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Abstract—Designers are increasingly integrating conformal mi-
crostrip antennas into the curved structures of either air or land vehi-
cles. Quite often, these structures are doubly curved (e.g. curved along
two orthogonal surface directions). This practice necessitates the de-
velopment of accurate codes versatile enough to model conformal an-
tennas with arbitrarily shaped apertures radiating from doubly curved
surfaces. Traditional planar-structure-based design techniques are not
well suited for this application. A hybrid finite element-boundary in-
tegral formulation appropriate for the high-frequency analysis and de-
sign of doubly curved conformal antennas is introduced in this paper.
The novelty of this approach lies in its use of an asymptotic prolate
spheroidal dyadic Green’s function to model the physics of curved sur-
face diffraction. To demonstrate the utility of this approach, the effects
of curvature on the resonant frequency and input impedance of both a
doubly curved conformal square and circular patch antenna are investi-
gated. Different feed positions are also considered. Due to a paucity of
published experimental data, the numerical results are benchmarked
by comparison with the results for planar square and circular patch
antennas. The planar results are obtained by using an experimentally
validated planar finite element-boundary integral code.
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1. INTRODUCTION

Designers are increasingly integrating conformal microstrip patch
antennas into the curved structures of aircraft, satellites, and land
vehicles due to functional or space constraints. Typically these
structures are arbitrarilly shaped and doubly curved (e.g., exhibiting
curvature along two orthogonal surface directions). It has been
shown that planar models do not accurately predict the performance
of nonplanar conformal patch antennas due to the effects of local
curvature on their resonant frequency, input impedance, and radiation
pattern [1, 2]. To be viable, design software must incorporate the
effects of surface geometry in modeling the in situ performance of
these antennas at high frequencies. Moreover, with the advent of wide
bandwidth systems for high data rate transmission, design software
must be versatile enough to model arbitrarily shaped apertures, such
as log periodic and spiral antennas [3].

Modeling the high-frequency radiation patterns by arbitrarily
shaped patch antennas conformal to doubly curved surfaces is not an
easy task. Some common techniques that have been employed are
transmission line model, cavity model, and full-wave numerical method
[4]. The simple transmission line model is the easiest to implement;
however, it is the least accurate and is restricted to rectangular patch
geometries. Although the generalized transmission line model is more
versatile, being applicable to patch shapes with separable geometries
[4], it cannot accommodate arbitrary, nonseparable geometries. The
cavity model is more versatile and accurate, but it is not amenable to
microstrip antenna arrays [4]. The full-wave approach is undeniably
the most rigorous and accurate technique for analyzing patch antennas.
This approach relies upon the calculation of a closed-formed expression
for the exact dyadic Green’s function (DGF). The utility of this
approach for planar geometries is well established; however, for
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nonplanar geometries, there are some limitations. Although closed-
form expressions for exact DGFs are derivable in cylindrical and
spherical coordinates, they would converge poorly at high frequencies.
Moreover, for reasons to be discussed in this paper, it may not
be possible to derive a closed-form expression for an exact prolate
spheroidal DGF.

In this paper, a practical approach to modeling doubly curved
conformal microstrip patch antennas with arbitrarily shaped apertures,
based on the hybrid finite element-boundary integral method (FE-
BI), is presented. In this formulation, a prolate spheroid is chosen
to canonically model a general convex doubly curved surface. This
shape is general in that it exhibits constant and variable curvatures
along azimuthally and axially oriented orthogonal surface directions,
respectively. By the appropriate specification of its radii of curvature,
convex surfaces of arbitrary curvature can be modeled. In addition,
the canonical cylindrical and spherical surfaces may be recovered as
limiting cases. It is shown that the physics of high-frequency surface
diffraction by doubly curved surfaces is intrinsic to an asymptotic
approximation to a prolate spheroidal second-kind electric DGF. This
DGF may be physically interpreted as the surface diffracted field (e.g.,
creeping waves) excited by an infinitesimal magnetic dipole on the
surface of a perfect electrically conducting (PEC) prolate spheroid.
Numerical results for the resonant frequencies and input impedance
of conformal doubly curved cavity-backed square and circular patch
antennas are presented. To demonstrate the utility of this approach,
the effects of surface curvature variation on the input impedance for
various antenna orientations and probe feed positions are investigated.
Due to a paucity of published experimental data for doubly curved
patch antennas, the numerical results are benchmarked by comparisons
with the experimentally confirmed numerical results for planar patch
antennas.

