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Supramolecular analytical chemistry has emerged as a new discipline at the interface of

supramolecular and analytical chemistry. It focuses on analytical applications of molecular

recognition and self-assembly. One of the important outcomes of the supramolecular analytical

chemistry is the understanding of molecular aspects of sensor design, synthesis and binding

studies of sensors while using rigorous methods of analytical chemistry as a touchstone to verify

the viability of the supramolecular aspects of the sensor design. This critical review provides a

simplified version of the chemometric procedures involved in realizing a successful analytical

experiment that utilizes cross-reactive optical sensor arrays, and summarizes the current research

in this field. This review also shows several examples of use of described chemometric methods for

evaluation of chemosensors and sensor arrays. Thus, this review is aimed mostly at the readers

who want to test their newly-developed chemosensors in cross-reactive arrays (169 references).

Introduction

A chemical sensor is defined as ‘‘a device that responds to a

particular analyte, i.e. ion or molecule of interest, in a selective

way through a physical or chemical interaction, and can be

used for qualitative or quantitative determination of the

analyte.’’1 Most chemical sensors consist of two functional

parts. The receptor is a moiety capable of converting the

changes in the chemical composition of the molecular

environment into a change in physical or chemical property,

typically a change in electron distribution, energy of frontier

orbitals, redox potentials, etc. The transducer is then a moiety

that transforms and amplifies the perturbed properties into

an observable analytical signal output whether it is optical

(colour, luminescence), electrochemical or other. In most

instances, the selectivity for a specific analyte originates mostly

from the receptor moiety; however, transducer often modifies

the output signal acting as a ‘‘filter’’.2 Chemical sensors

are usually divided according to a chemical or physical

feature employed in the recognition mechanism and operating

principle of the transducer:1–3

� Optical—the interaction of an analyte with the receptor

subunit produces changes of optical properties. This change

can be monitored and quantified by measurement of e.g.

absorbance, luminescence, reflectance, scattering, etc.
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� Electrochemical—the analyte induces changes in electro-

chemical properties (e.g. current in a voltammetric sensor,

potential in an indicator electrode—ISE, redox, etc.).

� Electrical—the analyte-sensor interaction results in changes

of electrical properties (e.g. conductivity, permitivity, etc.).

� Mass/heat/magnetic—the analyte-sensor interaction leads

to changes in mass, temperature, or magnetic properties.

While the output signal can be measured in many different

ways, the simultaneous measurement of signals generated by

an organized set of responsive elements, probes or chemo-

sensors combine numerous advantages. For the purpose of

this review, we will call such a sensor composed of an

organized set of responsive elements an array sensor or shortly

‘‘an array’’. The sensor array literature describes various

experiments arranged in high-throughput multi-well plates,

microtiter plates, etc. Some studies have the appearance of

arrays but not all such studies handle the data outputs as an

array, i.e. the whole data set comprising the variability and

multi-dimensionality of the outputs. Here, we will consider

only such experiments that render the output data sets as the

whole ‘‘result’’, which is handled, explored, and evaluated as a

whole using appropriate mathematical and statistical tools.

Therefore, the methods of handling the output data or signal

are rather important, whilst the methods the data are

processed, evaluated and interpreted are the features of

distinction, rather than a tool or experimental technique. That

is because the issue of sensor array methodology in analytical

or supramolecular analytical chemistry is a factor of utmost

importance.

In the last two decades, arrays and microarrays have

become increasingly diverse tools for biological studies but

their use continues to expand rapidly outside the bio-related

disciplines. Likewise, the underlying array technologies,

formats, and protocols continue to evolve. Traditionally, arrays

have consisted of collections of distinct capture molecules such

as cDNAs or oligonucleotides attached to a substrate—usually

a glass slide—at predefined locations within a pattern.4–6 Since

their introduction in the 1990s,7 microarrays have expanded

rapidly into every major area of biological research, including

gene expression,8 signal transduction,9 genome mismatch

scanning,10 inflammation,11 cancer,12 cell cycle,13 DNA

replication,14 oxidative stress,15 hormone action,16 apoptosis,17

neurodegenerative disease,18 cytoskeleton,19 and protein

trafficking.20 The capture agents used in arrays include not

only DNA, but also proteins,21 carbohydrates,22 drug-like

molecules,23 cells,24 tissues,25 etc.

Particularly as a result of device miniaturization and

micro-fabrication, whether these are electrodes, field-effect

transistors, printers/spotters, or charge coupled devices

(CCDs), the sensors composed of multiple elements achieved

immense popularity, and were demonstrated to yield

intriguing results. While most of the recent publications

describe electrochemical arrays often called electronic noses

or tongues,26 this review is focused on arrays utilizing optical

sensors based mostly on absorption or luminescence.

Of late, optical microarrays were applied by a number of

research groups to identification and sensing of chemical

entities such as ions (e.g. Anslyn, Anzenbacher, Severin,

McDevitt, Wolfbeis, Y. T. Chang), vapors (Suslick, Walt,

Lewis, Jurs), organic small neutral molecules (Suslick, Severin,

Stojanovic, Anslyn, Lavigne, Shimizu, Singaram, Hamachi,

Jurs), and biomacromolecules (Hamilton, Rotello, Hamachi).

Selected examples of applications of sensor arrays in

multicomponent analysis are given in Table 1. The topic of

pattern recognition in optical sensor arrays and chemometric

methods was also highlighted recently.27

Prior to delving into the details of optical arrays, we will

discuss the term ‘‘chemosensor’’ or ‘‘probe’’ used to designate

a chemical or material reacting to the presence of a chemical

stimulus (e.g. fluorescent crown ether). Additionally, we willPavel Buček
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also use the term ‘‘sensor element’’ when referring to a single

feature (well or a spot) of the sensor array, which is not further

separable to lower constituents based on the response to the

analyte (Fig. 1). This surely deserves an explanation. A sensor

array using chromoionophore–dimethylsulfoxide (DMSO)

solutions in a 96-well plate (Fig. 1A and B) will be constituted

of 96 sensor elements, which are the same as the 96 wells.

Based on the analytical response, each of the chromoionophore–

DMSO sensor elements cannot be further easily separated to

the chromoionophore and DMSO solvent because DMSO

does not yield any analytical response (Fig. 1B). Thus,

each well of the plate stands for one sensor element. On the

other hand, multiple chemosensors, each dispersed in a

polymer matrix, can be deposited on the bottom of a single

well in the 96-well plate. In this case, the well is not the sensor

element. Deposition of individual chemosensor-polymer

materials is shown in Fig. 1D and E. In Fig. 1D, for example,

each well comprises 9 sensor elements. In most arrays,

however, each spot or well is one sensor element.

In general, in optical chemosensors or probes the response is

a function of the analyte concentration, and one can therefore

consider constructing a calibration curve, in which the slope

corresponds to the sensitivity of the sensor. The limit of

detection/quantitation (LOD/LOQ) is the smallest quantity

of analyte that is ‘‘significantly different’’ from the blank (from

statistical point of view) while the sensor is not saturated.3,28

Table 1 Examples of application sensor arrays

Analyte(s) Sensor Mode
Chemo.
method Ref.

Dipeptides Cu(II), Ni(II) – AI, MCB, GCR Abs LDA 31
20 Natural Aminoacids Cp*Rh – CB, XO, Gallocyanine Abs LDA 32
Aminosugars, Aminoglycosides Cp*Rh – Gallocyanine Abs LDA 33
Tripeptides Cu(II), Ni(II) – AI, MCB, GCR Abs LDA 34
Pyrophosphate, AMP,cAMP, ADP, ATP, GMP Cp*Rh – Gallocyanine, MY, EB Abs LDA 145
ADP, ATP, pyrophosphate Cp*Rh – GCR, Azophloxine, NBB Abs = f(t) LDA, ANN

(quant.)
146

Peptide Hormones–Angiotensin I and II Cu(II), Ni(II) – AI, XO, MCB Abs = f(t) LDA 35
Dipeptides (Kallidin, Bradykinin, Carnosine, etc.) Cp*Rh, (p-cymene)*Ru,, Pd(en) – CB, MCB, NFR,

NMA
Fluo= f(t) PCA 36

AMP, ATP, GTP Combinatorial peptide sensor array Abs PCA 37
Chiral vicinal diols 3 chiral boronic acid receptors and 3 pH indicators Abs PCA, ANN

(quant.)
38

Hg(II), Pd(II), Cu(II), Fe(II), Ni(II) 5 thiols plus squaraine dye Fluo PCA 39
5 thiols Hg(II), Pd(II), Cu(II), Fe(II), Ni(II) plus squaraine dye Fluo PCA 39
Ovalbumin, fetuin, lysozyme, BSA, elastin Combinatorial peptide sensor array Abs PCA 40
Tripeptides Combinatorial peptide sensor array Abs PCA 41
Trp, Phe, Leu, Val, Leucine (D-, L-form) Cu(II) – N-donor ligands, PCV, CCR, CAS UV PCA 107
Chiral Amines Cu(I)-BINAP CD LDA, MLP-

ANN (quant.)
42

Ion Pairs (metal cations–Li, Na, K, NH4
+, TBA+;

anions – halide, acetate, nitrate, phosphate
Polyurethane matrix + Indicators
(fluorescein derivatives)

Fluo LDA 43

10 cations (Ca, Mg, Cd, Hg, Co, Zn, Cu, Ni, Al, Ga) 9 organic analytical reagents Fluo LDA 103
10 cations (Ca, Mg, Cd, Hg, Co, Zn, Cu, Ni, Al, Ga) 8-Hydroxyquinoline-based sensors Fluo PCA, LDA 44
ADP, ATP, pyrophosphate, phosphate Tripodal sensors Fluo PCA 117
10 anions (halides, phosphate, sulfate, nitrate, etc.) Calix[4]pyrole derivatives Abs PCA, HCA 45
12 amines 24-dye sensor array Abs PCA, HCA 46
18 commercial beers 36-dye array (gas phase); 25-dye array (liquid phase) Abs PCA, HCA 57
100 volatile organic compounds 36-dye sensor array (gas phase) Abs PCA, HCA 47
18 commercial soft drinks 25-dye sensor array Abs PCA, HCA 116
14 mono- and disaccharides, artificial sweetener 16-dye nanoporous array Abs PCA, HCA 115,48
10 commercial coffees 25-dye sensor array Abs PCA, HCA 101
15 nucleotides, phosphate and pyrophosphate Cationic polythiophene derivatives Abs LDA 49
Alkaloids (strychnine, brucine, cocaine, etc.) Three-way junction-based sensors Abs KNN, SVM 160
44 metal ions New York Tongue (47 off-the-shelf organic dye) Abs PCA, HCA 106
5 metal ions (Ca, Cu, Ni, Zn, Cd) Org. reagents (FluoZin1, BTC-5N, Calcein, Lucifer

Yellow, Oregon Green, Bapta-5N, Fluo-5N, etc.)
Fluo SVM 50

12 D-Saccharides (ribose, arabinose, rhammose,
xylose, glucose, mannose, galactose, etc.)

Sensor array of boronic acids with appended
bipyridinium moieties

Fluo LDA 51

Proteins (e.g. myoglobin, cytochrome C, ferredoxin) 16 and 8 sensor array (porphyrin derivatives with
aminoacid and dipeptide pendant arms)

Fluo PCA 113

Arylamines Molecule-imprinted polymeric sensor array Abs LDA 52
Aliphatic, aromatic amines and polyamines Polythiophene-carboxylic acid derivatives Abs LDA 53
Normal, cancerous and metastatic cells Sensor array of conjugated fluorescent polymers Fluo LDA 54

Abbreviations used: BSA—Bovine serum albumin; GCR—Glycin cresol red; AI—Arsenazo I; XO—Xylenol orange; MCB—Methylcalcein Blue;

CB—Calcein Blue; MY—Mordant Yellow; EB—Evans Blue; NBB—Naphthol Blue Black; NFR—Nuclear fast red; NMA—N-methylanthranilic

acid; PCV—Pyrocatechol violet; CCR—Chromoxane cyanin R; CAS—Chrome azurole S; BINAP—2,20-bis(diphenylphosphino)-1,10-napthyl.

