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Abstract

Background: Molecular systematics occupies one of the central stages in biology in the genomic
era, ushered in by unprecedented progress in DNA technology. The inference of organismal
phylogeny is now based on many independent genetic loci, a widely accepted approach to assemble
the tree of life. Surprisingly, this approach is hindered by lack of appropriate nuclear gene markers
for many taxonomic groups especially at high taxonomic level, partially due to the lack of tools for
efficiently developing new phylogenetic makers. We report here a genome-comparison strategy to
identifying nuclear gene markers for phylogenetic inference and apply it to the ray-finned fishes —
the largest vertebrate clade in need of phylogenetic resolution.

Results: A total of 154 candidate molecular markers — relatively well conserved, putatively single-
copy gene fragments with long, uninterrupted exons — were obtained by comparing whole genome
sequences of two model organisms, Danio rerio and Takifugu rubripes. Experimental tests of 15 of
these (randomly picked) markers on 36 taxa (representing two-thirds of the ray-finned fish orders)
demonstrate the feasibility of amplifying by PCR and directly sequencing most of these candidates
from whole genomic DNA in a vast diversity of fish species. Preliminary phylogenetic analyses of
sequence data obtained for 14 taxa and 10 markers (total of 7,872 bp for each species) are
encouraging, suggesting that the markers obtained will make significant contributions to future fish
phylogenetic studies.

Conclusion: We present a practical approach that systematically compares whole genome
sequences to identify single-copy nuclear gene markers for inferring phylogeny. Our method is an
improvement over traditional approaches (e.g., manually picking genes for testing) because it uses
genomic information and automates the process to identify large numbers of candidate makers.
This approach is shown here to be successful for fishes, but also could be applied to other groups
of organisms for which two or more complete genome sequences exist, which has important
implications for assembling the tree of life.
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Background

The ultimate goal of obtaining a well-supported and accu-
rate representation of the tree of life relies on the assembly
of phylogenomic data sets for large numbers of taxa [1].
Molecular phylogenies based on DNA sequences of a sin-
gle locus or a few loci often suffer from low resolution and
marginal statistical support due to limited character sam-
pling. Individual gene genealogies also may differ from
each other and from the organismal phylogeny (the
"gene-tree vs. species-tree" issue) [2,3], in many cases due
to systematic biases (i.e., compositional bias, long-branch
attraction, heterotachy), leading to statistical inconsist-
ency in phylogenetic reconstruction [4-7]. Phylogenomic
data sets — using genome sequences to study evolutionary
relationship - provide the best solution to these problems
[1,8]. This approach requires compilation of large data
sets that include many independent nuclear loci for many
species [9-14]. Such data sets are less likely to succumb to
sampling and systematic errors [13] by offering the possi-
bility of analyzing large numbers of phylogenetically
informative characters from different genomic locations,
and also of corroborating phylogenetic results by varying
the species sampled. If any systematic bias may be present
in a fraction of individual loci sampled, it is unlikely that
all affected loci will be biased in the same direction. Pow-
erful analytical approaches that accommodate model het-
erogeneity among data partitions are becoming available
to efficiently analyze such complex phylogenomic data
sets [15,16].

Constructing phylogenomic data sets for large number of
taxa still is, however, quite challenging. Most attempts to
use this approach have been based either on few available
complete genomic sequence data [13,17,18], or cDNA
and ESTs sequences [9,12,18,19] for relatively few taxa.
Availability of complete genomes limits the number of
taxa that can be analyzed [13,17], imposing known prob-
lems for phylogenetic inference associated with poor
taxon sampling [20,21]. On the other hand, methods
based on ESTs or cDNA sequence data are not practical for
many taxa because they require construction of cDNA
libraries and fresh tissue samples. In addition, some genes
may not be expressed in certain tissues or developmental
stages, leading to cases with undesirable amounts of miss-
ing data [9]. The most efficient way to collect nuclear gene
sequences for many taxa is to directly amplify target
sequences using "universal" PCR primers, an approach so
far used for just a few widely-used nuclear genes [22-25],
or selected taxonomic groups (e.g., placental mammals
and land plants). Widespread use of this strategy in most
taxonomic groups has been hindered by the paucity of
available PCR-targeted gene markers.