2. FORMULATION OF A FULL-WAVE SOLUTION

A prolate spheroid is generated by rotating an ellipse about its major
semi-axis. The prolate spheroidal coordinate system, as depicted in
Figure 1, is defined in terms of the rectangular coordinate system by

x = F
√

(ξ2 − 1)(1− η2) cosϕ

y = F
√

(ξ2 − 1)(1− η2) sinϕ

z = Fξη

(1)
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Figure 1. Prolate spheroidal geometry.

where the semi-interfocal distance, F , is given by F = d/2 and

−1 ≤ η ≤ 1

1 ≤ ξ ≤ ∞

0 ≤ ϕ ≤ 2π

(2)

are the coordinate constraints. Referencing Figure 1, a is an axial
length parameter and b is the azimuthal radius of curvature. The
ordered triple (η, ξ, ϕ) forms a right-handed coordinate system. The
scalar Helmholtz equation given by

(∇2 + k2)ψ = 0 (3)

can be written as

∂

∂η

[

(1−η2)
∂ψ

∂η

]

+
∂

∂ξ

[

(ξ2−1)
∂ψ

∂ξ

]

+
ξ2−η2

(1−η2)(ξ2−1)

∂2ψ

∂ϕ2
+c2(ξ2−η2)ψ=0

(4)
in the prolate spheroidal coordinate system, where c = kF and
k = 2π/λ. The scalar Helmholtz equation in (4) is separable with
the solution given by

ψ
(h)

( e
o)mn

= S(1)
mn(c, η)R

(h)
mn(c, ξ)

(

cosmϕ
sinmϕ

)

. (5)

In (5), the angular function of the first kind, denoted by S
(1)
mn(c, η), is
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given by

S(1)
mn(c, η) =

∞
′

∑

r=0,1

dmn
r (c)Pm

m+r(η) (6)

where m ≥ 0 and n ≥ m are integers, the prime indicates a summation
over even r for n − m even and over odd r for n − m odd, Pm

m+r(η)
is the associated Legendre polynomial, and dmn

r (c) are the expansion
coefficients. The angular function of the second kind is not used, since
it is not regular over the range of η. The radial function, denoted by

R
(h)
mn(c, ξ), is given by

R(h)
mn(c, ξ) =

1

α

(

ξ2 − 1

ξ2

)
m
2 ∞

′

∑

r=0,1

(j)r+m−ndmn
r (c)

(2m+ r)!

r!
z
(h)
m+r(cξ)

(7)
where

α =
∞

′

∑

r=0,1

dmn
r (c)

(2m+ r)!

r!
(8)

and z
(h)
m+n(cξ) denotes the spherical Bessel function, Neumann, or

Hankel functions of the first or second kind, for h = 1, 2, 3, and 4
respectively. The superscript h = 4 denotes outgoing waves under the
ejωt time convention, which is used throughout this paper. Applying
the following vector differential operators to the general solution in (5)

M(h)
q = ∇ψ

(h)
q × a

N
(h)
q =

1

k
∇×M(h)

q

(9)

and setting the pilot vector a equal to the position vector r, expressions
for the spheroidal vector wave functionsM and N are obtained. Thus,
the components of M are given by

rM (h)
qη =

mξ
√

(ξ2 − η2)(1− η2)
S(1)

mn(c, η)R
(h)
mn(c, ξ)

(

sinmϕ
− cosmϕ

)

rM
(h)
qξ =

mη
√

(ξ2 − η2)(ξ2 − 1)
S(1)

mn(c, η)R
(h)
mn(c, ξ)

(

− sinmϕ
cosmϕ

)

(10)

rM (h)
qϕ =

√

(ξ2 − 1)(1− η2)

ξ2 − η2

[

ξ
d

dη
S(1)

mn(c, η)R
(h)
mn(c, ξ)

− ηS(1)
mn(c, η)

d

dξ
R(h)

mn(c, ξ)

](

cosmϕ
sinmϕ

)
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and those of N are given by

rN (h)
qη =

1

kF

√

1− η2

√

ξ2 − η2

{

d

dη
S(1)

mn(c, η)
∂

∂ξ

[

ξ(ξ2 − 1)

