e., the file is open for read),
a value of true is returned. If it is empty the value false is
returned. If the current process does not have write access
for the specified file, the result is undefined.

For all operations, if the required conditions, such as file
unlocked, are not met, then the operation has a null effect.

With this limited set of operations and no mechanism to
cause a process to release a file, there is a potential for dead-
lock. In addition, a real system requires some fair method
of scheduling processes, such as allowing each process to
execute n operations before switching processes in a round-
robin fashion. These issues, which are of concern in real-
system design, are, for the most part, ignored in the remain-
der of the paper. However, an example of a timing chan-
nel premised on this approach to scheduling is presented in
Section 3.2.3.

3.2. Applying the Methodology to the English Re-
quirements

3.2.1 Constructing the Matrix

The first thing to do when applying the Shared Resource
Matrix approach to the English requirements is to determine
the objects and their attributes. There are two types of ob-
jects: processes and files. The attributes of a process are
id, access rights, and buffer. The attributes of a file are id,
security classes, locked by, locked, in-use set, and value. In
addition, an object current process indicates which process
is currently active.

The operational primitives of the system are the eight
operations presented in the section above. Using this in-
formation, the skeleton of the matrix can be constructed
and filled in by carefully determining whether the primitive
indicated by each column heading modifies or references
each attribute. When working with English requirements,
keywords such as “checks”, “reads”, “if”’, and “copy from”
lead one to find attributes that are referenced. Keywords
such as “change”, “set”, “replace”, and “copy to” lead one
to attributes that are modified. Consider the description of
Write-File:

If the file is locked and the current process locked it, then
the value of the file is modified to contain the contents
of the current process’s buffer.

When encountering the keyword if, one knows that what
follows probably indicates attributes whose values are ref-
erenced. Therefore, for this operation the file’s locked and
locked by attributes, as well as the current process, are ref-
erenced. The keyword modify alerts one to look for what is
modified and by what. For this operation the file’s value at-
tribute is modified using the process’s buffer attribute. Thus,
the buffer, locked by, locked, and current process rows of
the Write-File column contain Rs for reference, the value



row contains an M for modify, and the other rows of this
column remain blank. This process is repeated for all of the
primitives, yielding the matrix of Table 1.

The attributes referenced by one primitive may have
been modified by another primitive that referenced addi-
tional attributes. In order to illuminate these more sophis-
ticated channels, involving multiple attributes, it is neces-
sary to generate the transitive closure of the Shared Re-
source Matrix. For instance, suppose an operation login
references the password file and modifies the active-user
attribute. Furthermore, suppose a second operation refer-
ences the active-user attribute. The Shared Resource Ma-
trix for these two operations would indicate a reference to
active-user but no reference to the password file in the col-
umn that corresponds to the second operation. However, it
may be the case that the active-user attribute is modified in
a manner which compromises a user’s password. Thus, it
is necessary to indicate this indirect reference in the matrix.
Then, when analyzing the matrix for possible channels, one
must ensure that the modification to active-user does not re-
veal information about a user’s passwords.

The transitive closure of the matrix is generated by look-
ing at each entry that contains an R. If there is an M in
the row in which this entry appears, then it is necessary to
check the column that contains the M to see if it references
any attributes that are not referenced by the original primi-
tive. That is, if the column that contains the M has an R in
any row in which there is not an R in the corresponding row
of the original column, then an R must be added to that row
in the original column.

For instance, consider the column for Write-File in Ta-
ble 1. There is an R in the locked row of this column, and
the locked attribute is modified by the Lock-File primitive.
Therefore, it is necessary to see which attributes were ref-
erenced to make this modification. The attributes access
rights, security classes, locked, in-use set, and current pro-
cess are referenced. Access rights, security classes, and in-
use set are not directly referenced by the Write—File primi-
tive, so they must be added to that column.