Mining genomic data to obtain candidate phylogenetic
markers requires stringent criteria, since not all loci are
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likely to carry the appropriate historical signal. The phyl-
ogenetic informativeness of characters has been exten-
sively debated on theoretical grounds [26,27], as well as in
empirical cases [28-30]. Our study does not intend to con-
tribute to this debate, but rather to focus on the practical
issues involved in obtaining the raw data for analysis.
What is the best strategy to select a few hundreds candi-
date loci from thousands of genes present in the genome?
For practical purposes, a good phylogenetic nuclear gene
marker must satisfy three criteria. First, orthologous genes
should be easy to identify and amplify in all taxa of inter-
est. One of the main problems associated with nuclear
protein-coding genes used to infer phylogeny is uncer-
tainty about their orthology [3]. This is especially true
when multiple copies of a target gene are amplified by
PCR from whole genomic DNA. To minimize the chance
of sampling paralogous genes among taxa (the trap of
"mistaken paralogy" that will lead to gene-tree-species-
tree discordance), our approach is initiated by searches for
single-copy nuclear genes in genomic databases. Under
this criterion, even if gene duplication events may have
occurred during evolution of the taxa of interest (e.g., the
fish-specific whole-genome duplication event) [31,32],
duplicated copies of a single-copy nuclear gene tend to be
lost quickly, possibly due to dosage compensation [33].
Some authors estimate that almost 80% of the paralogs
have been secondarily lost following the genome-duplica-
tion event [34,35]. Thus, if duplicated copies are lost
before the relevant speciation events occur (Figure 1a, b),
no paralogous gene copies would be sampled. If the alter-
native situation occurs (Figure 1c), paralogy will mislead
phylogenetic inference resulting in topological discord-
ance among genes. In the latter case, the topological dis-
tribution of this discordance may be used to reconstruct
putative duplication/extinction events and clarify the
putative mistaken paralogy [36]. The second criterion
used to facilitate efficient data collection is to identify pro-
tein-coding genes with long exons (longer than a practical
threshold determined by current DNA sequencing tech-
nology, for example 800 bp). Most genes are fragmented
into small exons and large introns. For high taxonomic-
level phylogenetic inference (deep phylogeny), intron
sequences evolve too fast and are usually not informative,
becoming an obstacle for the amplification and sequenc-
ing of more informative exon-coding sequences. The third
criterion used seeks to identify reasonably conserved
genes. Genes with low rates of evolution are less prone to
accumulate homoplasy, and also provide the practical
advantage of facilitating the design of universal primers
for PCR that will work on a diversity of taxa. Furthermore,
conserved protein-coding genes also are easy to align for
analysis, based on their amino acid sequence.

Sequence conservatism and long exonic regions have been

used as preferred criteria to select phylogenetic markers in
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Single-copy genes are useful markers for phylogeny inference. Gene duplication and subsequent loss may not cause
incongruence between gene tree and species tree if gene loss occurs before the first speciation event (a), or before the second
speciation event (b). The only case that would cause incongruence is when the gene survived both speciation events and is

asymmetrically lost in taxon 2 and taxon 3 (c).

the past [37]. However, finding many preferred, easy-to-
apply gene markers is unlikely when candidate genes are
manually screened from data bases or taken from isolated
studies of few individual genes. This complexity partially
explains the scarcity of currently available nuclear gene
markers in many taxonomic groups. To address the prob-
lem, we present a simple bioinformatic approach to
obtain nuclear gene markers from complete genomic
data, based on the three aforementioned criteria. Our
method incorporates two improvements over the tradi-
tional way of manually picking genes and testing their
phylogenetic utilities. These improvements include using
full genomic information and automating the process of
searching for candidate makers. We apply the method to
Actinoptertygii (ray-finned fish), the largest vertebrate
clade - they make up about half of all known vertebrate
species — with a poorly known phylogeny [38-42]. We
also present experimental tests to show that PCR primers
designed for a subset of the candidate markers can effi-
ciently amplify these markers for a highly diverse sample
of ray-finned fishes. Comparative analyses of the
sequences obtained show encouraging phylogenetic prop-
erties for future studies.