ξ2 − η2
R(h)

mn(c, ξ)

]

−ηS(1)
mn(c, η)

∂

∂ξ

[

ξ2 − 1

ξ2 − η2

d

dξ
R(h)

mn(c, ξ)

]

+
m2η

(1− η2)(ξ2 − 1)
S(1)

mn(c, η)R
(h)
mn(c, ξ)

}

(

cosmϕ
sinmϕ

)

(11)

rN
(h)
qξ =

1

kF

√

ξ2 − 1
√

ξ2 − η2

{

∂

∂η

[

η(1− η2)

ξ2 − η2
S(1)

mn(c, η)

]

d

dξ
R(h)

mn(c, ξ)

−ξ
∂

∂η

[

1− η2

ξ2 − η2

d

dη
S(1)

mn(c, η)

]

R(h)
mn(c, ξ)

+
m2ξ

(1− η2)(ξ2 − 1)
S(1)

mn(c, η)R
(h)
mn(c, ξ)

}

(

cosmϕ
sinmϕ

)

(12)

rN (h)
qϕ =

m

kF

√

(ξ2 − 1)(1− η2)

ξ2 − η2

{

1

ξ2 − 1

d

dη

[

ηS(1)
mn(c, η)

]

R(h)
mn(c, ξ)

+
1

1− η2
S(1)

mn(c, η)
d

dξ

[

ξR(h)
mn(c, ξ)

]

}(

− sinmϕ
cosmϕ

)

(13)

where the preceding superscript r denotes thatM and N were derived
using the r pilot vector and q =

( e
o

)

mn.

3. DRAWBACKS TO THE FULL-WAVE APPROACH

In this section, the problems with the full-wave solution for the
prolate spheroidal geometry are discussed. The most critical problems
are fundamental and are gleaned from a closer examination of the
mathematical properties of the spheroidal vector wave functions. By
analogy to the spherical coordinate system, one would surmise that
the radial unit vector, ξ̂, could be used as a piloting vector. However,
a caveat of using ξ̂ as the pilot vector is that the resulting vector wave
functions do not satisfy the vector Helmholtz equation [5]. Moreover,
a formulation, which employs the position vector, r, as the pilot
vector, yields vector wave functions that are neither self nor mutually
orthogonal [6]. Perhaps the most serious mathematical limitation is
that the spheroidal vector wave functions are inherently only capable
of modeling azimuthally symmetric (e.g., independent of ϕ) fields. If
∇ × rψ represents the electric field, the boundary conditions require
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the tangential η and ϕ field components to vanish on the PEC spheroid
surface. However, as Spence and Wells [7] have rigorously shown, this
requirement can only be met by theM andN functions for the limiting
cases of azimuthal invariance or for the degenerate case of ξ equal to
zero. Analogous statements can be made about ∇×∇ × rψ. This is
because ∇× rψ and ∇×∇× rψ contain all field components [7]. The
implications of this are far-reaching. From these properties, it appears
that the derivation of an exact analytical closed-form expression for
the DGF utilizing M and N for azimuthally asymmetric fields, is an
analytically intractable problem.

The expressions for the DGF, comprised of analytically

complicated series expressions for S
(1)
mn(c, η), R

(h)
mn(c, η), and the

spheroidal vector wave functions given by (10)–(13), are quite
cumbersome to compute. Like the other more familiar functions
of mathematical physics (e.g., Bessel and Legendre functions) the
spheroidal functions are poorly convergent for large arguments
(large argument could be frequency or electrical size as a function
of frequency) due to the large number of series terms needed
for reasonable accuracy. This problem is compounded by the

aforementioned complexities of S
(1)
mn(c, η), R

(h)
mn(c, η) M, and N.

Specifically, the unknown scattering coefficients needed to calculate
the exact DGF in (14) must be determined by solving a simultaneous
system of coupled equations comprising infinite series. These
infinite series must be truncated; however, the truncation number is
proportional to the largest dimension, a, of the spheroid [8]. Thus,
in addition to the large number of series terms needed to compute
the spheroidal wave functions for an electrically large prolate spheroid,
a large number of series terms would also be needed to accurately
compute the scattering coefficients. Therefore, the costs associated
with the numerical computation of an exact DGF at high frequencies
could be prohibitive and would probably not converge due to the size
of the prolate spheroid.