Fluo—Fluorescence; Abs—Absorbance; Abs = f(t)—Absorbance kinetics; Fluo = f(t)—Fluorescence kinetics LDA—Linear Discriminant

Analysis; (MLP)ANN—(Multi-Layer Perceptron) Artificial Neural Networks; PCA—Principal Component Analysis; HCA—Hierarchical Cluster

Analysis; KNN—K-Nearest Neighbors; SVM—Support Vector Machines.
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Selectivity of a sensor can be defined as ability of the optical

chemosensor to give response to one analyte in the presence of

other analytes in the sample.3,28–30 Most optical chemical

sensors can also respond to some other analyte in a sample,

i.e. they are not completely selective (and are cross-reactive).

The dynamic range is defined as the range of concentrations

in which the sensor sensitivity is greater than zero but has not

reached the level of saturation. It can be expressed as

the difference between minimum and maximum analytical

signal values relevant to LOD/LOQ and the highest

concentration which can be used for determination of analyte

concentration.28–30

In general, the experimental conditions (e.g. pH, solvent,

receptor concentration, etc.) used for measurement with an

optical chemosensor are selected to achieve minimized

LOD/LOQ and other analytical parameters maximized

(sensitivity, selectivity, dynamic range, etc.). Experimental

conditions should be also adjusted to maximum robustness,

i.e. to display a small change in analytical parameters with

change of experimental conditions. However, that may not be

always easy due to the environmental sensitivity of some

chemosensors and detection schemes, e.g. impact of quenching

impurities on fluorescence. Finding the best solution for these

multi-factor problems is often difficult. The optical chemical

sensor applied in chemical practice is validated by analyzing

samples of known composition.28–30 The precision and

accuracy of an analytical procedure should be evaluated in

order to estimate the source of random and systematic error.

A sensor array might be characterized by the same analytical

parameters as single sensors including selectivity, detection

limits, etc. However, meaning of these parameters may be

different for the sensor array and a single chemosensor.

The principal differences between the analytical parameters

of a single sensor and sensor array are:26

� The selectivity and detection limits of a sensor array

depend not only on the physico-chemical properties of the

chemosensors used to make up the array, but also on the array

composition and size as well as built-in redundancy and

overlaps in the parameters specific for the individual sensor

elements;

� Because some aspects of the detection and discrimination

limits are method related, the analyte discrimination by the

sensor array can be evaluated only in case when complete

experimental data set is processed using chemometric

approaches and the determined parameters may depend on

the calculation method adopted;

� The array sensors do not generally conform to the 1 : 1

stoichiometry (as it is in the lock and key concept) between an

analyte and a number of sensor elements in the array to

achieve 100% selectivity in the recognition process.

The selection of the individual chemosensors or sensor

elements for an array and the sensor array size is a complex

task that can be solved by different approaches. It depends

largely on the knowledge of the target analyte, and whether a

qualitative or quantitative analysis is sought. For qualitative

purposes (classification) the dynamic range is a less important

factor (as long as the analyte concentration falls within the

dynamic range of most of the chemosensor elements). In the

case of the limited knowledge of the analyte composition to be

classified, preliminary experiments to see at least some

minimal differences in the response in the color or fluorescence

with naked eye (or a digital camera) is usually sufficient to

pre-select the competent chemosensors. After recording the

response using spectrometers or imagers the output will be

analyzed using the methods described below. Additionally,

there is great potential in application of information theory55

for selecting sensors providing the highest information

content.

The sensor arrays designed for application in quantitative

analysis should fulfill also certain criteria. The analysis of

calibration curves should give the dynamic range for a

potential chemosensor considered for incorporation into the

array. The calibration set used for testing sensor arrays should

preferably include the mixtures of analytes of interest. The

calibration curve comprising low, middle and high analyte

concentrations with repetitions of measurement at those

concentration levels is loaded with lower error. Therefore the

experimental design should be developed to evaluate

cross-reactivity of chemosensors used in the sensor array.

Experimental design (ED) for a system of N analytes at two

concentrations was proposed where the total number of

experiments for two-level ED is 2N, while three-level ED is

increasing to 3N experiments, i.e. 22 = 4 experiments and 32 = 9

experiments for 2 analytes. The number of measurements is

increasing with the increasing number of analytes.

In order to use the experimental design for screening of the

effects of chemosensors cross-reactivity in arrays, the saturated

Fig. 1 A 96-well plate for colorimetric and/or fluorimetric assay (A).

Sensor arrays utilizing multi-well plates are easy to prepare viamanual

dispensing of chemosensors (B) or using a robotic dispenser (C).

Robotic dispensers and printers can be used to fabricate multi-element

arrays within the wells: 9-member (3 � 3) array of polymer-based

sensor elements deposited on the bottom of the well (D); 7 replicas of

each fluorescent chemosensor-polymer membranes deposited on the

bottom of the well (E). Robotic dispensers can deposit sensors into

high-density (1536-well plates) for high-throughput optical-sensor

arrays (F) with high precision.



3958 Chem. Soc. Rev., 2010, 39, 3954–3979 This journal is c The Royal Society of Chemistry 2010

fractional factorial designs (e.g. Plackett-Burman design) are

frequently applied.3,29,30 Concluding this section, the experi-

mental design for sensor arrays should be performed. The

experimental set used for testing sensor arrays should

preferably include the mixtures of analytes of interest and

their composition should be planned according to ED.

In the current literature, one can encounter the term

‘‘differential sensor’’ used in two different connotations with

respect to the array-based sensing. The first, more traditional

meaning is derived from the fact that the output signal from

each sensor element after analyte application is directly

compared to the output of the same element before analyte

application and the difference, regardless of whether the

output is a spectrum, reaction rate, light intensity, etc., is then

used in output processing, evaluation and analyte identifica-

tion using pattern recognition protocols. This process is

schematically explained in Fig. 2. Here, the hypothetical array

sensor comprising 16 sensor elements (Fig. 2A) is exposed to

two liquid samples, beer and whisky (such analyses were

recently published).56,57 As expected, the array in Fig. 2A

responds to the presence of each analyte in a different way,

thus producing raw response patterns 2B and 2E. These raw

response patterns 2B, 2E could be used directly in a computer-

assisted search for similar patterns. The term ‘‘raw response’’

is used here to indicate that some sensor elements in the array

actually did not respond to the presence of an analyte.

Alternatively, the initial pattern 2A is subtracted from the

raw responses 2B and 2E to produce patterns in which only the

non-zero response is shown. The resulting differential images

2C and 2F are then used to identify the analytes, beer (2D) or

whisky (2G), using pattern recognition protocols.

More recently, Anslyn coined an alternative meaning for the

differential sensing arrays and differential receptors (Fig. 3).58

The term ‘‘differential’’ emphasizes the unifying aspect utilized

in array sensors59 that the individual receptors all interact

differently and each analyte yields a different response

pattern.58 The recognition, even though it originates at the

molecular level, is then observed at the level of the response

patterns and the difference between them.

Protein and gene chips are therefore also differential sensor

arrays. However, differential sensors may also include

receptors that are cross-reactive (Fig. 3). Each receptor may

bind a number of analytes, but each receptor binds the

analytes differently than all other receptors. In this case, the

signals of all receptors are interpreted by a pattern recognition

protocol, and the result is a fingerprint-like analyte response.

In the last decade, the interest in molecular sensing has been

slowly shifting from selective sensors toward sensor arrays

utilizing pattern recognition.60–62 This approach promoted the

development of so-called chemical noses,63–65 tongues,66–68

etc. utilizing cross-reactive recognition sensor elements that

are not particularly selective toward specific analytes. The

specificity originates from recognition of the response pattern

derived from an output signal (e.g. optical,65,66 electrical69,70),

comes from a large number of sensor elements. Here, a large

number of sensor elements with a different degree of inter-

actions result in the formation of a pattern specific for a given

analyte mixture. Such pattern recognition approaches could be

powerful enough to circumvent the need for difficult-to-make

analyte-specific sensors. Also important is the fact that

selective recognition tools (chemosensors, sensor elements)

cannot be easily developed for a previously unknown analyte

(e.g. yet-unidentified mutations, unexpected contaminants,

previously undetected pollutants). In general, pattern recogni-

tion methods have a distinct advantage as they can show that

‘‘a response is very similar to factors (analytes) X and Y, but

less similar to Z, yet is not exactly X, Y or Z’’. Given the

number of mutations in bio-macromolecules, potential

contaminants in industrial processes or pollutants and water,

such information would be valuable. In the design of any

assay, one should take advantage of any structural feature or

ligand known to bind the likely contributors to the analyte to

lower the number of cross-reactive sensor elements.

The interplay between the selectivity and cross-reactivity in

sensor arrays

Conventional microarrays prefer the use of specific recognition

motifs. Thus, array-based diagnostic tools are focused mostly

on specific interactions such as DNA microarrays (Genechips)

utilizing DNA–DNA or DNA–RNA hybridization. Similarly,

protein microarrays (Biochips) utilize specific protein–

substrate or antigen–antibody recognition, etc. usually with

fluorescence detection. While these are powerful bioanalytical

Fig. 2 Differential sensing using a hypothetical array-based sensor.

To a 16-element array (A), analyte 1 (later identified as a beer) and

analyte 2 (whisky) are applied. The response patterns B, E are used

directly or the pattern A is subtracted to obtain differential patterns C,

F. The differential patterns are identified to correspond to a beer and

whisky sample, respectively.

Fig. 3 Array-based sensor utilizing analyte binding by differential

receptors. Regardless of whether the analyte is a single- or multi-

component analyte, receptors bind a number of analytes, but each

receptor binds the analytes differently thus providing a differential

response.
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diagnostic tools, the preparation of such arrays is far from

inexpensive as it requires cloning, expression or amplification

of specific nucleic acid or protein sequences. Biomaterials such

as nucleic acids or proteins have been endowed by the features

that allow for selective recognition and sensing. This is less the

case of small molecules, which generally display a lower

number of recognition features, wide range of unrestricted

conformations and significant structural diversity. This implies

that the selective sensing of small molecules by array sensors

may not be as easy as one would wish. Here, we examine if this

potential lack of selectivity in array sensing of small molecules

and ions is, actually, a insurmountable problem, or whether

this could be one of the ‘‘life’s lemons’’ from which we could

make the proverbial lemonade.

The founding principles of supramolecular chemistry such

as recognition, self-assembly, shape complementarity,

preorganization71–73 were successfully applied in numerous

instances and may be used to describe association of molecules

prone to form complexes. However, that presumes an insight

that is not always easy to achieve or may require complex

experiments (NMR and X-ray crystallography) or binding

partners (ligands) that may be difficult to obtain, or are not

known at the beginning of the screening. Hence, simpler

materials or receptor molecules could help but are less likely

to provide unambiguous answers compared to the highly

complementary receptors. The approach that is capable of

extracting information from a binding process involving

binding partners that are not perfectly complementary may

still be valuable. A receptor that lacks some of the features that

generate the selectivity is likely to be a promiscuous one. The

upside of cross-reactive receptors is an easier preparation and,

sometimes, faster dissociation kinetics. The downside is that

an assay based on cross-reactive receptors may require a larger

number of recognition elements, and may result in a relatively

small magnitude of response, which may complicate data

reading, and evaluating. The number of the necessary

recognition elements can be lowered by selection of the

elements that show the best recognition capability (depending

on an application, this could mean affinity, selectivity, LOD,

etc.), or by upgrading the selection process by attaching a

specific ligand (e.g. biotin to increase the selectivity for

streptavidin). In the assay design, it would be foolish not to

take advantage of known selective binders for key analytes74

(if such structural features are known) to lower the actual

number of cross-reactive sensor elements required for

recognition. Finally, the presence of unknown analyte

components could be much easier to detect by less specific

cross-reactive elements, which leave an opportunity open for

the unknown.

Selective vs. cross-reactive sensor arrays; is there a middle

ground?

In sensor arrays containing differential chemosensors, the

sensing elements often display a certain degree of selectivity

towards certain analytes, whether this partial selectivity is due

to receptor-analyte binding or other interactions affecting the

signal transduction (e.g. heavy atom fluorescence quenching).