Results

The bioinformatic pipeline used is shown in Figure 2.
Within-genome sequence comparisons resulted in 2,797
putative single-copy exons (> 800 bp) in zebrafish (D.
rerio), and 1,822 in torafugu (T. rubripes), 2132 in stickle-
back (G. aculeatus), and 1809 in Japanese rice fish (O. lat-
ipes). Note that our operational definition of a "single-
copy" gene only requires that the fragment is not present
as a second copy in the genome with similarity higher
than 50%. Some single-copy genes may, in fact, have
duplicates in the genome that are less than 50% similar.
Pairwise between-genome comparisons of the single-copy
exon sequences resulted in a range of 113 to 281 putative
orthologs shared among genomes, that have similarity
greater than 70%. The lowest number of "conserved
orthologs" was detected between zebrafish and rice fish,
and the highest between torafugu and stickleback. The
number of putative conserved orthologs shared among
three or more genomes varied from case to case; for exam-
ple, it peaked at 155 when comparing torafugu, Japanese
rice fish, and stickleback, but only 61 for the comparison
involving torafugu, Japanese ricefish, and zebrafish. All
the information resulting from these analyses is publicly
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Figure 2

The bioinformatic pipeline for phylogenetic markers development. It involves within- and across-genome sequences
comparison, in silico test with sequences in other species, and experimental validation. Numbers of genes and exons identified
for D. rerio are indicated by the asterisk. Exon length (L), within-genome similarity (S), between-genome similarity (Sx), and

coverage (C) are adjustable parameters (see methods).

available in our website [43], and a sample output of can-
didate markers is shown in Additional file 1.

To investigate the properties of candidate markers, we
analyzed those found in the zebrafish and torafugu com-
parison, since their genome sequences are well annotated.
Among them, 154 putative homologs were identified
between zebrafish and torafugu by cross-genome compar-
ison. Further comparison with EST sequences from other

fish species reduced this number to 138 candidate mark-
ers (Supplementary Table 1). The 154 candidate markers
shared between these two genomes according to our
search criteria are distributed among 24 of the 25 chromo-
somes of zebrafish, and a Chi-square test did not reject a
Poisson distribution of markers among chromosomes (2
=16.99, df = 10, p = 0.0746). The size of candidate mark-
ers ranged from 802 to 5811 bp (in D. rerio). Their GC
content ranged from 41.6% to 63.9% (in D. rerio), and the
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average similarity of the DNA sequence of these markers
between D. rerio and T. rubripes varied from 77.3% to
93.2% (constrained by the search criteria).