One possible approach for computing the expansion coefficients

would be to express the second-kind electric DGF, denoted by Ge2, in
the form [9]

Ge2(r|r
′)=

∑

m

∑

n

[

AM
qp(r

′)rMI
qp(r)

rMI
qp

′(r) +AN
qp(r

′)rNI
qp(r)

rNI
qp

′(r)
]

(14)
where

rMI
qp(r) =

rM
(1)
qp (r) + αr

pM
(4)
qp (r)

rNI
qp(r) =

rN
(1)
qp (r) + βr

pN
(4)
qp (r)

(15)
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and p = ξ, η, ϕ. The expansion coefficients AM
qp(r

′) and AN
qp(r

′) would

then be determined numerically such that Ge2 satisfies the Neumann
boundary condition on the spheroid surface.

4. FE-BI FORMULATION

The FE-BI formulation in terms of the total electric field begins with
the weak form of the vector wave equation followed by the specification
of appropriate vector finite elements, expansion functions, and DGF.
The reader is referred to [10] for details. The discretized FE-BI
equation is given by

N
∑

j=1

Ej











∫

V

{

∇×Wi · µ
−1
r · ∇ ×Wj − k2

0Wi · εr ·Wj

}

dV−

k2
0

∫

Si

∫

Sj

(ξ̂ ×Wi) ·Ge2(ξ0, θ, ϕ|θ
′, ϕ′) · (ξ̂′ ×Wj)dS

′dS











= f int
i + fext

j (16)

where Ej is the unknown complex coefficient associated with a free
edge of the volumetric mesh and ξ = ξ0 at the surface. A free edge
is any edge that is not tangential to a PEC surface; the expansion
coefficient of a tangential edge is zero. The total number of free
edges is denoted by N . Galerkin’s testing procedure is used; whereby,
the constant tangential/linear normal (CT/LN) vector testing and
expansion functions, given by Wi and Wj , respectively, are identical.
These expansion functions correspond to the shape functions used
with tetrahedral elements. The free-space wavenumber is given by
k0 = 2π/λ0 and the relative anisotropic permeability and permittivity
denoted by µr and εr, respectively, are allowed to vary on a per-element

basis. The DGF, Ge2, will be discussed in detail later. The interior
excitation functional is given by

f int
i = −jk0Z0

∫

V
Wi · J

intdV (17)

while the exterior excitation functional is given by

fext
i = jk0Z0

∫

S
Wi · ξ̂ ×

(

Hinc +Href
)

dS (18)

where ξ̂ is the aforementioned unit normal vector in prolate spheroidal
coordinates, Z0 is the free-space impedance, H

inc is the incident field,
Href is the reflected field, and Jint is the excitation current. The exact
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condition for mesh truncation is enforced by the boundary integral via
the DGF. The DGF couples the tangential electric and magnetic fields
in the aperture and enforces the boundary condition on the tangential
electric field at the PEC spheroid surface. Hence, the boundary
integral has support only over the nonmetallic parts of the surface.
This minimizes the number of surface unknowns thereby reducing the
computational burden.

The utilization of an asymptotic second-kind electric DGF
circumvents the problems inherent in an exact formulation that were
discussed previously. As mentioned previously, the asymptotic DGF
is derived within the context of a uniform theory of diffraction (UTD)
formalism developed by Pathak and Kouyoumjian [11]. In order
to derive the asymptotic DGF, a closed-form expression for tracing
geodesic paths on prolate spheroids is needed. For convenience, the
surface may be parameterized in terms of the spherical coordinates θ
and ϕ via:

x = b sin θ cosϕ (19)

y = b sin θ sinϕ (20)

z = a cos θ (21)

where a and b are the axial length parameter and azimuthal radius of
curvature, respectively, as shown in Figure 1. The calculus of variations
may then be used to determine the extremum of the arc length between
two points on the surface. This leads to an expression for a geodesic,
which is given by

ϕ(θ) =

∫

(

a2 sin2 θ + b2 cos2 θ
)1/2

c1

b sin θ
(

b2 sin2 θ − c21
)1/2

dθ + c2 (22)

where c1 and c2 are integration constants that must be determined
by specifying the starting and ending points of the geodesic [12]. The
geodesic path length can now be computed and is given by [12]

s =

∫ θd

θs

b sin θ
(

a2 sin2 θ + b2 cos2 θ
)1/2

(

b2 sin2 θ − c21
)1/2

dθ. (23)