The potential problem with highly cross-reactive sensing

elements is that the information content that each individual

sensor generates is often low and only the simultaneous

analysis of a number of such sensor elements generates

a differential response pattern with enough information.

Increasing the number of read-out channels (multiplexing)

often leads to increase in the amount of available, and the

sensing process results in an accurate analysis.

To illustrate the issues associated with selectivity and cross-

reactivity in array responses, Fig. 4 shows a hypothetical

response space generated by a sensor array of two hypothetical

sensors, S1 and S2. First, in the case that S1 and S2 are 100%

selective towards one analyte each, space resolution is

achieved, but the sensor array can respond only to these two

analytes. In the second case, S1 and S2 are 100% cross-

reactive sensors. Here, several analytes can be detected, but

the space resolution is lower, to a point where any additional

sensors provide almost the same information as the two

sensors, and the lack of resolution makes extracting of useful

information difficult. The third case is typical for most cross-

reactive supramolecular sensor arrays. The cross-reactivity of

sensors S1 and S2 leads to an expansion of the space response

and improved resolution might be achieved. Also additional

analytes could fall within the response space. Finally, the

fourth case presents the middle ground between the first and

the third case. The response-space is expanded when S1 and S2

are known to be cross-reactive in their response toward certain

analytes whilst their selectivity is biased toward some key

components. As a consequence, the resolution of the sensor

array could be increased.

The selectivity in the sensing elements could potentially be

the key component to increase the information density

generated by the sensor array. Hence, the discriminatory

power might be improved by the use of selective yet

cross-reactive chemosensors. The increase in the discrimina-

tory capability (orthogonality) of the sensor elements should

allow a significant reduction of the number of array elements,

Fig. 4 Schematic representation of the response-space of two sensors

S1 and S2. (A) S1 and S2 are 100% selective. (B) S1 and S2 are 100%

cross-reactive to a group of analytes. (C) S1 and S2 are cross-reactive,

but have certain selectivity towards some analytes. (D) S1 and S2 are

cross-reactive and have enhanced selectivity towards key analytes,

hence expanding the potential response-space.
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while maintaining the reliability of the sensing process.

Perhaps, because such a potential reduction of sensor elements

can be intuitively derived, there is no explicit report of this

approach in the literature, but it has become one of the

cornerstones in the design of our high-resolution minimal-size

(a number of sensor elements) sensor arrays (see below).

Considering that the response-space alluded to above may

be constructed using almost an unlimited number of observed

variables (absorbance, emission intensity, red-ox potential,

impedance, etc.), it is clear that such response spaces are very

much multi-dimensional in their nature, and that the response

of the array sensor may be distributed among these

multiple dimensions. Not surprisingly, analyses of the multi-

dimensional responses require somewhat sophisticated

analytical tools, specifically pattern recognition protocols

capable of reducing the dimensionality of the response space

to the dimensions carrying majority of the response informa-

tion and finding the significant response patterns.

Optical arrays: absorption and light emission intensity as a mode

of signal transduction

A vast number of array sensors in bio-application and

analytical chemistry utilize changes in optical properties of

the sensor elements to provide output signal.

Typically, these observed optical properties are change

in color (absorption spectra) and luminescence emission

intensity. Needless to say, there are also array sensors that

utilize other modes of signal transduction such as luminescence

lifetime,75 conductivity,76,77 potentiometry,78,79 impedance,80,81

radiofrequency,82 or polarographic83 methods.

Here, we will discuss some of the methods used to obtain the

signal from optical arrays. In the optical sensor arrays, it is

desirable to record the response from all sensing elements

on a given platform simultaneously (multiplexing).84–87 While

spectroscopic techniques are highly advantageous due to the

high density of information that can be obtained,88 they also

require certain time for the data collection from each sensing

element and also complex equipment (spectrometers, scanning

setups) to perform the reading. In this regard, imaging

techniques have the advantage of being capable of detecting

several features in a given field of view. The fast development

of sensitive CCD or CMOS cameras has promoted the use of

imaging techniques for quantitation of fluorescence intensity.

For both the spectral and imaging methods, multiple

responses produced by sensor arrays require multivariate

analysis for the handling and interpretation of the response

patterns. For the detection and evaluation of the response

data, two main approaches to instrumentation and methodo-

logy can be used: First, the spectroscopic method, which is

usually based on collecting spectra, either independently

(e.g. from a number of cuvettes) or using a spectrometer

equipped with a so-called sipper and a flow-through cell

(Fig. 5). Similarly, some multi-well plate readers also have

the capability to record the whole spectra from each well.

When the spectrum is obtained, the response data from certain

wavelengths are then used as input.

Image recording from multi-well plates or array of vials with

analyzed solutions using various flatbed scanners achieve a

similar effect. Suslick and coworkers first introduced the

flatbed scanner as an analytical tool for the detection of color

intensities in sensor arrays.87 The general idea is that once a

reliable assay is developed, the sensor array could be deployed

and read on any PC. In this context, other groups have

recently taken advantage of widely available tools to carry

out chemical analysis. Various ‘‘consumer’’ technologies such

as cell phone cameras89 by Whitesides and DVD readers by

Potyrailo,90 were implemented for the optical detection of

changes in sensing elements. The obvious difference is that

the spectrometers yield more finely split output channels while

the common flatbed scanners usually provide only three or

Fig. 5 Colorimetric array sensing. The solutions from the wells (A) in

multi-well plates are analyzed by UV-vis spectrometer, usually

equipped with a flow-through cell and a liquid handler (sipper) (B).

The changes in absorption spectra (C) are then analyzed. Alter-

natively, a colorimetric array may be processed as an image using a

scanner as follows: Image recording-scanning (D), color (RGB)

inversion (E), RGB deconvolution (F), averaging (G) and integration

(H) of the gray value of the non-zero pixel for each sensing element.

Fig. 6 Array imaging can be performed using UV-trans-illuminator

(A) and a shielded digital camera (B); the whole setup (C) is available

from commercial sources. Alternatively, UV-image scanning and

processing is conveniently performed using professional imagers

(D and E).
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four channels, usually red, green and blue (RGB), sometimes

also red, yellow, green and blue (RYGB).

The general approach for the analysis of the color intensity

of the image consists of: (A) recording (scanning) the image,

(B) color (RGB) inversion, so the background is black

(has a zero-value), (C) RGB deconvolution, (D) averaging,

and finally (E) integration of the gray pixel value for each

sensing element (well or spot) in the array for each (RGB)

component (Fig. 5).

Reading the fluorescence-based arrays is somewhat more

involved.

Most biochemistry and biology laboratories own so-called

gel-documentation systems consisting of a trans-illuminator

and a digital camera to capture the gel images. These can be

made in house or purchased in various versions ranging from

manually operated ones that utilize simple inexpensive digital

cameras, to fully automatic ones with a number of features

to eliminate background and increase contrast. The most

important features for the in-house built systems is that the

camera can focus on relatively close objects (20–50 cm), and

allows for installation of a background-reducing cut-off filter.

A set of filters with various transmission wavelength region

may allow to split the emitted light into various output

channels. Finally, band-pass filters are the best option as they

allow selecting individual colors, but are often more expensive.

Perhaps the best option are epi-fluorescence image-recording

systems, frequently used in biology labs for recording

emission-based images from gels to live animals. While these

are often expensive, they come with wavelength-selectable

sources of excitation and emission wavelengths, and are often

equipped with high-sensitivity cooled CCD cameras for high

contrast images and software that allows selecting and

evaluating the light intensity in regions-of-interest (ROIs),

and are, generally, very user-friendly.

Overview of chemometric analysis of optical array

sensors

Chemometric analysis of the array involves several steps,

largely mathematical, aimed at pattern recognition and

analysis. In general, following the data acquisition from the

optical sensor array, various steps known as data preprocessing

are performed. Such steps involve dimensionality reduction,

exploratory data analysis (EDA), classification and clustering

analysis, and finally generating a model describing the output

data. The model is then verified using various analytical

methods to finalize the description of the array-analyte

behavior. This idea is described in the following paragraphs

and in the scheme in Fig. 7.

Response data matrix and preprocessing of the data

The analysis of the data obtained from multi-sensor arrays is a

very important aspect of the array sensing, one of high

importance, and a topic of numerous papers and reviews.91,92

The recorded data are usually arranged in a response matrix

containing a number of columns corresponding to the number

of features detected, and a number of rows corresponding to

the number of recorded observation (Fig. 8). An extra column

with the classifier descriptor can be added for listing of

classifier description.

Raw experimental data have an intrinsic error, e.g. due to

systematic error or deviation due to (im)precision of measure-

ment or instrument. In general, an important step in the data

analysis is a detection of outliers (in a statistical sense), which

should be excluded from the experimental data prior to

pretreatment. The detection of outliers, i.e. responses that do

not follow the same model as the rest of the experimental data,

can be carried out by Dean-Dixon test for smaller or by

Student t-test for larger data sets. This procedure is described

in many analytical chemistry textbooks.3,29,30

While in many instances one can use raw, i.e. unprocessed,

data, the data pre-treatment after collection should be

carefully considered with understanding of what each

preprocessing method means for the data set. Needless to

say, several preprocessing methods should be tested prior to

application of advanced chemometric techniques since the

resulting responses may be significantly altered. This may be

particularly important for novices in the field because in the

final result of combined effects of preprocessing and, for

example, artificial neural network analysis, it may not be

obvious which features are due to preprocessing and which

are due to the analytical method selected.

In very general terms, experimental data after testing for

outliers can be preprocessed using a number of simple

methods, each developed to obtain different types of informa-

tion from the subsequent multivariate analysis or to simply

clean up the data and achieve better resolution.

Fig. 7 Outline of the chemometric analysis.

Fig. 8 Schematic representation of the data matrix.



3962 Chem. Soc. Rev., 2010, 39, 3954–3979 This journal is c The Royal Society of Chemistry 2010

The preprocessing of the data may have a significant

impact on the final outcome of the multivariate analysis.

Unfortunately, the power of the data preprocessing is usually

underestimated due to the lack of a general rule or procedure

to guide in selecting the preprocessing methods suitable for a

given application. In most cases, the preprocessing algorithms

can be systematically tested before the actual multivariate

analysis method is applied to achieve the desired result.

Several methods of data preprocessing have been proposed

in the literature93–96 including relative scaling, background

subtraction, signal average, linearization, mean-centering,

auto-scaling and range-scaling.92 The selection of a preprocessing

method to generate the response matrix requires a certain

experience or systematic testing to arrive at the best method

for a given data set.

For example, normalization techniques (e.g. relative scaling,

background/baseline subtraction, signal averaging, linearization,

mean-center, autoscaling/range scaling, etc.) are employed

usually in qualitative applications since some of the

relative scaling procedures can result in elimination of the

concentration dependence of the sensor response intensity.95

Therefore, it seems that it is less suitable for quantitative

prediction. Another simple method is signal averaging of

replicate measurement while the signal-to-noise ratio

(S/N ratio) of a sample response is increased by ON factor,

where N is the number of measurement replicas. That means

that 9 replicas lead to S/NE 3, while to increase the S/N ratio

twice to S/N E 6, 36 replicas are needed. The analytical signal

higher than 3-times value of noise corresponds to the sensor

detection limit, thus the signal averaging can lead to decrease

of LOD/LOQ. The replication of measurements in sensor

arrays should be the compromise between the size of arrays

and the amount of generated information. This parameter can

be calculated and used for evaluation of the designed sensor

arrays. Limiting the number of replicas is less important as a

time-saving measure because the time needed for preparation

and reading of the arrays is the less and less limiting factor

now due to automation of the whole procedure.

The linearization of analytical signal can be used to assess

the dynamic range of an optical chemosensor having nonlinear

response, for example due to fluorescence self-quenching.