To test the practical value of potential phylogenetic mark-
ers, 15 gene fragments were randomly picked from the
candidate list of 154 and tested experimentally on 36 taxa,
chosen to represent two-thirds of all ray-finned fish orders
(see Additional file 2). PCR primers were designed on
conserved flanking regions for each fragment, based on
the genomic sequences and tested on all taxa (Table 1).
Ten out of the 15 markers examined successfully ampli-
fied a single product of the predicted size by a nested PCR
approach in 31 taxa. For comparative sequence analyses,
we took only 14 taxa (Amia calva, D. rerio, Semotilus
atromaculatus, Ictalurus punctatus, Oncorhynchus mykiss, Bro-
tula multibarbata, Fundulus heteroclitus, Oryzias latipes, Ore-
ochromis niloticus, Gasterosteus aculeatus, Lycodes atlanticus,
T. rubripes, Morone chrysops, Lutjanus mahogoni) that could
be amplified and sequenced directly for the set of 10
markers [GenBank: EF032909 - EF033038]. The size of
the sequenced fragments ranged from 666 to 987 bp, and
the average uncorrected genetic distances for DNA
sequence of the 10 markers among the 14 taxa ranged
from 13% to 21%. We present (Table 2) additional char-
acteristics of the data set such as the substitution rate, con-
sistency index (CI), gamma shape parameter (), relative
composition variability (RCV), and treeness [44] resulting
from phylogenetic analysis of the sequences of the 10 new
markers. Values obtained are similar to those observed in
a commonly used phylogenetic marker - recombination
activating gene 1 (RAG-1, Table 2). For the newly charac-
terized phylogenetic markers, the substitution rate is neg-
atively correlated with CI (r = -0.84, P = 0.0026) and
marginally correlated with o (r =-0.56, P = 0.095). In con-
trast, base composition heterogeneity (RCV) and the phy-
logenetic signal to noise index (treeness index) are not
correlated with substitution rate. Based on the treeness
value, genes ENC1, plagl2, Ptr, Gylt and tbr1l seem well
suited for phylogenetic studies at high taxonomic level
among ray-finned fishes.

A phylogeny of the 14 taxa using concatenated sequences
of all 10 markers (total of 7,872 bp) was inferred on the
basis of protein and DNA sequences. For the protein
sequence data, a JTT model with gamma parameter
accounting for rate heterogeneity was selected by ProtTest
[45]. The data were partitioned by gene, as this strategy
was favoured by the Akaike information criterion (AIC)
over treating the concatenated sequences as a single parti-
tion. Maximum likelihood (ML) and Bayesian analysis
(BA) resulted in the same tree (Figure 3a). A similar topol-
ogy to Figure 3a was obtained by ML analysis of nucle-
otide sequences with RY-coded nucleotides to address
potential artefacts due to base compositional bias [44].
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The positions of Brotula and Morone remain somewhat
unresolved, receiving low bootstrap support and conflict-
ing resolution based on either protein or RY-coded nucle-
otide data. When analyzed separately, all individual gene
trees display low support in many branches and none of
them has the same topology as the "total evidence" tree
based on all 10 genes (see Additional file 3). However,
only 6 individual genes exhibit significant differences
with the total evidence tree (based on one tailed SH tests
with p < 0.05), the exceptions being myh6 (p = 0.113),
Gylt (p = 0.091), plagl2 (p = 0.056)), and sreb2 (p =
0.080).

Discussion

The bioinformatic approach implemented in this study
resulted in a large set (154 loci for the zebrafish and
torafugu comparison) of candidate genes to infer high-
level phylogeny of ray-finned fishes. The actual number of
candidate loci depended on the genomes being compared
and the fixed search parameters. Experimental tests of a
smaller subset (15 loci) demonstrate that a large fraction
(2/3) of these candidates are easily amplified by PCR from
whole genomic DNA extractions in a vast diversity of fish
taxa. The assumption that these loci are represented by a
single copy in the fish genomes could not be rejected by
the PCR assays in the species tested (all amplifications
resulted in a single product), increasing the likelihood
that the genetic markers are orthologous and suitable to
infer organismal phylogeny. Our method is based on
searching, under specific criteria, the available complete
genomic databases of organisms closely related to the taxa
of interest. Therefore, the same approach that is shown to
be successful for fishes could be applied to other groups of
organisms for which two or more complete genome
sequences exist. Parameter values (L, S, and C) used for
the search (Figure 2) may be altered to obtain fragments
of different size or with different levels of conservation
(i.e., less conserved for phylogenies of more closely
related organisms).