This process is repeated until no new entries can be
added to the matrix. The resulting matrix is the transi-
tive closure (with respect to references) of the original ma-
trix. The transitive closure matrix for the example system is
shown in Table 2.

Although the matrix construction has been performed
manually, much of the generation could he automated. A
prime candidate for automation is the generation of the tran-
sitive closure of the matrix. This process is not dependent
on the form of the system description; therefore, mecha-
nizing the process would not restrict the versatility of the
approach. In fact, a program for generating the transitive
closure of a matrix is presented in [8].

3.2.2 Analyzing the Matrix

Now that the Shared Resource Matrix is complete, it may
be used to locate potential storage and timing channels. In
this section only storage channels are considered. An ex-
ample of a timing channel is given in Section 3.2.3. From
the criteria presented in Section 2 it can be seen that the only
attributes that need be considered are those whose rows con-
tain both an R and an M. Thus, for the example, only locked
by, locked, in-use set, buffer, and value need to be consid-
ered.

For an attribute to be a potential storage channel one
must be able to transfer information from one process to
another in a direction that is not allowed by the access con-
trol mechanism. Therefore, it is not necessary to consider
cases in which the access control mechanism requires the
sending process to have write access and the receiving pro-
cess to have read access to the same object; because, if they
satisfy these requirements, the sender can modify the object
and the receiver can reference the object. Thus, no storage
channel is needed to communicate.

When analyzing a reference to a shared attribute, one can
arrive at four possible conclusions:

1. Another legal channel exists between the two com-
municating processes, so this channel is of no conse-
quence.

2. No useful information can be gained from this channel.
3. The sending and receiving processes are the same.

4. A potential storage channel exists.

In the following paragraphs an example of each of these
conclusions is presented. The reader who is not interested
in the details of the analysis for shared attributes may skip
ahead to the last paragraph of this section, where the analy-
sis is summarized.

The first attribute considered is the locked by attribute.
This attribute can be modified only by the Lock-File primi-
tive, and this requires the process executing the primitive to
have write access to the file. Thus, the sending process must
be in a protection domain that allows write access to the file
specified. All of the primitives can reference the locked by
attribute; therefore, it is necessary to determine for each of
these references whether the reference can occur when the
executing process is in a protection domain that does not
require read access.

When the Write—File primitive is executed, the locked
by attribute is referenced. If the value of the locked by at-
tribute is the current process, then the locked by attribute
was set by the current process (by executing a Lock-File).
Since the process executing the Write-File primitive does
not need read access, a potential storage channel may ex-
ist. However, the current process is the same process that



Primitive
Resource WRITE | READ LOCK UNLOCK| OPEN CLOSE | FILE FILE
Attributes FILE FILE FILE FILE FILE FILE LOCKED| OPENED
Process
ID
Access Rights R R R R R R R
Buffer R RM
File
ID
Security Classes | R R R R R R R
Locked By R R RM R R R R
Locked R R RM RM R R R R
In-use Set R R R RM RM R R
Value R.M R
[ CurrentProc | R |R |R |R [ R [ R R |

Table 2. Transitive Closure of the matrix for English description

modified the attribute, and this channel gains nothing. If the
current process did not lock the file, then it can get no new
information from the locked by attribute. That is, the cur-
rent process only knows that it did not lock the file, which it
already knows anyway. Thus, no useful information would
be gained by using the Write-File primitive to reference the
locked by attribute.

The Read-File primitive requires the executing process
to be in the in-use set. Since a process can become a mem-
ber of a file’s in-use set only by executing the Open-File
primitive, the executing process needs read access in order
to reference the locked by attribute. Therefore, the sending
and receiving process can communicate directly through the
specified file, and this is not a candidate storage channel.