Another required parameter is the geodesic angle δ. This is the angle
subtended from the azimuthal plane of the prolate spheroid to a line
tangent to the geodesic trajectory; it is given by

δ = sin−1
(

c1
b sin θ

)

. (24)
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Another parameter that is essential to the UTD formulation is the
generalized Fock distance parameter β, which is given by

β =

(

k0

2

)1/3 ∫ θd

θs

(

a
[

b4 + c21{a
2 − b2}

])2/3
sin θ

b
([

a2 sin2 θ + b2 cos2 θ
] [

b sin θ − c21
])1/2

dθ. (25)

Furthermore, it can be shown by the use of differential geometry that
ϕ = constant and η = constant define orthogonal curves along the
surface. The basis vectors, ϕ̂ and η̂, aligned in parallel with the
orthogonal surface curves, form the basis of an orthogonal coordinate
system. Consequently, the expressions for the ray-based unit tangent,
normal and binormal vectors (t̂, n̂, b̂) may be determined. Having
defined the surface geodesic coordinate system, we can now calculate
the radii of curvature along the principal surface directions η̂ and ϕ̂,
respectively, of the spheroid. They are given by the following

ρ1 =

(

a2 sin2 θ + b2 cos2 θ
)3/2

ab
(26)

and

ρ2 =
b
(

a2 sin2 θ + b2 cos2 θ
)1/2

a
. (27)

Once the radii of curvature have been determined, the geodesic radius
of curvature can also be found using differential geometry, and it is
given by

ρg =
b3 sin2 θ

(

a2 sin2 θ + b2 cos2 θ
)3/2

a
(

b2
[

b2 sin2 θ − c21
]

+ c21
[

a2 sin2 θ + b2 cos2 θ
]) . (28)

Now that the principal radii of curvature, ρ1 and ρ2, and the
geodesic curvature, ρg, have been determined, it is a straightforward
task to calculate the remaining ray parameters; namely, the torsion
τ , torsion factor τ0, and interpolating factors γc and γs. Following
the UTD formalism in [11], expressions for the dyadic components are
given by [12]

Gϕϕ
e2 (θ, ϕ|θ

′, ϕ′) =
{

(cos2 δ(θ)− q[(D2 + 2) cos2 δ(θ)− (D2 + 1)])v(β)

+q2([D2 + 2] cos2 δ(θ)− 2)[γsu(β) + γcv(β)]

+(τo cos δ(θ)+sin δ(θ))2q[u(β)−v(β)]
}

D
k2

oYo

2π
qe−jkos

(29)
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Gηϕ
e2 = Gϕη

e2 (θ, ϕ|θ
′, ϕ′) =

{

− sin δ(θ) cos δ(θ)(v(β)− (D2 + 2)qv(β)

+(D2 + 2)q2[γsu(β) + γcv(β)]) + [(2 cos2 δ(θ)− 1)τo

− (τ2
o − 1) sin δ(θ) cos δ(θ)]q[u(β)− v(β)]

} k2
oYo

2π
qe−jkos (30)

Gηη
e2 (θ, ϕ|θ

′, ϕ′) =
{

(sin2 δ(θ)− q[(D2 + 2) sin2 δ(θ)− (D2 + 1)])v(β)

+q2([D2 + 2] sin2 δ(θ)− 2)[γsu(β) + γcv(β)]

+(τo sin δ(θ)−cos δ(θ))2q[u(β)−v(β)]
}

D
k2

oYo

2π
qe−jkos

(31)

where q = j
k0s , u(β), and v(β) are the soft and hard surface Fock

functions, respectively. The Fock functions mathematically quantify
the attenuation of creeping waves propagating along curved geodesic
paths on the surface. The surface ray divergence factor, D, which
quantifies the spread in width of a surface diffracted ray as it sheds rays,
is determined numerically in this application. The geodesic coordinates
of the ray source and shedding points are denoted by (θ′, ϕ′) and (θ, ϕ),
respectively. With the substitution of the components in (29)–(31) into
the following expression

Ge2(ξ0, θ, ϕ|θ
′, ϕ′) = ϕ̂ϕ̂Gϕϕ

e2 (θ, ϕ|θ
′, ϕ′) + ϕ̂η̂

′Gϕη
e2 (θ, ϕ|θ

′, ϕ′)

+η̂ϕ̂
′Gηϕ

e2 (θ, ϕ|θ
′, ϕ′) + η̂η̂

′Gηη
e2 (θ, ϕ|θ

′, ϕ′) (32)

the asymptotic DGF is now in a form that is suitable for substitution
into the boundary integral in (16).