An alternative way to develop nuclear gene markers for
phylogenetic studies is to construct a ¢cDNA library or
sequence several ESTs for a small pilot group of taxa, and
then to design specific PCR primers to amplify the orthol-
ogous gene copy in all the other taxa of interest [19,46].
The major potential problem with this approach stems
from the fact that the method starts with a cDNA library
or a set of EST sequences, with no prior knowledge of how
many copies a gene has in each genome. As discussed
above, this condition may lead to mistaken paralogy. In
our approach, we search the genomic database to find sin-
gle-copy candidates so no duplicate gene copies, if
present, would be missed (see below).
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Table I: PCR primers and annealing temperatures used to amplify 10 new markers
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Gene* Primers Sequences Annealing temp PCR steps
zicl zicl _F9 5' GGACGCAGGACCGCARTAYC 3' 57 I'st
zicl_R967 5 CTGTGTGTGTCCTTTTGTGRATYTT 3' PCR
zicl_F16 5' GGACCGCAGTATCCCACYMT 3' 57 2nd
zicl_R963 5 GTGTGTCCTTTTGTGAATTTTYAGRT 3' PCR
myhé myh6é_F459 5' CATMTTYTCCATCTCAGATAATGC 3' 53 Ist
myhé_R1325 5" ATTCTCACCACCATCCAGTTGAA 3' PCR
myhé_F507 5' GGAGAATCARTCKGTGCTCATCA 3' 62 2nd
myhé_R1322 5' CTCACCACCATCCAGTTGAACAT 3' PCR
RYR3 RYR3_FI5 5' GGAACTATYGGTAAGCARATGG 3' 55 I'st
RYR3_R968 5' TGGAAGAAKCCAAAKATGATGC 3' PCR
RYR3_F22 5' TCGGTAAGCARATGGTGGACA 3' 62 2nd
RYR3_R931 5' AGAATCCRGTGAAGAGCATCCA 3' PCR
Ptr Ptr_F458 5' AGAATGGATWACCAACACYTACG 3' 55 Ist
Ptr_R1248 5' TAAGGCACAGGATTGAGATGCT 3' PCR
Ptr_F463 5' GGATAACCAACACYTACGTCAA 3' 62 2nd
Ptr_R1242 5' ACAGGATTGAGATGCTGTCCA 3' PCR
tbrl tbrl_Fl 5' TGTCTACACAGGCTGCGACAT 3' 57 Ist
tbr1_R820 5' GATGTCCTTRGWGCAGTTTTT 3' PCR
tbrl_F86 5' GCCATGMCTGGYTCTTTCCT 3' 62 2nd
tbrl_R811 5' GGAGCAGTTTTTCTCRCATTC 3' PCR
ENCI ENCI_F85 5' GACATGCTGGAGTTTCAGGA 3' 53 I'st
ENCI_R982 5" ACTTGTTRGCMACTGGGTCAAA 3' PCR
ENCI_F88 5" ATGCTGGAGTTTCAGGACAT 3' 62 2nd
ENCI_R975 5' AGCMACTGGGTCAAACTGCTC 3' PCR
Gylt Glyt_F559 5' GGACTGTCMAAGATGACCACMT 3' 55 Ist
Glyt_R1562 5' CCCAAGAGGTTCTTGTTRAAGAT 3' PCR
Glyt_F577 5' ACATGGTACCAGTATGGCTTTGT 3' 62 2nd
Glyt_R1464 5' GTAAGGCATATASGTGTTCTCTCC 3' PCR
SH3PX3 SH3PX3_F46| 5' GTATGGTSGGCAGGAACYTGAA 3' 55 Ist
SH3PX3_R1303 5' CAAACAKCTCYCCGATGTTCTC 3' PCR
SH3PX3_F532 5' GACGTTCCCATGATGGCWAAAAT 3' 62 2nd
SH3PX3_R1299 5' CATCTCYCCGATGTTCTCGTA 3' PCR
plagl2 plagl2_F9 5' CCACACACTCYCCACAGAA 3' 55 Ist
plagl2_R930 5' TTCTCAAGCAGGTATGAGGTAGA 3' PCR
plagl2_F51 5' AAAAGATGTTTCACCGMAAAGA 3' 62 2nd
plagl2_R920 5' GGTATGAGGTAGATCCSAGCTG 3' PCR
sreb2 sreb2_F10 5' ATGGCGAACTAYAGCCATGC 3' 55 Ist
sreb2_R1094 5' CTGGATTTTCTGCAGTASAGGAG 3' PCR
sreb2_F27 5' TGCAGGGGACCACAMCAT 3' 62 2nd
sreb2_R1082 5' CAGTASAGGAGCGTGGTGCT 3' PCR