The reference indicated for the Lock-File primitive is a
transitive reference generated because the Lock-File primi-
tive references the locked attribute, which is modified by the
Unlock-File primitive, which in turn references the locked
by attribute. The only information transferred by this refer-
ence is the fact that the process that last unlocked the spec-
ified file is the same process that locked it. Since this is
always the case, no new information can be obtained from
this indirect reference to the locked by attribute. There are
a number of indirect references generated by the methodol-
ogy, and each must be checked to see whether it can be used
to transmit information that is not otherwise available.

None of the other references to the locked by attribute
yield potential storage channels.

The in-use set attribute can be modified by the Open-
File and Close-File primitives. The Open-File primitive re-
quires the current process to have read access for the file
in order to modify the in-use set, and the Close—File prim-
itive requires the executing process to be a member of the
in-use set for the modification to take place; therefore, the

process must have read access for the specified file. Thus,
both primitives require the executing process to have read
access for the modification to take place. Since the protec-
tion domain of the modifying process must have read ac-
cess, and the in-use set attribute can be referenced by all
of the primitives, all of the primitives must be considered
when searching for potential storage channels that use this
attribute.

The Lock-File primitive references the in-use set at-
tribute to determine whether it is empty. Whether the in-
use set is empty can be detected by any process with write
access; therefore, this attribute may be a potential storage
channel. The following scenario shows that this reference
to the in-use set can be used as a storage channel. If the
in-use set is empty, a process with read access could signal
a 1 by executing the Open-File primitive, or a O by not ex-
ecuting the primitive or by executing a Close-File when the
in-use set contains only that process’s id. A process with
only write access could then determine the setting by exe-
cuting a Lock-File primitive and interpreting a successful
result as a 0 and an unsuccessful result as a 1. (Note that
this assumes that the file is not locked. Furthermore, since
the Lock-File primitive does not explicitly return a success
or failure code, the process will have to use the File-Locked
primitive to check the result.) By using this procedure on a
number of files to which the sender has read access and the
receiver has write access, a large bandwidth channel can be
achieved.

The Open-File and Close-File primitives reference the
in-use set only to include/remove the executing process’s id
in/from the set. This reference provides no information to
the executing process. However, if the in-use set were a fi-
nite set whose maximum size was less than the number of
processes that were allowed read access, then the set could



Primitive Sensing Change
Attribute WRITE | READ LOCK UNLOCK| OPEN CLOSE | FILE FILE
Modulated FILE FILE FILE FILE FILE FILE LOCKED| OPENED
Locked By S L N S L L N N
In-use Set N S P N N N N P
Locked S L P S L L P N
Buffer S S - - - - - -
Value S S - - - - - -
Key for Table:

L Legal channel exists with access control mechanism
N No useful information can be gained from channel
S Same process sending and receiving information

P Potential covert channel

Table 3. Summary of Matrix Analysis

be overflowed, causing a resource error. Thus, at the im-
plementation level, where resources are finite and resource
exhaustion can occur, more storage channels may exist.

A complete analysis of all of the shared attributes is pre-
sented in [9]. Table 3 contains a summary of this storage
channel analysis. Two attributes that could be used as po-
tential storage channels were discovered. After the storage
channels are located, each must be analyzed to determine
its worst-case (i.e., largest) bandwidth. A decision is then
made to determine whether to block the potential channel
or ignore it.

3.3. Timing Channels

In order to provide an example of a timing channel, as-
sume that the processes are scheduled in a round-robin fash-
ion, with each process being allowed to execute n operations
before giving up the CPU. In addition, assume there is an-
other operation called Process—Sleep, which a process may
invoke if it wants to give up the CPU before it has executed
n operations. Finally, assume that each process has access
to a real-time clock.

The closure of the Shared Resource Matrix with the
Process—Sleep operation added is shown in Table 4. No-
tice that a process can modify the current process attribute
by invoking the Process-Sleep operation. Thus, the current
process attribute must now be analyzed as a candidate chan-
nel. In analyzing this attribute for a storage channel, one
discovers that the only information that the executing pro-
cess can glean is that it (the executing process) is the current
process, which is not useful information.