Linear techniques can then be safely used for the linearized

data, or alternatively, only the linear region of the concentra-

tion response curve of the sensor should be used from the

whole experimental data. The following paragraph gives

several examples of preprocessing methods. These are not

exhaustive and additional methods can be found in the

literature.95,97

Quite often, in the colorimetric assays, a relative baseline

subtraction is applied to the data set by subtracting the color

intensities in the specific color channels (cc), for example RGB,

from the sensing elements before (C0) and after (C) the

exposure to the analyte (baseline subtraction):

Rcc = C � C0. (1)

Similarly, in the fluorimetric assays, a combination of the

relative baseline subtraction and relative scaling is used. The

relative intensity is calculated from the fluorescence intensities

in the individual color channels (e.g. RGB, RGBY, etc.)

subtracting the intensity from the sensing elements before

(F0) and after (F) exposure to the analyte and dividing by

the signal intensity recorded before (F0) exposure to the

analyte (eqn (2)). This method is often used in qualitative

applications.

Rcc ¼
F � F0

F0

¼
F

F0

� 1 ð2Þ

Also, in the realm of supramolecular chemistry or supra-

molecular analytical chemistry, where the spectroscopic

experiments are often run prior to the actual assay to

pre-determine the stoichiometry and relative chemosensor-

analyte affinity, the corresponding affinity constant and the

magnitude of response, one can conveniently use the

range-scaling method. In the range scaling, the response after

background subtraction is compared with the dynamic range

of the response for a given analyte and a given sensor.

Rcc ¼
F � F0

Fmax � F0

ð3Þ

Even though the range scaling has yielded interesting results in

some applications, in the case of cross-reactive sensor arrays

its implementation may not be easy since the determination of

Fmax is relative to the dynamic range of each analyte, which

is not always possible in multianalyte environments.

Nevertheless, in this chapter we have included, as an example,

data that have been preprocessed by both the relative intensity

and range scaling to illustrate the impact the preprocessing

methods have on the final outcome of the multivariate

analyses.

Also, other methods may be used. In fact, some groups

develop their own pre-treatment methods to suit their unique

analytical situations. The authors of this review used, among

others, an absolute value of range-scaling or signal normal-

ization. The absolute value of range-scaling is described as:

R ¼
F � F0

Fmax � F0

�

�

�

�

�

�

�

�

ð4Þ

or normalization of the output signal:

R ¼
F

F0

ð5Þ

The relative scaling should also be used with caution as it

might lead to ‘‘relativization’’ of the signal output and a

corresponding loss of quantitative information (see above).

This means that during this preprocessing even the output

channels showing a very small change in response might be

scaled up to the level of stronger, and perhaps more important,

signal from other sensor elements. Another potential pitfall of

normalization as a pretreatment method is the possibility of

increasing the noise level (decreasing the signal to noise ratio)

by amplifying the weak and noisier variables.

The above list is far from complete, and other methods of

feature extraction are known from the literature95 to include

various approaches to signal averaging and autoscaling

(sets the mean at the origin and the variance within the data

to 1), which is usually used when responses are on different

magnitude scales.92 It is most advisable to test several of the
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feature extraction/preprocessing methods and test the clustering

and/or classification. Comparison of the pre-treated and raw

data in the exploratory data analysis will provide a valuable

insight as to what can be expected from the data set.

Pattern recognition protocols: multivariate analysis

in chemical sensor arrays

Pattern recognition techniques have been widely used for

the interpretation of multivariate data sets in chemistry.93

Notably, the intrinsic multivariate nature of the responses

associated with sensor arrays requires the implementation of

such methods for the understanding and evaluation of the

quality of the data.95 These methods are often based on the

reinterpretation of the data into a lower dimensional space

(dimensionality reduction) or on the comparison of the

measurements of the vector responses direction and

magnitude.98

Exploratory data analysis (EDA) can be seen as a contrast

to traditional hypothesis testing. While the testing of hypoth-

eses always requires a prior assumption (hypothesis) about the

data (e.g. ‘‘There is a difference in the fluorescence upon

addition of analyte A vs. analyte B’’), the exploratory data

analysis is not based on any prior assumptions. Therefore, the

EDA is the important first step in any array analysis. In a

typical exploratory data analysis all variables are taken into

account using both graphical (e.g. drawing simple scatter

plots) and formal methods (e.g. PCA—principal component

analysis) to search for systematic patterns.

EDA consists mainly of the techniques of PCA and factor

analysis (FA). These analyses seek to explore the data to

identify the trends and clustering behavior that could reflect

a large number of variables, and may not be obvious. For

obvious reasons EDA methods are predominantly applied to

raw data, i.e. prior to any pretreatment, which could amplify

or reduce the magnitude of the observed features.

Often, the practical purpose of PCA in the EDA is to

identify the features (variables) that are most important for

the description of the chemical behavior of the sensor. Such

important features could be leveraged for other analytical

tasks, for example, improving signal to noise ratio and

increasing the reliability of classification, reduction of the data

set for simpler analysis, removing sensor elements that

contribute more noise, etc. Such exploratory work is

frequently performed using PCA, see below.

Response patterns can be analyzed by unsupervised and

supervised multivariate analysis methods. The unsupervised

methods, sometimes called clustering analyses, are more

formal methods of treating samples that allow for detecting,

and visualization similarities in the response data. The

unsupervised methods do not operate with additional

information, e.g. the sample identity. Unsupervised methods

are often used to explore the actual clustering and dispersion

of the data.

Factorial methods are generally used to reduce dimension-

ality, i.e. project the original experimental data set from high

dimensional space onto a line, a plane, or a 3D-coordinate

system using certain mathematical procedures, for example

PCA, hierarchical clustering analysis (HCA), FA, singular

value decomposition (SVD), eigenvector projection and rank

annihilation, and others.3,94 This is very important in sensor

arrays as these often produce a high amount of experimental

data in very short time. The factorial methods can help to

extract the information most useful in solving the analytical

problem while reducing the multiple dimensions to few

(often two or three) that are easy to visualize in the form of

2D and 3D graphs, which are easy to comprehend and relay

the salient information.

Not all methods, however, have been used to solve the

problems of supramolecular and supramolecular analytical

chemistry. In fact, the methods most frequently used for

unsupervised analysis of multivariate data sets are based on

clustering analyses (e.g. HCA), and statistical analyses

(e.g. PCA). The supervised methods operate with the identity

of the sample in the training data sets to generate models that

can later be used for classification of unknowns, as it is in the

case of discriminant analysis (DA). Several other multivariate

analysis methods based on neural networks, data mining and

machine learning algorithms have been also used in the

evaluation of sensor arrays. Here, the methods used in the

field of supramolecular analytical chemistry (Table 1) will be

briefly explained. The readers are encouraged to read in detail

the corresponding chapters in the books listed above.

Principal component analysis

Generally speaking, PCA is a statistical treatment that consists

of the reinterpretation of a multi-dimensional data set into a

new data set with reduced dimensionality in such a way that

the most significant characteristic of the data (the variance)

originally contained in the data set is preserved. This is

achieved by calculating orthogonal eigenvectors (principal

components, PCs) that lie in the direction of the maximum

variance within that data set. The first PC comprises the

highest degree of variance, and other PCs follow in the order

of the decreasing variance. Thus, the PCA concentrates the

information within the data set into a lower dimensional space

and ranks the new dimensions in the order of their importance.

The PCA typically departs from the covariance (or correlation)

matrix C of the original preprocessed data set (see above). The

correlation matrix is used when the variables are hetero-

geneous or use different scales. PCA starting from the covar-

iance or correlation matrix having homogenous scales usually

yields similar results.

C ¼

c1;1 c1;2 � � � c1;n

c2;1 c2;2 � � � c1;n

.

.

.
.
.

.
.
.

.
.
.

.

cm;1 cm;2 � � � cm;n

0

B

B

B

@

1

C

C

C

A

ð6Þ

where

cm;n ¼
1

n� 1

X

n

i¼1

ðxim � �xmÞðxin � �xnÞ

The premise is that the projection of the original

n-dimensional data set into the reduced space can be carried

out by decomposing C into a score matrix S and a loading

matrix L, so C = S�L. Several methods could be used to

decompose C.99 Among such methods, the singular value
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decomposition (SVD) is the algorithm implemented by most

commercial software. This is because SVD has proven to be

very robust in a number of applications.100

When SVD is applied directly to the covariance matrix Cn,m

(m trials, n response features), it results in factorization of

the form:

C ¼

c1;1 c1;2 � � � c1;n

c2;1 c2;2 � � � c1;n

.

.

.
.
.

.
.
.

.
.
.

.

cm;1 cm;2 � � � cm;n

0

B

B

B

@

1

C

C

C

A

¼ U � S � VT
: ð7Þ

such that CCT = U and CTC = V, where Um,n and Vn,n (score

and loading matrices, respectively) are orthonormal and

formed by eigenvectors termed principal components PCi

representing the projection of C into the new principal

components eigenspace. The matrix S (singular value matrix)

is a diagonal matrix containing singular values sn, which are

associated with the root-square of the eigenvalues (s2n = ln)

for each PCi. This implies that the minimum variance

associated with the original variable is set to 1 and the sum

of all j eigenvalues is equal to n of the number of variables

originally comprised in C,

X

n

j¼1

lj ¼ n:

The variance contribution of each eigenvector PCvar
i is

determined by the portion of the li divided by the sum of all

j eigenvalues. The first PC contains the highest degree of

variance, and the other PCs follow in the order of decreasing

variance.

PCvar
i ¼

li
P

n

j¼1

lj

ð8Þ

The columns of the score matrix Um,n can be used to project

the covariance matrix C into a lower dimensional space

for exploration of patterns in the data (clustering). This

representation is called score plot and is usually associated

with a certain amount of variance represented by the PCvar
i for

each PC used in the plot.

The columns of the loading matrix Vn,n are composed of n

vectors associated with each of the variables (or response

features). When the correlation matrix is used instead of the

covariance matrix, the loadings are nothing more than

the correlation coefficients between the original variables and

the newly derived principal components PCn. Moreover, the

loading vectors are the projection of each feature n into the

principal components eigenspace. Since these vectors are

orthonormal, the relative contribution of the k-th variable to

the principal component PCn is taken as the square of the

loadings (correlation coefficient, rPCnk
) between PCn and the

k-th variable (feature).100

kContributionPCn ¼ r2PCnk
ð9Þ

X

n

k¼1

r2PCnk
¼ 1 ð10Þ

The PCA yields a lot of useful information when applied to the

characterization of the response of sensor arrays. For instance,

from the mathematical point of view, a successful PCA is one,

in which the dimensionality reduction is maximized and a

number of features are compressed down to two or three

of the PCs. On the other hand, sensor arrays with a high

discriminatory capacity will generate responses that will be so

scattered in the n-dimensional space that the PCA fails to

describe most of the variance in the first two PCs. In these

situations, statistically relevant PCs could be utilized to

explore the patterns in the data. Several methods have been

proposed to determine the numbers of PCs statistically

relevant to the description of a data set.93–95,100 Here, we use

Kaiser’s rule, which states that only the PCs with associated

eigenvalues li > 1 are relevant, since the minimum variance

for a single variable was originally set to 1.

Thus, from a sensor array analysis point of view a successful

PCA is one, in which the score plot shows clear clustering of

similar samples and the eigenanalysis shows the total variance

(information), generated by the sensor array, widely dispersed

over several PCs. Such results would attest to a high

discriminatory power of the array. Unfortunately, having

several statistically relevant PCs often implies that even a 3D

representation might not be an accurate description of the

sensor array response, and it would be quite difficult to

correlate response features with distances in the 2D or 3D

score plots. This is the downside of the PCA. Hence, it is very

common to complement the PCA with another multivariate

methods such as HCA.101,102

Perhaps the best approach is to use PCA in those cases when

the majority of the individual chemosensors (sensor elements)

in the array display linear response. If this condition is not

satisfied, i.e. the sensor elements respond in a nonlinear or

nonadditive fashion, class separation and classification using

PCA may not be possible. PCA is mostly used as a tool for

qualitative studies,95 however, in the cases of a linear signal

output, a semi-quantitative information can also be

obtained.106

As mentioned before, preprocessing the data might impact

the final outcome of a PCA. In order to illustrate this point we

took a set of data from one of our previous papers103 and

applied a preprocessing routine(s) utilizing first the relative

change in the fluorescence intensity and second the range-

scaling (see above). In the case of this data set it is clear how

the two preprocessing procedures yield very different score

plots (Fig. 9). For this data set, better clustering is obtained

with range scaling (Fig. 9, bottom). However, this is not

necessarily always the case and judicious choice of preprocessing

must be applied to obtain best clustering and resolution.