Geodesic curves, traced by numerically integrating (22), are shown
in Figures 2(a) and 2(b). Figure 2(a) depicts a geodesic curve along
the midsection of a 40.0 × 4.0λ prolate spheroid. In this region, the
curvature profile of the spheroid may be regarded as quasicylindrical.
In Figure 3(a), the magnitudes of the prolate spheroidal asymptotic
DGF components as functions of the electrical geodesic path length
along the geodesic in Figure 2(a) are given. As expected, there is
uniform attenuation along this path, which agrees quite well with the
attenuation of the cylindrical asymptotic DGF components along a
geodesic curve with the same orientation along a circular cylinder
whose radius is the same. A geodesic curve near the tip of a 40.0×4.0λ
prolate spheroid is depicted in Figure 2(b). In Figure 3(b), the
magnitudes of the spheroidal asymptotic DGF components along the
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(a) (b)

Figure 2. Geodesic paths along a prolate spheroid.

geodesic depicted in Figure 2(b) are given. As expected, the magnitude
of the η̂η̂-component exhibits the greatest non-uniformity, varying as
a function of position along the geodesic, due to curvature variation
along the axial direction.

Now that the finite element and boundary integral equations have
been specified, the FE-BI equation may be solved. The FE-BI equation
in (16) may be rewritten in matrix form as

[

Aaa Aai

Aia Aii

] [

Eap

Eint

]

+

[

G 0
0 0

] [

Eap

Eint

]

=

[

0
f int

]

(33)

where [A] is the finite element matrix, [G] is the boundary integral
sub-matrix, Eint is the unknown electric field in the cavity, Eap is the
unknown electric field in the aperture, and f int denotes the interior
excitation due to the probe feed. The decomposition of the FE-
BI matrix in this manner allows the matrix-vector product in each
partition to be optimized for solution by an iterative solver. As an
example, since the finite element matrix is sparse, the matrix can
be stored in an efficient compressed sparse row fashion [13] and the
matrix-vector multiplication scheme can be optimized for a sparse
matrix. Since the boundary integral matrix is symmetric, only the
upper (or lower) triangle needs to be stored. Hence, the matrix-vector
multiplication can be optimized for a symmetric matrix.

Once the electric fields in the cavity Eint and in the aperture Eap

have been found by solving using a suitable iterative solver such as
the biconjugate gradient (BiCG) method, the input impedance can be
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(a)

(b)

Figure 3. Magnitudes of the prolate spheroidal asymptotic dyadic
Green’s function components along the geodesic paths in Figs. 2(a)
(midsection) and 2(b) (near the tip), respectively.
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found. The input impedance is calculated from the ratio of the voltage
at the input port to the current flowing into the port. The simplest
feed is a Hertzian dipole where the source is a filament of current. For
this case, the input impedance can be computed using Gauss’ Law

Zin =
1

Iin

6
∑

n=1

Ej(n)

∫

Î ·Wj(n)dl
′ (34)

where Î denotes the orientation of the probe-feed. The total electric
field at the feed location is determined by summing over all the edges of
the element, which would be the six edges of the tetrahedral containing
the probe-feed in this case, and integrating over the length of the probe.
Since this approach relies upon an accurate field calculation in the
vicinity of the feed, it is important to finely sample the computational
volume in the vicinity of the feed.

5. NUMERICAL RESULTS OF THE FE-BI SOLUTION

In the preceding sections, the FE-BI formulation appropriate for
modeling conformal antennas flush-mounted on doubly curved surfaces
has been presented. In this section, the behavior of the input
impedance of a cavity-backed, conformal square and a circular
patch antenna for various curvatures and probe feed positions are
investigated by using the FE-BI method. Although published data
on waveguide antennas flush-mounted on doubly curved surfaces is
becoming available [14], published data on the effect of doubly curved
surface curvature variation on the input impedance of cavity-backed
patch antennas are quite scarce. Nevertheless, the results for the input
impedances of doubly curved conformal antennas will be benchmarked
against the input impedance results from an experimentally confirmed
planar tetrahedral-based FE-BI code [15].