*Gene markers are named following annotations in ENSEMBLE. zicl, zic family member |; myhé, myosin, heavy polypeptide 6; RYR3 (si:ch21 1-
189g6.1), novel protein similar to vertebrate ryanodine receptor 3; Ptr (si:ch211-105n9.1), hypothetical protein LOC564097; tbrl, T-box brain |;
ENCI (559445 Entrezgene), similar to ectodermal-neural cortex I; Glyt (zgc:112079), glycosyltransferase; SH3PX3, similar to SH3 and PX domain
containing 3 gene; plagl2, pleiomorphic adenoma gene-like 2; sreb2, Super conserved receptor expressed in brain 2.

Recent studies have proposed whole genome duplication
events during vertebrate evolution and also genome
duplications restricted to ray-finned fishes [31,32,47,48].
Our results indicate that many single-copy genes still exist
in a wide diversity of fish taxa (representing 28 orders of
actinopterygian fishes), in agreement with previous esti-
mates that a vast majority of duplicated genes are second-
arily lost [34,35]. All 154 candidates were identified as
single-copy genes in D. rerio and T. rubripes, according to
our search criteria. Our results also show the 154 candi-
date genes are randomly distributed in the fish genome (at
least among chromosomes of D. rerio). In the experimen-

tal tests, 10 out of 15 markers were found in single-copy
condition in all successful amplifications, including the
tetraploid species, O. mykiss. However, relaxing the search
criteria, and conserving targets less than 50% similar in a
subsequent blast search against the zebrafish genome, 7 of
the 10 genes were found to have "alignable paralogs" (the
3 exceptions were myh6, tbrl, and Gylt). Genomes of
medaka, stickleback, and fugu were also checked for these
3 genes, and no "paralogs" were detected, suggesting the
sequences of ray-finned fish collected for these 3 genes are
unambiguously orthologous to each other. Phylogenetic
analyses for each of the 7 genes that include the putative
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Table 2: Summary information of the 10 gene markers amplified in 14 taxa

Gene Exon ID No.ofbp No.ofvar. No.of Pl Genetic distance (%) Sub.rate CI-MP « RCV  Treeness
zicl ENSDARE00000015655 894 296 210 13(2.3-22.6) 0.64 0.61 l.64 0.13 023
myhé ENSDARE00000025410 735 323 235 18(7.8-23.2) 1.35 0.54 068 0.11 022
RYR3 ENSDARE00000465292 825 389 258 18(8-23.6) 1.25 0.56 067 0.11 021
Ptr ENSDARE00000145053 705 304 234 18(5.3-28.1) 1.03 0.57 l.64 0.12 029
tbrl ENSDARE00000055502 666 256 170 14(3-25.6) 0.65 0.67 291 0.10 0.28
ENCI ENSDARE00000367269 810 312 248 16(6.7-24.3) 1.13 0.55 .10 0.16 033
Gylt ENSDARE00000039808 870 463 335 21(6.6-29.7) 1.18 0.60 .70 0.12 0.27
SH3PX3 ENSDARE00000I 17872 705 290 226 16(6.2-24) I.11 0.55 1.53 0.14 022
plagl2 ENSDARE00000136964 675 250 184 14.3(5.1-21.5) 0.8l 0.61 092 0.10 033
sreb2 ENSDARE00000029022 987 344 225 13(4-21.6) 0.85 0.61 088 0.1 023
RAGI - 1344 684 514 20(8.1-29) 1.28 0.57 1.68 005 023

bp, base pairs; var., variable sites; Pl, parsimony informative sites; Genetic distance, average uncorrected distance, number in parenthesis are range
of the distances; Sub. rate, relative substitution rate estimated using Bayesian approach; CI-MP, consistency index; o, gamma distribution shape

parameter; RCV, relative composition variability.