PCA is one of the most frequently used methods in pattern

recognition in the field of optical array sensors. Not

surprisingly, it found application in sensing of a number of

analytes including cations,104–106 anions,102 small molecules

such as aminoacids,107 saccharides,108,109 explosives,110

poisonous gases,111 peptides112 and proteins,113,114

sweeteners,115 beverages,57,104,116 consumer products such as

toothpaste,102 etc. (Table 1 shows selected examples).

As an example we show the analysis of phosphates in blood

serum by Anzenbacher et al. that employs an array of six
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sensors with turn-on fluorescence signaling.117 It is important

to note that the blood serum was not purified and contained

all ions, proteins, color background, etc. The blood serum

behaves as a unique buffer, containing also phosphates and

carboxylates, and therefore gives a unique response (Fig. 10).

The blood serum with added anions (phosphate, pyro-

phosphate, AMP, or ATP) were analyzed. As expected, due

to its intrinsic anion content, the serum itself turned on

fluorescence of the array creating a unique fluorescence

response, further modulated by the added anions (Fig. 10,

top). PCA was then used to show that the sensor array is

capable of generating distinguishable response patterns

between phosphate, pyrophosphate, AMP, and ATP, as

shown on the PCA score plot in Fig. 10 (bottom).

As stated above, PCA and other exploratory tools may be

successfully used to study the response in array sensors, and

also to optimize the sensors and the variables recorded to

achieve the best resolution by the array sensor. For example,

PCA was used to minimize the number of sensor elements

required to achieve analyte classification, select the variables

contributing most to the successful analysis, etc. This utility of

PCA is demonstrated on the optimization of the number of

sensor elements in the array sensor.

An important problem during the design of the array sensor

is the question of how many sensor elements and variables

are required to achieve a certain level of discrimination.

Unfortunately, without testing and a training set it is hard

to predict a sensor array behavior. A typical approach is to

overestimate the number of sensor elements by including more

sensors than is presumably necessary (entire combinatorial

libraries) and pre-screen the responses for the best set of

sensors.74

On the other hand, it has been demonstrated that the

observations focused on chemosensor-analyte binding using

classical spectroscopic titration experiments (but also

calorimetry, voltammetry, etc.) in solution can be extrapolated

to the behavior of chemosensors in array sensors. This is

because, for example, association constants determining the

affinity and selectivity of chemosensors for analytes of interest

allow for a design of an array sensor likely to respond to the

analytes that displayed reasonable affinity in such solution-

based tests. This allows for the design of arrays biased

rationally towards certain desirable analytes. Depending on

the discriminatory power of the individual sensing elements in

the array, it is possible to design sensor arrays with a reduced

number of sensor elements still capable of identifying and

quantifying certain group of analytes with high accuracy.

A procedure to determine the number of sensors necessary

to ‘‘resolve’’ an analyte set is highly desirable since it could

Fig. 9 Impact of the preprocessing of a data set on the PCA. The

data set is composed of the responses generated by the sensor array

described in the literature103 and describes array sensor response to 9

different cations (250 mM) at pH 5. Top: Data preprocessed using

relative change in the fluorescence intensity. Bottom: Data prepro-

cessed using a range scaling algorithm.

Fig. 10 Top: Qualitative changes in fluorescence of the sensor-

polyurethane films after addition of human blood serum and serum

with added anions (to increase the concentration to 5 mM). Bottom:

PCA of the array response shows the quantified changes induced by

the anions added to the blood serum, and compares the effect of anion

to the pure serum and water. (This figure was reproduced with

permission from Wiley-VCH Verlag GmbH & Co. KGaA, see

ref. 117.)
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result in less complex and ‘‘personalized’’ platforms developed

on-demand for a number of applications.

For any sensor array comprising a larger number of sensing

elements than might be needed for an accurate classification of

a given analyte, a mathematical method could be developed to

reveal which sensor elements have correlated responses and

thus are redundant. Conversely, such a method should also be

able to identify the sensor elements that contribute most to the

successful analysis. In the case of two sensors showing similar

behavior in the n-dimensional space the contribution to the

dispersion of the data of both sensors will be virtually the

same. One could think about the extreme case where the same

sensor is used twice in the same array. The outputs yielded by

both sensors should be highly correlated thus no additional

information would be obtained. For instance, one approach

how to realize the redundancy of sensor elements or variables

could be to search for commonalities in the HCA.

Unfortunately, the HCA just yields similarities (or differences)

between variables, and most sensor elements display more

than one variable (response channel). Hence, just studying the

similarities of each individual variable makes it difficult to

decide, which sensor to remove from the array. This is because

the other channels (variables) associated with the same sensor,

could still display unique features. Finally, while the HCA

could be used to ‘‘rectify’’ the data by eliminating the variables

displaying contribution of low significance, it is not convenient

for the systematical elimination of sensors from the arrays.

Since the response of sensor elements are c-dimensional,

considering c as the number of channels used for the detection,

one needs a tool that interprets the vectorial response in the

c-dimensional space (sensor space) and correlates it with the

n-dimensional response space generated by the entire array.

As mentioned before, the PCA can describe the variance

(information) of a data set in a reduced space generated by

the principal components. The contribution of each variable to

each principal component is given by the projection of the

original variable to the principal component. Hence, the

contribution of a sensor S (or variable) to a principal compo-

nent p is the sum of the square of the loadings (r2cPCp
) of the

variables corresponding to a channel c as shown in Fig. 11.

As has been reported in the case of mono-dimensional

sensors,118,119 the idea is to select the sensors with the

maximum contribution to each of the PCs of statistical

significance. Thus, after the PCA is applied to the original

data set, a sensor array with m-elements will be reduced to a

maximum number of sensors equal to the number PCs with

eigenvalues greater than one (according to Kaiser’s rule).

A second PCA is then carried out on the reduced version of

the data set to study the amount of information lost in the

previous reduction step. At this time, it is possible to employ

another multivariate technique such as LDA to quantify

predictability of such secondary array. If the predictability is

still acceptable, the contribution of the sensor can be estimated

and another reduction step can be performed. The process can

be repeated until a low threshold for the predictability

(or clustering in the score plot) is reached (Fig. 12).

Finally, another method based on an iterative algorithm

was also proposed in the literature.120 While iterative methods

are convenient since they study all possible combinations of

sensors in a sensor array, depending on the number of sensor

elements it could be tedious and the additional information

gained through a systematic reduction process, such as which

sensor elements are shaping the space response, is not obtained

as a direct consequence of the analysis.

Palacios and co-workers104 used the previously described

method to optimize the number of sensing elements in a six-

member sensor array for metal-ion analysis. The goal was to

select a subset of sensors that explore the 18-dimensional

(6 sensors � 3 channels) space generated by all sensors

(S1–S6) and simplify that array while maintaining discriminatory

capacity. Fig. 13 illustrates the size optimization of the

six-member sensor array (Array A). After the optimization

process, the PCA score plot still shows clustering with no

evident overlap between the different analytes (Fig. 13C). It is

also important that this PCA obtained from the 2-sensor array

(Array C: S2 and S4) requires 2 dimensions (PCs) out of 6 to

describe 94% of the discriminatory range (B40% of all PCs),

demonstrating that the reduction of the number of the sensor

elements in the array has not significantly affected the

discriminatory performance of the array for this data set

containing 11 analytes (10 cations and 1 water pH = 5). As

expected, the decrease in the magnitude of the eigenvalues

(PCs) reveals that the response space generated by the array

shrinks due to reducing the number of sensing elements.

The decrease in the size of the response space could, however,

be contraproductive, e.g. in quantitative analysis using

reduced array version, because more information is likely to

Fig. 11 Schematic representation of two not-normalized principal

components (m) showing the projections (——) of the centered RGB

responses ( ) of a sensor S to the principal components.

Fig. 12 Flowchart of the procedure for the sensor array size

optimization. In this case the algorithm will yield a sensor array with

accuracy greater than 95%, but the accuracy threshold can be adjusted

to a desired level.
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be needed to avoid overlaps between similar analytes at

different concentration. This, again, may be obviated

by performing the analysis for each concentration to

ensure the satisfactory discrimination is maintained at every

concentration.

Hard modeling vs. soft modeling

Modeling of sensor arrays is usually based on linear models

that are used for calibration and optimization, and utilizes

response-surface methods. Using multivariate approaches, the

linear models, i.e. models linear in the parameters, can be

applied to most relationships in supramolecular analytical

chemistry including sensor arrays. In addition, when the

variables are appropriately transformed (e.g. quadratic, cubic,

exponential relationship) these models can also be utilized to

model nonlinear dependence.

The simplest and well known method is a technique based

on ordinary least-squares regression (OLS). In order to intro-

duce soft-modeling techniques, e.g. principal component

regression (PCR), partial least-squares method (PLS), the

OLS formalism will be used for better explanation while

focusing on application in array sensors.

Considering optical sensors based on absorption or

luminescence, the sensors yield the response as absorbance

(A) (Bouger-Lambert-Beer law, (11a),

A = e � c � l (11a)

where e is the molar absorption coefficient, c is analyte

concentration, and l the cell path-length, or luminescence

intensity (If), (11b),

If = ln(10) � F � I0 � e � c � l (11b)

where F is the fluorescence quantum yield, and I0 the intensity

of the excitation radiation. In general sense, the optical sensor

response, S, is a function of concentration described as

S = k � c (12a)

or after rearrangement

log S = log k + log c (12b)

and the slope of calibration curve (k or log k) is described as

the sensor sensitivity.

Fig. 13 Schematic representation of the rational process for reduction of the number of sensor elements in an array. From top to bottom: (A)

PCA for the complete set of sensors (S1–S6) shows that the main contributors for the dispersion are S4, S2, and S5 on the PCs with statistical

significance. (B) Sensors S1, S3, and S5 were excluded from the data set and analyzed again with PCA. PCA shows that the main contributors were

S2 and S4. (C) S3 was excluded from the data and PCA was carried out using the remaining data set. Qualitative inspection of the PCA score plot

for the final set of two sensors (S2 and S4) shows clustering of the data without any evident overlap between different samples. Cross-validated

LDA shows 100% accurate classification for all three arrays (A,B,C). (This figure was reproduced with permission from the American Chemical

Society, see ref. 104.)
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For the mixture of several optical sensors operating at

several wavelengths, or a cross-reactive sensor array, one can

write a matrix notation:

S = C K (13)

where S is the N � K matrix of sensor responses, C is the

N�Mmatrix of concentrations, and K is theM � Kmatrix of

regression parameters, N is the number of observations, K is

the number of features (see Fig. 8) and M is the number of

analytes. Thus in sensor array calibration, this equation can be

applied to a model matrix of responses S recorded for features

(see Fig. 8) of the respective concentration matrix C. In the

following text it is assumed that analytical-signal data are

centered, i.e. there is no intercept calculated for calibration

curve (12a). Residuals can be calculated as differences between

measured and modeled data, i.e. S–CK.

There are two methods usually applied to this type of

problem. The first is the direct-calibration method based on

OLS, which is used if the K matrix is known assuming that

there is no interaction between the different analytes in the

sample as well as that no unknown matrix constituents inter-

fere during the analysis. In practice, these prerequisites are not

allways fulfilled. Then, more sophisticated calibration

procedures have to be applied and multivariate calibration

estimating the calibration parameters from calibration mix-

tures must be used. These indirect-calibration methods have

some advantages:3,94

� In calibration step, the interaction between analytes or

analyte(s) and the sample matrix can be taken into account,

i.e. the validity of eqn (13) is not required.

� Modeling of a background analytical signal considered as

a principal component is feasible.

� Systems with highly correlated analytical signal(s) can be

also used for multicomponent analysis.

The indirect-calibration procedure consists of two steps:

Calibration—the matrix S is recorded for calibration set of

pure and mixture samples of known concentrations (matrix C).