First, a square patch antenna is considered. The antenna
consists of a 2.5 cm by 2.5 cm square, metallic patch printed on a
30-mil substrate situated in a square aperture of 5.0 cm by 5.0 cm.
The substrate is composed of a dielectric material with a complex
permittivity of 3.2–j0.045. The conformal finite element mesh for this
antenna is shown in Figure 4. By analogy to the singly curved case, an
axially polarized electric field normal to the spheroid surface is excited
by a probe feed that is positioned on an axially oriented centerline
along the patch. The electric field configuration for this polarization
state at the resonant frequency is shown in Figure 5(a). From an
examination of the input impedance spectrum for this polarization
state, depicted in Figure 6(a), it is apparent that the resonant
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Figure 4. Finite element meshes of the conformal square and circular
patch antennas.

(a) (b)

Figure 5. Electric field beneath the conformal square patch antenna
for axial (a) and azimuthal (b) polarizations.

frequency is practically independent of surface curvature. Conversely,
a probe feed positioned along an azimuthally oriented centerline excites
an azimuthally polarized electric field. The electric field configuration
and input impedance spectrum for this polarization state at the
resonant frequency are shown in Figure 5(b) and 6(b), respectively. For
the azimuthal polarization as compared to the axial polarization, the
resonant frequency exhibits a higher degree of curvature dependence.
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(a)

(b)

Figure 6. Curvature dependence of the input impedance of the
conformal square patch antenna for axial (a) and azimuthal (b)
polarizations. The feed positions are indicated in the insets.



Modeling doubly curved conformal microstrip antennas 311

(a) (b)

Figure 7. Electric field beneath the conformally circular patch excited
by a centrally located (a) and an off-centered (b) probe feed.

This result seems quite reasonable due to the relatively high degree of
curvature along the azimuthal as opposed to the axial direction. By
specifying a prolate spheroid with electrically large azimuthal and axial
radii of curvature, these results are benchmarked by comparison with
the results obtained for the input impedance of a planar square patch
antenna excited at the same feed location. The surface of an electrically
large prolate spheroid may be regarded as locally planar in the vicinity
of the patch. As seen in Figure 6(b), this also leads to an input
impedance spectrum that agrees quite well with the corresponding
planar value.

Next, we consider a conformally circular patch antenna. The
circular patch antenna consists of a metallic patch of radius 2.5 cm
within an aperture of radius 3.75 cm. The finite element mesh
generated for this antenna is shown in Figure 4. The permittivity
of the substrate is the same as that of the square patch. The resonant
electric field excited by a probe at the center of the patch is shown
in Figure 7(a). The input impedance spectrum for this polarization,
as shown in Figure 8(a), exhibits slight curvature dependence. An
off-centered probe feed excites multiple modes with a resonant electric
field structure shown in Figure 7(b). From an examination of the input
impedance spectrum in Figure 8(b), it is evident that the resonant
frequencies of these modes are sensitive to the surface curvature
variation. Just as before, these results are validated by comparison
with the results obtained from the planar tetrahedral code for a planar
circular patch.
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(a)

(b)

Figure 8. Curvature dependence of the input impedance of the
conformally circular patch antenna corresponding to (a) the feed
position in Fig. 7(a) and (b) the feed position in Fig. 7(b). The
feed positions are indicated in the insets.
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6. CONCLUSIONS

An FE-BI formulation appropriate for modeling cavity-backed doubly
curved conformal antennas with arbitrarily shaped apertures has
been presented. Since a prolate spheroid can recover the canonical
cylindrical and spherical surfaces as limiting cases through a suitable
choice of its radii of curvature, it is sufficiently general to model an
arbitrary doubly curved surface. The disadvantages of a full-wave
solution for prolate spheroidal geometries were discussed and served to
justify the use of an asymptotic approach to modeling the physics of
curved surface diffraction. To demonstrate the utility of this approach,
the effects of curvature on the input impedance and resonant frequency
of both a doubly curved conformal square and circular patch with
various orientations and probe feed positions were investigated. The
technique presented in this paper will serve as a useful tool in the
design and analysis of doubly curved microstrip patch antennas.
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