paralogs found by this procedure produced tree topolo-
gies that strongly suggest an ancient duplication event in
the vertebrate lineage, before the divergence of tetrapods
from ray-finned fishes. Paralogous sequences are placed at
the base of the tetrapod-actinopteryigian divergence, or as
part of a basal polytomy with the other tetrapod and ray-
finned fish sequences. In the terminology proposed by
Remm et al. [49] these would be considered out-paralogs.
In no case are these sequences nested among ingroup
actinopterygian sequences (see Additional file 4), as
would be the case expected for in-paralogs [49]. Stringent
search critera implemented in our approach followed by
phylogenetic analysis can distinguish between orthologs
and putative our-paralogs. Although the method will not
guarantee that single copy genes amplified by PCR in sev-
eral taxa are orthologs as opposed to in-paralogs, the exist-
ence and identification of genome-scale single-copy
nuclear markers should facilitate the construction of the
tree of life, even if the evolutionary mechanism responsi-
ble for maintaining single-copy genes is poorly known
[33].

The molecular evolutionary profiles of the 10 newly
developed markers are in the same range as RAG-1, a
widely-used gene marker in vertebrates. The genes with
high treeness values have intermediate substitution rate,
suggesting that optimal rate and base composition sta-
tionarity are important factors that determine the suitabil-
ity of a phylogenetic marker. The phylogeny based on
individual markers revealed incongruent phylogenetic sig-
nal among 6 of the 10 individual genes. This incongru-
ence suggests that significant biases in the data might
obscure the true phylogenetic signal in some individual
genes, but the direction of the bias is hardly shared among
genes (Additional file 3), justifying the use of genome-
scale gene makers to infer organismal phylogeny.

Finally, with respect to the phylogenetic results per se,
there are two significant areas of discrepancy between the
phylogeny obtained in this study (Figure 3a) and a con-
sensus view of fish phylogeny (Figure 3b) [50]. Although
these differences could be due to poor taxonomic sam-
pling, we discuss them briefly. First, the traditional tree
groups cichlids with other perciforms, whereas our results
showed the cichlid O. niloticus is more closely related to
atherinomorphs (Cyprinodontiformes + Beloniformes)
than to other perciforms. This result also was supported
by two recent studies analysing multiple nuclear genes
[17,51]. The second difference is that the traditional tree
groups Lycodes with other perciforms, while Lycodes was
found closely related to Gasterosteus (Gasterosteiformes)
in our results. Interestingly, the sister-taxa relationship
between Lycodes and Gasterosteus also is supported by
recent studies using mitochondrial genome data [38,52].
The difference between our "total evidence" tree and the
classical hypothesis is significant based on the new data,
as indicated by a one-tailed Shimodaira-Hasegawa (SH)
test (p = 0.000) [53].

Conclusion

We developed a genome-based approach to identify
nuclear gene markers for phylogeny inference that are sin-
gle-copy, contain large exons, and are conserved across
extensive taxonomic distances. We show that our
approach has practical value through direct experimenta-
tion on a representative sample of ray-finned fish, the
largest vertebrate clade in need of phylogenetic resolution.
The same approach, however, could be applied to other
groups of organisms as long as two or more complete
genome sequences are available. This research may have
important implications for assembling the tree of life.
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A comparison of the maximum likelihood phylogram inferred in this study with the conventional phylogeny. (a)
Left panel — the phylogram of 14 taxa inferred from protein sequences of 10 genes; (b) right panel — a "consensus" phylogeny
following Nelson [50]. The numbers on the branches are Bayesian posterior probability, ML bootstrap values estimated from
protein sequences and ML bootstrap values estimated from RY-coded nucleotide sequence. Asterisks indicate bootstrap sup-

ports less than 50.