Since the matrix of the independent variables, C, is not square

for so-called over-determined system, the regression para-

meters K have to be estimated by the generalized OLS inverse

method as

K = (CtC)�1CtS (14)

2. Analysis of unknown samples is based on the Ssample matrix

measurement of sample having an unknown concentration:

csample = Ssample K
t(KKt)�1 (15)

Great advantage of this procedure is that the K matrix

represents values of optical sensor sensitivities in the presence

of all analytes and/or matrix interferents. These values can be

compared with the sensitivities obtained from calibration

curves in the presence of a single analyte and the selectivity

of sensor array can be evaluated comparing both matrices. In

hard-modeling approach, all analytes present in the sample

should be explicitly known and included in the calibration

step. Soft-modeling procedures (e.g. PCR, PLS), on the other

hand, do not require the knowledge of specific contributions of

unknown analytes involved in calibration. In both eqn (14)

and (15), a matrix inversion is performed to calculate the

matrix of unknown coefficients of the parameters K (from

eqn (14)) and a concentration of the unknown sample

(eqn (15)). In the case of ill-conditioned (less selective)

systems the matrix inversions may be problematic. In such

ill-conditioned systems when sensor response ‘‘spectrum-like’’

profiles are very similar, the Gaussian or Gauss-Jordan

elimination can be used. Also, more efficient LU-decomposition,

Housholder reduction or singular value decomposition (SVD)

methods3,94 are usually used. The currently most frequently

used soft-modeling methods (PCR, PLS) are based on the

inverse calibration model. The concentration is calculated

using regression of sensor response ‘‘spectrum-like’’ profiles

C = S K (15)

These matrices have the same meaning as in eqn (13).

Principal component regression (PCR)

PCR is based on the idea that the principal components

obtained by PCA are latent variables which can enter into a

(multiple) regression instead of the manifest variables.30

Linear (in case of one) or multiple linear (in other cases)

regressions can be performed using these principal compo-

nents as the independent variables and the concentrations as

dependent variables. Application of techniques for multiple

linear regression (MLR) depends on decision regarding how

many principal components are included in calibration

equation. While all PCs can be utilized in the calculation of

regression coefficients, usually only several PCs are employed

for calculation.

In an analogy to PCA, one can consider matrix of responses

S recorded for sensor features (see Fig. 8) for the respective

concentration matrix, C. (see Fig. 8). Applying SVD to S data

matrix (see also PCA—eqn (7)),

S = URVt (16)

which is decomposed into two orthonormal matrices U and V

corresponding to score and loading matrices joined by a

diagonal matrix R of singular values.3,94 The matrix of the

regression coefficients K is performed column-wise as

K = S+ C (17)

where the pseudo-inverse matrix S+ (Moore-Penrose matrix)

is defined as

S+ = V(diag(1/sii)U
t) (18)

In comparison to MLR, PCR has two main advantages.

First, the number of variables is reduced to only a few

(feature reduction). Second, the quality of MLR fit is

influenced by a degree of correlation between variables and

this effect can be eliminated in PCR due to orthogonality of

PCs. Other PCs related to additional unknown analyte(s) or

background components can be additionally modeled if their

concentrations vary within different calibration samples.

Sometimes the PCs are neglected as a consequence of their

small contributions but they could be important for prediction

of a certain concentration. However, since the decomposition

of S data matrix sometimes does not match the relationship
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(outlined in eqn (13) or (15)). In such a case, the PCR may not

give satisfactory prediction of concentration.

Like PCA, also PCR is a linear technique, and therefore it is

most successful under assumption of a linear response of the

sensors used, for example, in concentration prediction. It

should be noted that similarly to LDA, also PCR can give

sometimes overly optimistic results, and therefore it is strongly

recommended to apply a leave-n-out cross-validation

procedure or to use external prediction set samples.95

Partial least squares (PLS)

PLS regression is a recent technique generalizing and

combining features of PCA and MLR. It is also a viable

alternative to PCR and as a consequence of application of

similar mathematical procedures PLS gives similar

information obtained by PCA and PCR. Comparing PLS

and PCR, PLS uses more information than PCR does. The

inverse calibration model

C = S K (19)

is based on a bilinear model with respect to the objects and the

variables of the C or S matrix. Both the C and S-matrices are

decomposed into smaller matrices according to the following

scheme:3,70,71

S = TPt + E (20)

C = TQt + F (21)

where T is the score matrix containing orthogonal rows, P and

Q are the loadings of the S and C matrices, E and F are the

error matrices of the S and C matrices. The calculation of the

sensitivity K matrix is done using P, Q and R matrices:

K = R(Pt
R)�1Qt (22)

PLS scores and PLS loadings are obtained similarly to PCA

procedure and they can be projected in the form of 2D or 3D

graphs. Thus PLS extracts more information from experi-

mental data than PCR. In contradistinction to U and V

matrices in PCR that are orthogonal, the loadings represented

by the P and Q matrices in PLS procedure do not to be

orthogonal.3,94,95 Concentration estimation of unknown

samples can be calculated in a way similar to the description

in the section on OLS and PCR using Moore-Penrose matrix

(see eqn (18)).3,94,95 The main advantage of the PLS method is

that the decomposition of both matrices C and S is interrelated

and thus PLS is considered as the most robust calibration

algorithm.

The most utilized PLS algorithm is the Nonlinear Iterative

Partial Least Squares (NIPALS); details and algorithm

descriptions can be found in literature.94 Comparison of

PCR and PLS procedure suggests that both methods are very

similar in their outcome.121 However, PLS appears to have

optimal prediction ability with fewer factors than PCR, and

therefore PLS appears to be favored over PCR.

It should be noted that PLS, similarly to PCA and PCR, is a

linear method, and therefore some precautions should be

taken into account. The external prediction set should be used

for test of model accuracy in quantitative prediction.

Nonlinear variant of PLS regression method was also

described.95,122

Hierarchical clustering analysis (HCA)123

The HCA is an unsupervised method of multivariate analysis,

which seeks classification of the observation by measuring the

interpoint distances between all samples in the n-dimensional

space resulting from n-numbers of studied features. The

observations are aggregated (clustered) stepwise following

the similarities (or distances) in their features.

There are several ways to calculate the distance and most of

them are included in commercial versions of statistical

software. In most cases, chemists use simple HCA and the

Euclidean distance (dmn) between the sample m and n

(or the square form) with k features as follows:

d2
mn ¼

X

K

k¼1

ðxmk � xnkÞ
2 ð23Þ

Also, there are several methods available to define the linkage

between the clusters.93,123 A number of studies use Ward’s

(minimum variance) method,124 which takes into considera-

tion the minimum amount of the variance between the samples

and analytes to define a cluster. For Ward’s method, each first

sample is considered its own cluster, therefore, the variance is

null. Then, each following step considers a pair of objects that

can be grouped while keeping the amount of variance as small

as possible. This process is repeated until a supercluster is

formed.

The distance (DMN) between two clusters (M and N) is

defined by

DMN ¼
jj�xM � �xN jj

2

1

nM
þ

1

nN

ð24Þ

where n is the number of members in a cluster.

The clusters are then combined in such a way that the

minimal increment in the within-group-distance is achieved

by making the distance (Dji) between a new cluster j and the

observation i, such that the distance from j and i to the clusters

M and N results:

Dji ¼
nM þ ni

nþ ni
DMi þ

nN þ ni

nþ ni
DNi �

ni

nþ ni
DMN ð25Þ

Ward’s method usually tends to generate well-structured

dendrograms (a dendrogram is a mono-dimensional

representation that correlates the distances in the

n-dimensional space between a series of observations). The

downside is that it also tends to join different clusters with a

small number of observations, and it is strongly biased

toward producing clusters with roughly the same number of

observations,125 which is not a problem in most applications if

one constantly records the same number of repetitions per

analyte.

In the context of chemical sensor arrays, it is important to

realize that HCA is very sensitive as it utilizes the whole

dimensionality of the data to represent the patterns. The

HCA produces dendrograms displaying the quantitative

differences (or similarities) between the individual
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observations in a mono-dimensional fashion. This is a valu-

able information because it makes for a straightforward

correlation of chemical features with responses in the

n-dimensional space. However, in the case when the data set

is noisy or does not present a clear structure, the HCA often

produces a poor clustering of similar observations.

As in the case of the PCA, the preprocessing of the data is

likely to impact the final outcome of the HCA. Here, using the

same data set and preprocessing techniques as in the previous

example for the PCA (Fig. 9), it is shown how the two

preprocessing procedures yield dendrograms with different

structures (Fig. 14). Similarly to the PCA, this data set shows

better clustering of the data when the range scaling is applied

(Fig. 14, bottom).

Current literature describes a number of instances where the

optical array sensors were evaluated using HCA. These

include samples and analyses of beverages116 sweeteners115

saccharides109,126 and oligosaccharides,127 amines,128 and

other analytes. The following example (Fig. 15) from the work

of Anzenbacher and co-workers shows a colorimetric sensor

array for anion detection capable of differentiating between

more than 20 analytes including multianalyte samples.102

The high-resolution array consisted of eight colorimetric

sensors utilizing octamethylcalix[4]pyrrole receptor with

selectivity bias toward fluoride and pyrophosphate, but still

displaying a cross-reactive response to other anionic analytes.

The same array was used for the detection of anions in water

and to differentiate toothpaste brands with various content of

fluoride and other anions. The data recorded from the array

consist of RGB values of each of the 8 sensors to generate a

total of 24 variables (8 sensors � 3 colors). HCA was used to

show the clustering of the responses of the sensors to 20

different analytes, 10 anions in water as well as identification

of toothpastes based on their anion content (Fig. 15).

Supervised pattern recognition and linear discriminant analysis

(LDA)

LDA is a classical statistical approach for supervised

dimensionality reduction. Indeed, LDA is used for both

dimensionality reduction and also for classification

(sometimes called supervised pattern recognition). Usually,

the first step in supervised pattern recognition is developing

a mathematical model describing relationship between trials

relating to a series of observations and their known groups.

These are called training sets. Once the mathematical model

(discriminant function) is developed, it is usually tested as to

how well the model predicts the groups. Toward this end, a

test set of samples (trials) is used that had been left out during

the original calculation that served to develop the model. This

process is called validation. Alternatively, a cross-validation

approach may be used. Here, only a single training set is used,

one sample (trial) is removed at the time and the model is

recalculated using the remaining samples. Then the previously

removed sample is used to test the model (to predict into which

class it belongs). The most common approach is the

Leave-One-Out (LOO) (or jackknife) cross-validation where

one sample is left out one at a time. The procedure is repeated

until all samples have been left out and classified. Alternative

to LOO, v-folds cross-validation is used in case of large data

sets. v-Folds takes out a v-part of the data set and uses the rest

to calculate the model. The process repeats v-times and the

classification accuracies are averaged.

The majority of statistical treatments seek classification and

employ various classification algorithms and procedures such

as discriminant analysis and canonical variate analysis. The

LDA is also a special case of discriminant analyses where the

discriminant rule is based on linear combinations of features

(e.g., sensors responses) that best separate two or more

analytes. Using the defined group classes, LDA aims to

maximize the ratio of the between-the-class distance to the

within-the-class distance, thus maximizing the class discrimi-

nation. As in PCA, the linear combinations of the features are

found by solving an eigenvalue problem.93,94 As described in

the literature,94 the weights of the linear discriminant

functions are determined from the eigenvector of the matrix D

D = G�1Hw = lw (27)

where l is the eigenvalue.

Fig. 14 Impact of the preprocessing of a data set on the HCA

(displaying square Euclidean distance with Ward linkages). The data

set is composed of the responses generated by the sensor array

described in the literature103 and shows response to 9 different cations

(250 mM) at pH 5. Top: Data preprocessed using relative change in the

fluorescence intensity. Bottom: Data preprocessed using range scaling

algorithm.
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The matrix G is found from the covariance matrix C of the

different groups g following:

G ¼ ðn� gÞC ¼ ðn� gÞ
1

n� g

X

g

j¼1

ðnj � 1ÞC j ð28Þ

and

C j ¼
1

nj � 1

X

l2gj

ðxli � �xjiÞðxlk � �xjkÞ ð29Þ

for n equal to the total number of observations, nj equal to

number of observation in the group j and l is one observation

of the jth group gj.