Next, this attribute is analyzed to determine if it can be
used as a timing channel. The only information that a pro-
cess can obtain is that it is the currently executing process,
but if the executing process can determine how much time
has elapsed since it last had control of the CPU, and if an-

other process can vary this amount of time, then the current
process attribute can be used as a timing channel. The fol-
lowing paragraphs present a scenario for using this channel.

Consider a sending process S and a receiving process R.
Since S and R can surrender the processor at will, while re-
maining ready for invocation at the next scheduling slice,
and the scheduling algorithm used is round-robin, S and R
can take turns using the CPU. The scenario is as follows. S
and R calibrate the process switch time by taking turns for
a while; call this time T. T has some variance, and could be
multimodal in a system with recurring regular events, such
as timer interrupts. S and R agree upon a code for transmit-
ting messages, which may be based on the results of the cal-
ibration (in which case S and R must arrive independently
at the same code). The code must have the property that the
normal variance of the process switch time will not result
in transmission errors. Also, some selective noise rejection
based upon the results of the calibration run can remove
some regularly-occurring-event noise. ! Furthermore, only
a fraction of the possible distinguishing code values is used
to provide some detection of noise in transmission (i.e., the
code works in the presence of noise to a degree determined
primarily by the redundancy in the code).

Now, S sends a message M by consuming an amount of
processor time which represents the coded version of M. R
computes the amount of time which has passed since R last
had control. It subtracts T from this. It now reconstructs
the value of M corresponding to this time. Since the code
is redundant, the computation may indicate a value not in
the valid code set. To acknowledge M, R could give up
the processor immediately (alternately, a subset of the code
could be used to transmit positive acknowledgment). If the
coded value is not a valid message, R acknowledges receipt
negatively by consuming a particular amount of processor

't should be noted that “noise” is generated whenever a process other
than S or R runs.



Primitive

Resource WRITE | READ | LOCK | UNLOCK| OPEN | CLOSE | FILE FILE PROC

Attributes FILE FILE FILE FILE FILE FILE LOCKED| OPENED | SLEEP

Process

ID

Access Rights R R R R R R R R

Buffer R RM

File

ID

Security Classes | R R R R R R R

Locked By R R RM R R R R R

Locked R R RM RM R R R R

In-use Set R R R R.M R.M R R

Value R.M R
[ CurrentProc | R |R |R |R |R |R [R [ R [RM ]
[ System Clock | R |R |R |R |R |R [R [ R [ R |

Table 4. Transitive Closure of the matrix for English description with timing example added

time before giving up the processor. This allows transmis-
sion in the presence of noise. S measures how much time
has passed since giving up the processor. If it corresponds
to correct receipt of M by R (e.g., T in the simplest case
above), then a new message is sent. If not, then M is resent.
For more details on this timing channel see [9].

3.4. Other Phases of the Software Life Cycle

In the original paper the Shared Resource Matrix
methodology was applied to a formal specification of the
example system and to implementation code. The formal
specifications for the system were written in a variant of
Ina Jo, which is a nonprocedural assertion language that is
an extension of first-order predicate calculus. The language
assumes that the system is modeled as a state machine. An
Ina Jo language transform is a state transition function; it
specifies what the values of the state variables will be after
the state transition, relative to what their values were be-
fore the transition took place. A complete description of the
Ina Jo language can be found in the Ina Jo Reference Man-
ual [15]. When an Ina Jo specification is used, the state
variables are the attributes and the transforms are the prim-
itives. In the original paper it was shown how to determine
which attributes were referenced and/or modified for each
transform.

When dealing with implementation code the primitives
are the procedures and the attributes are the fields of the
variables. Again the original paper showed how to iden-
tify what variable fields were referenced or modified in each
section of code.