Methods

Genome-scale mining for phylogenetic markers

Whole genomic sequences of Danio rerio and Takifugu
rubripes were retrieved from the ENSEMBL database [54].
Exon sequences with length > 800 bp were then extracted
from the genome databases. The exons extracted were
compared in two steps: (1) within-genome sequence com-
parisons and (2) between genome comparisons. The first
step is designed to generate a set of single-copy nuclear
gene exons (length > 800 bp) within each genome,
whereas the second step should identify single-copy, puta-
tively orthologous exons between D. rerio and T. rubripes
(Figure 2). The BLAST algorithm was used for sequence
similarity comparison. In addition to the parameters
available in the BLAST program, we applied another

parameter, coverage (C), to identify global sequence sim-
ilarity between exons. The coverage was defined as the
ratio of total length of locally aligned sequences over the
length of query sequence. The similarity (S) was set to S <
50% for within-genome comparison, which means that
only genes that have no counterpart more than 50% sim-
ilar to themselves were kept. The similarity was set to S x
> 70% and the coverage was set to C > 30% in cross-
genome comparison, which selected genes that are 70%
similar and 30% aligned between D. rerio and T. rubripes.
Subsequent comparisons were performed on the newly
available genome of stickleback (Gasterosteus aculeatus)
and Japanese rice fish (Oryzias latipes), as described above.
We programmed this procedure using PERL programming
language to automate the processes and made the source
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code publicly available on our website [43]. We are in
progress to make it available for other genomic sequences
and parameter values.

Experimental testing for candidate markers

PCR and sequencing primers were designed on aligned
sequences of D. rerio and T. rubripes for 15 random
selected genes. Primer3 was used to design the primers
[55]. Degenerate primers and a nested-PCR design were
used to assure the amplification for each gene in most of
the taxa. Ten of the 15 genes tested were amplified with
single fragment in most of the 36 taxa examined. PCR
primers for 10 gene markers are listed in Table 1. The
amplified fragments were directly sequenced, without
cloning, using the BigDye system (Applied Biosystems).
Sequences of the frequently used RAG1 gene were
retrieved for the same taxa from GenBank for comparison
to the newly developed markers [GenBank: AY430199,
NM 131389, U15663, AB120889, DQ492511,
AY308767, AF108420, EF033039 - EF033043]. When
RAG1 sequences for the same taxa were not available, a
taxon of the same family was used, i.e. Nimbochromis was
used instead of Oreochromis and Neobythites was used
instead of Brotula.

Phylogenetic analysis

Sequences of the 10 new markers in the 14 taxa were used
in phylogenetic analysis to assess their performance.
Sequences were aligned using ClustalX [56] on the trans-
lated protein sequences. Uncorrected genetic distances
were calculated using PAUP [57]. Relative substitution
rate for each markers were estimated using a Bayesian
approach [58]. Relative composition variability (RCV)
and treeness were calculated following Phillips and Penny
[44]. Prottest [45] was used to chose the best model for
protein sequence data and the AIC criteria to determine
the scheme of data partitioning. Bayesian analysis imple-
mented in MrBayes v3.1.1 and maximum likelihood anal-
ysis implemented in TreeFinder [59] were performed on
the protein sequences. One million generation with 4
chains were run for Bayesian analysis and the trees sam-
pled prior to reaching convergence were discarded (as
burnin) before computing the consensus tree and poste-
rior probabilities. Two independent runs were used to
provide additional confirmation of convergence of poste-
rior probability distribution. Given the biased base com-
position in the nucleotide data indicated by the RCV value
(Table 2), we analyzed the nucleotide data under the RY-
coding scheme (Cand T =Y, A and G = R), partitioned by
gene in TreeFinder, since RY-coded data are less sensitive
to base compositional bias [44]. Alternative hypotheses
were tested by one-tailed Shimodaira and Hasegawa (SH)
test [53] with 1000 RELL bootstrap replicates imple-
mented in TreeFinder.

http://www.biomedcentral.com/1471-2148/7/44
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