The matrixH explains the distribution of the group means gj
over the total average

�
x,

H ¼
X

g

j¼1

njð�xj � �xÞð�xj � �xÞT ð30Þ

�x ¼

P

n

j¼1

nj �xj

n
ð31Þ

Solving the eigenvalue problem D = G�1Hw = lw will derive

a list of eigenvalues (l) and eigenvectors (w). The eigenvector

w1 associated with the greatest eigenvalue l1 provides the first

discriminant function s1:

s1 = w11x1 + w12x2 + � � � + w1pxp (32)

Utilizing the rest of the x-data the following eigenvalue l2 is

calculated along with eigenvector w2, to obtain the second

discriminant function, s2:

s2 = w21x1 + w22x1 + � � � + w2pxp (33)

The calculation of the discriminant functions continues until

all are determined. In order to classify any observation, the

vector response (in case of sensor arrays) is evaluated in

the discriminant functions in order to transform the vector

of the raw data in the coordinates within the discriminant

space. The observation is then assigned to the group to which

it has the minimal Euclidean distance:

min
j

jjwT ðxu � �xjÞjj ð34Þ

where j = 1,2,. . ., g.

The results of the classification could be represented in a

confusion matrix, which is a matrix that contains the numbers

of correctly classified objects in each class on the main

diagonal and the misclassified objects in the off-diagonal.

The confusion matrix often overestimates the accuracy of

the classification due to the bias imposed when a sample

Fig. 15 HCA dendrogram with Ward linkage showing Euclidean distance between 200 samples (11 anions, 4 toothpaste brands and control

experiments, 10 trials each analyte). More details are provided in the literature.102 Inset shows the section of the 8-sensor element array used to

recognize 10 different anions.
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classification is attempted while using a training set that

contains the same observation. The cross-validation

(leave-n-out) routine is used to test the predictability of the

sensor array by leaving one or more (n) observations out of the

set at a time, and it uses the rest of the data as a training set

to generate the linear discriminant function, which is then used

to place the excluded observation (data point) within the

correct cluster. This is performed for each observation, and

the overall ability to classify the observations describes the

quality and predictability of the array. As in the case of

the confusion matrix, the cross-validated results can be

represented in a jackknifed matrix.

The implementation of LDA is conveniently used for

determination of classes by using the linear discriminant

function, and it also provides a graphical output by

plotting discriminant scores (wi) against the canonical roots

(or factors). These plots provide a graphical representation of

how LDA is clustering similar patterns, and it attests to the

degree of discrimination of the data, i.e., how good the

resolution of the array is for a given group of samples.

As in the case of the two previous analyses the preprocessing

of the data is likely to have an impact on the final outcome of

an LDA. Once more, the same data set and preprocessing

techniques were used to generate two discriminant score plots

from the same original response data set as in the previous

examples for PCA and HCA. These showed how the two

preprocessing data procedures yield score plots with different

clustering (Fig. 16). Generally speaking, the LDA shows better

clustering of the data when compared to the PCA. Interestingly,

in the LDA this data set shows better clustering of the data

when the relative intensity is applied (Fig. 16, top).

LDA was successfully used in a number of statistical

analyses aimed at classification of analytes.

It was used in a variety of settings and media including

solutions, vapors or solid–liquid interfaces such as in the

molecularly imprinted polymers.129 The analytes classified

range from small ions and molecules, saccharides,109,130

amines,131,132 explosives,133,134 peptides to evaluate peptide

phosphorylation,135 and many others. In the arena of

bio-recognition, LDA was used with enormous success. For

example, the surface-modified metal nanoparticles allowed for

the analysis and classification of proteins,136,137 biological

fluids,138 cells including cancerous cells,139 and bacteria140

attracted particular attention.

An interesting example of a successful array and LDA

analysis was recently published by Lavigne et al.,131,132 who

used a polymer of 3-(thiophen-3-yl)propanoic acid for

classification of various aliphatic as well as aromatic amines,

diamnines and polyamines (Fig. 17). The highly cross-reactive

conjugated polythiophene bearing negatively charged

carboxylate residues forms ammonium salts with the analytes.

The resulting aggregation of the polythiophene-amine results

in a change in color, which is clearly observable by UV-vis

spectroscopy and is easily performed in multi-well plates. The

single polythiophene (Fig. 17A) was shown to generate a

multidimensional response useful for classification of 22

structurally similar and biologically relevant amines with

97% accuracy. Similar multidimensional response from the

cross-responsive poly(thiophene) has been analyzed using a

wavelength ratiometric method to quantify the amount of

biogenic amine present in a fish meat matrix, thereby

evaluating the quality of the food. This method allowed for

identification of amines such as putrescine, cadaverine and

histamine that are associated with food decomposition, and

meat in particular.

In another example, LDA was successfully used to analyze

the responses of a 9-member sensor array in the identification

of mineral and purified (Aquafina) water samples based on

their cation content (mostly Ca2+, Mg2+).103 Anzenbacher

and co-workers studied the responses for nine commercial

brands of mineral water along with two controls/blanks.

Fig. 18 lists the calcium and magnesium ion contents for all

of the mineral water brands tested. From the list (Fig. 18, top)

it is clear that all nine brands contain different kinds and

concentrations of cations and also in different proportions.

LDA coupled with leave-one-out cross-validation routine

Fig. 16 Impact of the preprocessing of a data set on the LDA. Once

again, the data set is composed of the responses generated by the

sensor array described in the literature103 and describe array sensor

response to 9 different cations. Top: Data preprocessed using a relative

change in the fluorescence intensity. Bottom: Data preprocessed using

range scaling algorithm.



This journal is c The Royal Society of Chemistry 2010 Chem. Soc. Rev., 2010, 39, 3954–3979 3973

showed 100% correct classification for all 88 trials (Fig. 18,

bottom). Interestingly, Aquafinas brand, due to its low

electrolyte content, presents a very weak response, owing to

the fact that it is closest to the nanopure water by cation

content; as shown on the LDA canonical score plot.

Aquafinas is actually not commercialized as a ‘‘mineral water,’’

but as ‘‘pure water.’’

Artificial neural networks

The number of papers on applications of Artificial neural

networks (ANN) have grown significantly since 1990s.

Although the original excitement about ANNs has somewhat

waned and a more nuanced view of these methods has

developed, there are still issues, which are often overlooked.

ANNs are often confused with the model of natural brains. It

should be noted that artificial neural networks have only little

similarity to natural biologic neural networks.

The users of artificial neural networks often regard ANNs

as a type of a black magic box which can be used to enter data

and get a solution back. Although this view is potentially

dangerous, there is also a grain of truth in it. Artificial neural

networks (ANN) are adaptive models that can establish

almost any relationship between data. They can be regarded

as black boxes to build mappings between a set of input and

output vectors. ANNs are particularly well suited for solving

problems where traditional models fail, especially for

modeling complex phenomena which show a non-linear

relationship (Fig. 19). One could therefore regard an ANN

as an abstract machine which creates a non-linear mapping

between an n-dimensional input data space and a p-dimension

output space. n is usually much larger than p; with p often

Fig. 18 Metal ion content for different brands of mineral and purified

water samples. Right: LDA canonical score plots corresponding to the

response of the 9-member array to 9 different water brands.

(This figure was reproduced with permission from the American

Chemical Society, see ref. 103.)

Fig. 19 General outline of an artificial neural network (ANN).

Fig. 17 Schematic representation of the cross-reactive thiophene

polymer (A) and examples of amines (B) shown to display analyte-

induced aggregation. Unique optical signatures (C) represented by the

changes in the absorption spectra of the polymer chemosensor (1 mM)

upon addition of different diamines (1 mM each) in aqueous HEPES

buffer (40 mM, pH 7.4). Panel D: Two-dimensional LDA plot of

chemosensor response to EDA (’), PrDA (n), BDA (m), PeDA (B),

HDA (J) and HistA (+). Panel E: Response of the polymer

chemosensor Polymer 1 response to histamine in a tuna fish matrix.

Inset: Response factor (A420/A530) showing linearity in the polymer

response in the relevant range to detect spoilage. (Fig. 17C–E were

reproduced with permission from the American Chemical Society,

see ref. 132.)
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being in the range of 1 to 3 (since the human interpreter is

restricted to a maximum dimensionality of 3).

This non-linear mapping is set up during the learning

process of a neural network. The ‘‘art’’ of training a neural

network is to control the training in such a way that the

resulting mapping represents the underlying relationship

within the data, avoiding adjustment for noise or errors in

the data.

In order to select the appropriate neural network model, it is

necessary to realize whether one is dealing with a supervised

task, or unsupervised task. To train the system to respond with

a certain predefined output, the task is supervised. If the

network should self-organize, the target is not predetermined

and the task is called an unsupervised task (see above).

Similarly, it is important to realize whether a task is a

classification task or function approximation task where each

input is associated with a certain (analog) value. Supervised

training methods use training sets to set up a relationship

between input and output of the ANN model. Supervised

methods are therefore mostly used for function approximation

and classification, while unsupervised methods are most

suitable for clustering tasks. Unsupervised methods try to find

the structure in the data on their own.

The central paradigm of neural networks is based on local

computing. This means that neural networks gain their power

from connecting several processing units, which have only very

restricted capabilities. A multi-layer ANN consists of units

and connections. Each unit requires an activation, and each

link between two units has a weight. The units are organized in

layers. Three different types of units are distinguished and are

divided into input units, hidden units, and output units.

Fig. 20 shows a simple type of a feed-forward artificial neural

network.

The basic idea of ANN is that the information passed along

the path (an analogy of axon in the actual neuron) arrives at

the synapse. There, the information is transformed and sent to

the next neuron. This signal transfer is simulated in the

artificial neuron considering the input signal xn, modified with

the synaptic weight w, to derive the output signal y (Fig. 20),

where the output is defined y = wx. For a given artificial

neuron, the m + 1 are inputs with signals x0 through xm and

weights w0 through wm. Usually, the x0 input is assigned the

value +1, which makes it a bias input with wk0 = bk. This

leaves only m actual inputs to the neuron: from x1 to xm. The

output of kth neuron is:

yk ¼ j
X

m

j¼0

wkjxj

 !

ð35Þ

and where j is the transfer function.

Between the input and output layer additional layer(s)

called hidden layers, may be present. When considering the

neural network as a black box, the hidden units are not visible

from the outside (Fig. 20, right). The calculation of the final

output values proceeds layer by layer. First, the input signals

are applied to the input layer, and each neuron of the input

layer calculates its output value.

Next, these values are propagated to the next layer and so

forth, until the output layer is reached. Each unit uses the

output of the previous units as an input and provides its

output as input for the subsequent units (hence the term

feed-forward ANN). The coefficients wkj that multiply the

inputs xj are called weights. The process of training a network

consists of adjusting the weights to minimize disagreement

between the output of the network and desired values for a

training set with known correct outputs. Thus, the network

‘‘learns’’ and the wkj are adjusted in the process. Standard

ANN used in chemistry usually comprises a hierarchy of

identical units.

The unit multiplies each input by the weight of the connec-

tion between itself and the unit providing the input. It adds

together the weighted inputs and bias term (x0 = +1, thus x0
w0 = bk). The bias term can be regarded as the weight of an

input fixed to 1.

Unitk ¼ bk þ j
X

m�1

j¼1

wkjxj

 !

ð36Þ

Typically, the aggregation of the input signals (xm wkm) is a

simple summation. Other aggregation operators are also

possible (e.g. formation of minimum or maximum over all

signals). Before the aggregated signal leaves the unit, a trans-

formation is performed by applying a transfer function (j).

Variety of transformation functions can be used, for example,

threshold logic, linear transfer function, sigmoid function,

linear threshold function, hyperbolic tangent function, etc.

There are several neural network models commonly used by

chemists. The simple neural network is the perceptron. Archi-

tectures more frequently used by chemists are backpropagat-

ing networks and Kohonen networks, which are used for

unsupervised learning and classification. Thus, the choice of

architecture depends on the analytical objective. For example,

Fig. 20 Considering the operation of a single neuron k. It receives the

input signals xm from other neurons 1-m, aggregates these signals (S)

by using the weights of the synapses (wkm) and after suitable trans-

formation (j) passes the result as the output signal yk.
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for parameter estimation backpropagation networks are

usually used, while for the clustering analysis the Kohonen

networks appear to be preferable. Backpropagation networks

are also used for classification and identification applications.