Although the original paper dealt only with top-level for-

mal specifications, the Shared Resource Matrix methodol-
ogy can be applied to more detailed specifications in the
same manner. The more detailed specification could intro-
duce new attributes (e.g., the size of a file) and more trans-
forms, and the transforms could have more parameters (e.g.,
offset in a file or buffer size). Therefore, the matrix would
grow in size.

The Shared Resource Matrix is also useful during the
debugging and maintenance phases of the life cycle. If one
wants to know which elements are affected by a particu-
lar attribute, it is only necessary to consult the matrix. For
instance, before modifying a variable one can immediately
determine what other attributes would be affected by the
modification. Finally, if it is desirable to change the struc-
ture of some variable, one can determine from the matrix
which procedures would be affected by the change. As the
system is modified, any changes in the attributes that are
referenced or modified should be reflected in the Shared
Resource Matrix, and the changes to the matrix should be
analyzed for possible storage and timing channels.

4. Results

The Shared Resource Matrix methodology was success-
fully applied to the design of a secure network front-end
[5]. This application revealed a number of storage and tim-
ing channels. Of the channels discovered the worst-case
bandwidth was 5000 bits per second, with a typical band-
width of 20 bits per second. However, in practice, the band-
width of these channels was much less, owing to the pres-
ence of noise and interference from other than the cooperat-
ing processes. As a result of the analysis, the front-end was



redesigned to block or reduce the bandwidth of the channels
discovered.

There are several advantages to using the Shared Re-
source Matrix to locate storage and timing channels, as op-
posed to searching for these channels in an ad hoc fashion.
The first advantage is that by using the matrix, attributes
that do not meet the preliminary criteria of being modified
or referenced by a process are quickly discarded.

Another advantage is that, by presenting the shared re-
source information in graphical form, the information can
be checked easily by those persons participating in the de-
sign, implementation, testing, and maintenance of the sys-
tem, whether or not they are involved directly in the security
analysis. The matrix also serves as an excellent design tool.
By indicating which attributes are affected by a primitive,
design oversights that may have been left out of the prelim-
inary design may be discovered. Also, if a primitive is to
be changed, the attributes that may be affected are readily
determined from the matrix.

Finally, since the process of generating the matrix is an
iterative process, the matrix can be used throughout the soft-
ware life cycle of the project as a design tool, as well as a
security analysis tool. As the specifications become more
detailed, more attributes and primitives are added to the ma-
trix. Furthermore, since the methodology is not tied to a
particular description form, it can be applied to a descrip-
tion whose constituent parts are described in different forms
(e.g., English requirements and formal specifications). That
is, part of the system may be implemented while other parts
are only described by English requirements or formal spec-
ifications; but the methodology can be applied to the collec-
tion of all descriptions.

5. The Last Twenty Years

In the mid 1980s there was an increasing interest in
covert channel analysis. One of the reasons was that covert
channel analysis was a part of the evaluation criteria used
by the National Computer Security Center to classify secure
systems. That is, the Trusted Computer System Evaluation
Criteria [3] states that for a class B2 system “The system
developer shall conduct a thorough search for covert chan-
nels and make a determination (either by actual measure-
ment or by engineering estimation) of the maximum band-
width of each identified channel.”

During this time period some researchers began applying
the non-interference approach, developed by Goguen and
Meseguer [7], to systems. With this approach a subject S1
is said to be noninterfering with a subject S2 if no action
taken by S1 can have an effect on the view S2 has of the
system.