This procedure is well documented in many publications

and more details including the introduction into the subject

are given in the literature.141,142 While the artificial neural

networks (ANNs) are extensively applied to electrochemical

sensor arrays in recent studies,26,143 there are only a few

reports describing utilization in arrays of optical sensors.

These are mostly used for multi-component analysis utilizing

newly synthesized receptors and used for determination of

analyte concentrations152,153 in solution or by means of sensor

arrays150 or array of fiber-optics sensors.148,144 Severin et al.

applied dynamic library of organometallic receptor and three

azodyes followed by ANN evaluation of experimental data

for determination of concentration of ATP and AMP/

pyrophosphate.145,146

It appears that there is no description of ANN applied to

the classification in optical sensor arrays. To create such an

example for this review, we used the experimental data from

Palacios and co-workers,104 which is discussed in detail in the

section devoted to PCA and the procedure for the sensor array

size optimization. The same data-set was analyzed using

back-propagating ANNs. The data set describes array

responses as inputs and elements (in nominal or alphanumeric

form) as outputs for only one concentration (1 mM, pH = 5)

and comprises 7 repetitions. The 7 repetitions are split

randomly into three sets of 4, 2 and 1 repetitions:

The first portion of the data (first 4 repetitions) recorded for

10 ions (Al, Ca, Cd, Co, Cu, Ga, Hg, Mg, Ni, Zn) and a blank

yields 44 data points and is used as a training set for the next

step, which is analysis, namely for search for a minimum of

residual function U = S (Outputexp � Outputcalc)
2, applied

over all experimental points. The well known optimization

procedures such as the conjugate gradients method or

Levenberg-Marquardt approach may be applied. Also some

other parameters (e.g. learning rate, momentum, etc.) do have

influence on speed of the optimization process and they can be

critical in the search for global minimum. The second portion

(verification data set) of the data (two out of remaining three

repetitions for 10 ions Al, Ca, Cd, Co, Cu, Ga, Hg, Mg, Ni, Zn

and a blank), gives 22 data points, which are then used to

optimize the ANN architecture, particularly the number of

hidden neurons (Table 2) and other parameters (weights,

biases) to achieve the best classification. The third and last

set, comprised of the last repetition gives 11 data points and

serves to test the suitability and accuracy of the prediction.

This is done simply by performing the classification of these

data points using the previously trained neural network with

the optimized architecture.

Finally, in order to evaluate the effect of preprocessing the

experimental data, two data sets for testing were analyzed. The

preprocessing method used was a simple average. This way,

another ‘‘backup’’ set of 11 data points was created as an

average value of the 7 repetitions. The backup data set

(composed of the averages of the 7 repetitions) will be used

in the case the last remaining repetition (the 11 data points) are

biased by an outliers, a systematic error, etc. This preprocessed

data set reflects the properties of all the repetitions,

and therefore is likely to show lower outlier bias than the

individual repetition data points.

The results are shown in Table 2. For a full array

comprising all 6 sensors (S1–S6), one can obtain good

prediction for both data sets (91% and 100% success in

prediction). Decreasing the number of sensors in an array to

half, the success in the prediction remains unchanged

(91% and 100%), which is the same as the classification

accuracy described for LDA in the study by Anzenbacher

et al.104 Note, however, that the LDA utilized all seven

repetitions and a leave-one-out (LOO) accuracy test. Thus,

the current ANN analysis actually utilizes only a very small

fraction of the data set to achieve very similar classification

accuracy. The 3-sensor array is sufficient for practical

classification of 10 analytes (metal ions) and distinguishes

them from a blank.

In the case of two-member arrays (S2 and S4), the correct

prediction is achieved only for the data set preprocessed as an

average. Here, the prediction for random data (7th repetition)

was less successful. Specifically, Ca and Hg were misclassified

as blanks, Cd as Mg, and Mg as Cd. Interestingly, when the

preprocessed data points (generated as an average of

repetitions, see above) were used, a 100% of correct classifica-

tion was achieved. Thus, it appears that the original

experimental data suffer from an error, for example, due to

noisy data, or a presence of a systematic error. However, such

an effect can be successfully compensated for by a simple

pretreatment such as signal averaging. This illustrates the

Table 2 The results of ANN analysis. The calculations have been carried out with TRAJANs software v 3.0. For experimental details see the
literature104

Number of sensorsa
Neural Network Architectureb RMS (test data set)c

RMS (training and verification set) Number of samples/Number of correct classifications

6 (S1–S6) 18 : 13 : 11 0.0235 (11/10, i.e. 91%)
(0.014; 0.029) 0.0089 (11/11, i.e. 100%)

3 (S2, S4, S6) 9 : 18 : 11 0.0265 (11/10, i.e. 91%)
(0.019; 0.031) 0.0087 (11/11, i.e. 100%)

2 (S2, S4) 6 : 16 : 11 0.0708 (11/7, i.e. 64%)
(0.026; 0.045) 0.0115 (11/11, i.e. 100%)

a Three emission channels were used: blue, green, yellow. b ANN inputs : hidden neurons : outputs, Activation function—logistic, PSP

function—linear; learning rate 0.8–0.9; momentum 0.3; Training data—44 points, Verification data—22 points. c Test data—11 points

(Blank, Al, Ca, Cd, Co, Cu, Ga, Hg, Mg, Ni, Zn). 1st randomly selected data set corresponding to the last repetition, 2nd data preprocessed

set (‘‘back-up’’) obtained by averaging of 7 repeated measurements.
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importance of careful examination of the experimental data

prior to advanced chemometric analysis, but also the overall

robustness of the ANN method for data classification.

There are other examples in the literature of using simple

ANN to perform the analyses of the data from optical sensor

arrays. Walt and co-workers demonstrated a cross-reactive

optical sensor array, a true multi-analyte fiber-optic sensor

modeled directly on the olfactory system for sensing of

vapors.84,147,148 Also, Jurs and co-workers developed an

optical fiber array sensor for organic volatiles that also utilizes

ANN.147,149 Sensing of heavy metal cations in ternary

mixtures from absorption spectra of three types of commer-

cially available metallochromic indicators using ANN were

performed by Suzuki et al.150 Similar work on recognition of

metal cations for the purpose of environmental monitoring

was also reported.151 Additionally, Anslyn et al. used

multilayer perceptron (MLP) to fingerprint chemical identity,

chirality, and concentration of four chiral diamines,

1,2-diphenylethylenediamine, 1,2-diaminocyclo-hexane, 1,2-

diaminopropane, bis-(4-methoxyphenyl)-1,2-di-aminoethane

using exciton-coupled circular dichroism spectroscopy.

Copper(I) 2,20-bis(diphenylphosphino)-1,10-dinaphthyl-aceto-

nitrile complex [Cu(I)(BINAP)(MeCN)2]PF6 in the form of

its both enantiomers (R and S). The copper-BINAP complex

displays a broad metal-to-ligand charge transfer band at

350–430 nm with opposite sense in opposite enantiomers.

Association of the chemosensor enantiomers with the chiral

diamine resulted in an analyte-specific change in the CD

spectra of the MLCT region resulting from the formed

chemosensor-diamine complex. A similar method was then

applied to enantio-selective indicator displacement assays for

R-amino acids to achieve high-throughput screening of

enantiomeric excess. Complexes of chiral diamines with Cu(II)

were incubated with the color indicator chrome azurol, and

the dye displacement as a function of enantiomeric excess was

analyzed using ANN as well as using calibration plots.152

Similar methods aimed at simplification of enantioselective

indicator displacement assays were also published.153

Support vector machines

Along with PCA and LDA, there are several other vectorial

models for multivariate clustering and data mining, such as

factorial analysis, partial least square (PLS)95 and support

vector machines (SVM),154–157 among others. In the recent

years, SVM has appeared as a very reliable method when

dealing with data sets with several distinct classes that cannot

be easily separated by linear boundaries.158,159

Briefly, SVM is a supervised classification method that seeks

to separate classes by mapping the input into an n-dimensional

vector space using kernel functions. These kernel functions can

be linear, polynomial, radial basis function, etc. The kernel

functions give flexibility in terms of the nature of the data to be

classified. For example, in case of a data set where the input

does not show a linear correlation with the variables or when

the data is not linearly separable the kernel functions can be

used to map the input (data points) into a feature space where

the classes can be linearly separated (Fig. 21A). Once in the

feature space, data points are separated by hyperplanes with

maximum soft margin in reference to the training data. The

distance between two hyperplanes separating two different

classes is called the maximum margin hyperplane and it

corresponds to the decision boundary that maximizes the

resolution between the two different classes. Thus, SVM looks

for data points (support vectors) that satisfied the condition

where two hyperplanes display maximum separation between

the two classes. Any variation on the support vectors will

immediately alter the nature of the hyperplanes defining the

margin (Fig. 21B).

Further explanation of SVM goes beyond the scope of this

review, but in the context of sensor arrays, SVMs have proved

outstanding performance in difficult analytical problems, such

as multianalyte samples. From our experience, SVMs usually

provide better classification accuracy than linear supervised

methods such as LDA. However, they are difficult to

implement owing to their intrinsic complexity due to

parameterization that most of the time is carried out along

with cross-validation routings. SVMs were successfully

applied to optical arrays aimed at alkaloids classification using

DNA three way junctions,160 metal ions,158 organic vapors,159

and other analytes. Comparing LDA and SVM, as a more

sophisticated boundary method, SVM is prone to overfit the

normally-distributed data but it generally performs better in

case of experimental data with complicated structure.161

Conclusions

There is no doubt that the field of sensor arrays will grow and

thrive in the near future. There are multiple reasons to justify

this prediction. Firstly, the state of the art in analytical and

supramolecular chemistry, and synthesis methodology create

environment in which array sensors became a mainstream tool

of evaluation of numerous processes that transcend the

classical analytical application. Secondly, the development of

Fig. 21 Representation of the mapping of the data set into a feature

space where the data are linearly separable using a kernel f(
�
u) (A).

Support vector machine (B): The hyperplanes comprising support

vectors represent the maximum separation margin between two

different classes.
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micro-instrumentation reached such a state that most high-

throughput analysis tools (high-density multi-well readers,

imagers, CCD cameras, etc.) are widely available and their

cost is acceptable for both the industry and academic research

groups. This means that more and more researchers are

becoming familiar with performing experiments and analyses

using array methodologies and will rely on array sensors,

methods of analysis, exploration and visualization. Thirdly,

the significant motivation exerted by the current economic

pressures will, in fact, ensure that efforts toward assay and

testing processes in a highly economic fashion will not only

espouse the high-throughput hardware (multi-well formats,

imaging, etc.) but also intellectual tools including applied

mathematics and statistics, which will continue to be at the

forefront of the R&D efforts of the chemistry and industry.

This climate will create a breeding ground for new types of

chemistry professionals. The traditional chemist that used to

rely on round-bottom flask reaction testing, column chromato-

graphy, HPLC and NMR will be partly replaced by this new

chemist trained to utilize small-formate assays including

various lab-on-a-chip162,163 and micro-technologies,164 to

develop tools that allow visualization of the chemical

processes via imaging as a method of following the processes

and multivariate analyses. Even more importantly, the new

generation of scientists will use the array tools including the

array sensors to monitor relevant processes and analyze the

products, production and waste streams and will be more

attuned to approach the experiments using careful design and

modeling as well as statistical evaluation, data-mining and

mathematical predictive methods to minimize the number

necessary experiments or elements while maximizing the

extracted information.

While some might argue that the combinatorial

chemistry165,166 or nanochemistry167 did not deliver yet on

some of their promises, from today’s perspective it is very

likely that the sensor arrays and nanotechnology will intersect

in the near future. The miniaturization of sensor arrays down

to the nanoscale will most likely yield high density arrays to

serve reliable sensing processes.168 Finally, the current state of

the art in single molecule analysis suggests that we might not

be too far from arrays of single molecules as sensors.169 Two

things are clear: Whilst there are numerous challenges in the

field of arrays and array sensors, there are also exciting

developments and promising science and technology waiting

in the near future.
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