In 1986 both the Shared Resource Matrix (SRM) ap-
proach and the noninterference approach were applied to

a high level design for a real system — the Honeywell Se-
cure Ada Target (SAT). The SAT was intended to meet or
exceed all of the requirements for Al certification. A for-
mal model of the SAT was expressed in the GYPSY for-
mal specification language. Both techniques were applied
to the Gypsy abstract model of the SAT. In this case, val-
ues for the initial Shared Resource Matrix were provided
by the Gypsy flow analyzer, which analyzed the specifica-
tion and/or code. Each operation in the matrix corresponded
to a Gypsy function or procedure, and the flow analyzer de-
termined what components of the program’s security state
were read and/or modified by each operation. For the nonin-
terference approach the failed proofs of the unwinding the-
orems lead the analyst to the flows to consider, but, like the
Shared Resource Matrix approach, it too did not aid the ana-
lyst in the actual analysis. With both approaches the analyst
had to come up with the signaling sequences and determine
whether they could be used as covert channels. Both meth-
ods were successful in detecting covert channels. A detailed
discussion of the application of both techniques and the na-
ture of the covert channels discovered can be found in [6].

The severity of a covert channel threat has been tradition-
ally measured in terms of the channel’s bandwidth (i.e., the
number of bits signaled per second). The higher the band-
width, the greater the potential for serious compromise. In
the original application of the SRM to a secure network
front-end the channel with the worst case bandwidth was
5000 bits per second. However, as operating systems were
ported to faster hardware architectures, the bandwidths of
their covert channels increaseed significantly. In 1990 the
First Workshop on Covert Channel Analysis was held in Los
Angeles [2]. At this workshop timing channels with esti-
mated bandwidths in the megabits per second range were
demonstrated on symmetric multi-processing architectures.
Channels will only continue to get faster.

As mentioned above, the SRM approach and the nonin-
terference approach were used to determine what attributes
might be used for signaling information. Neither approach
produced the sequence of operations necessary to covertly
signal the information. In 1991 Kemmerer and Porras intro-
duced tree data structures to model the flow of information
from one shared attribute to another [10]. These trees were
called Covert Flow Trees (CFTs). CFTs are used to per-
form systematic searches for operation sequences that al-
low information to be relayed through attributes and that are
eventually detected by a listening process. When traversed,
the paths of a CFT yield a comprehensive list of operation
sequences that support communication via a particular re-
source attribute. These operation sequences are then ana-
lyzed and either discharged as benign or determined to be
covert communication channels. That is, the analyst with
his/her experience is still the one that makes the determina-
tion.

In 1993 McHugh introduced three extensions that added



more precision to the SRM approach: operation splitting,
guard expansion, and user flows. Operation splitting fac-
tors the independent information flows that occur within the
same operation into separate operations. Thus, a single op-
eration in the system may appear as two or more smaller
operations in the matrix. The guard expressions take advan-
tage of the fact that conditional flows only take one branch
at a time. User flows make the flows between a user’s pri-
vate resources and the system’s shared resources explicit in
the matrix. The details of McHugh’s extension and exam-
ples of their use can be found in [16].

In 1996 Data General Corporation decided that they
wanted their trusted DG/UX operating system to undergo a
B2 evaluation. DG/UX is a full commercial-strength UNIX
system with many features and support for a wide range of
devices. The part of the system that was to be analyzed
for covert channels was on the order of 800,000 lines of C
code. The kernel was structured so that each of the elements
of the system state was under the control of a single subsys-
tem. That is, these elements could only be referenced or
modified by functions of the controlling subsystem; thus,
each subsystem could be thought of as an abstract object.

In order to make the covert channel analysis task for the
Trusted DG/UX kernel more manageable and, in particular,
to deal with the Ratings Maintenance Program (RAMP), a
modular approach that takes advantage of the subsystem ar-
chitecture was developed. The approach used leveraged off
of the subsystem architecture of the DG/UX kernel. First,
an SRM analysis was performed on each of the subsystems
that contained an exported function directly invoked from
one of the system calls. These subsystems were called “peer
subsystems.” The information from the SRMs for all of the
peer subsystems was then used to build a kernel-wide SRM.

There are two major advantages to this modular ap-
proach to covert channel analysis. The first is that the covert
channel analysis can be decomposed into a number of sep-
arable tasks, which can be distributed among many devel-
opers. The second is that the system can be incrementally
reanalyzed as it changes over time. The details of this work
can be found in [11].
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