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Abstract- Embedded assertions have been recognized as a 
potentially powerful tool for automatic runtime detection of 
software faults during debugging, testing, maintenance and even 
production versions of software systems. Yet despite the richness 
of the notations and the maturity of the techniques and tools that 
have been developed for programming with assertions, assertions 
are a development tool that has seen little widespread use in 
practice. The main reasons seem to be that (1) previous assertion 
processing tools did not integrate easily with existing program- 
ming environments, and (2) it is not well understood what kinds 
of assertions are most effective at detecting software faults. This 
paper describes experience using an assertion processing tool that 
was built to address the concerns of ease-of-use and effective- 
ness. The tool is called APP, an Annotation PreProcessor for C 
programs developed in UNIX-based development environments. 
APP has been used in the development of a variety of software 
systems over the past five years. Based on this experience, 
the paper presents a classification of the assertions that were 
most effective at detecting faults. While the assertions that are 
described guard against many common kinds of faults and errors, 
the very commonness of such faults demonstrates the need for 
an explicit, high-level, automatically checkable specification of 
required behavior. It is hoped that the classification presented 
in this paper will prove to be a useful first step in developing a 
method of programming with assertions. 

Index Terms-Anna, APP, assertions, C, consistency checking, 
formal specifications, formal methods, programming environ- 
ments, runtime checking, software faults. 

I. INTRODUCTION 

A SSERTIONS are formal constraints on software system 
behavior that are commonly written as annotations of a 

source text. The primary goal in writing assertions is to specify 
what a system is supposed to do rather than how it is to do it. 
The idea of using embedded assertions as an aid to software 
development is not new. Indeed, more than 25 years ago Floyd 
demonstrated the need for loop assertions for verification of 
programs [l]. Luckham et al. elaborated the basic principles 
outlined by Floyd into an algorithm for mechanical program 
verification that was based on the generation and proof of 
simple assertions called veriJicatiun conditians [2]; this algo- 
rithm was implemented in the Stanford Pascal Verifier [3]. In 
addition to their use in formal verification, assertions have long 
been recognized as a potentially powerful tool for automatic 
runtime detection of software faults during debugging, testing 
and maintenance. More recently, assertions have been viewed 
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as a permanent defensive programming mechanism for runtime 
fault detection in production versions of software systems [4]. 

As long ago as the 1975 International Conference on Reli- 
able Software, several authors described systems for deriving 
runtime consistency checks from simple assertions [5]-[7]. 
For instance, in Stucki and Foshee’s approach, the assertions 
were written as annotations of a FORTRAN source text, and 
a preprocessor was then used to convert the annotations to 
embedded self-checks that were invoked at appropriate times 
during the execution of the program. 

Today, assertion features are available as programming 
language extensions, as programming language features, and 
in complete high-level formal specification languages. The C 
programming language [8] has traditionally provided a simple 
assertion facility in the form of the predefined macro assert, 

which is expanded inline into an if statement that aborts 
the program if the assertion expression evaluates to zero. 
Extensions have been proposed for other languages such as 
C++ [9] that originally provided no higher-level assertion 
capability [lo], [Ill. Still other programming languages, such 
as Turing [ 121 and Eiffel [ 131, provide assertion features 

as part of the language definition. Such languages can be 
used to specify system behavior at the design level. Many 
such languages are suitable not only for generating runtime 
consistency checks, but also for static analysis of semantic 
consistency, as in the Inscape environment [ 141. These uses 
of high-level formal specifications offer a practical alternative 
to mechanical proof of correctness. 

Much of the recent research on automatic derivation of 
runtime consistency checks from assertions is exemplified by 
the work on Anna (ANNotated Ada), a high-level specification 
language for Ada [15]. This work includes (1) a method 
of generating consistency checks from annotations on types, 
variables, subprograms and exceptions [ 161, [ 171; (2) a method 
that uses incremental theorem proving to check algebraic 
specifications at runtime [ 181, [ 191; (3) a method of generating 
consistency checks that run in parallel with respect to the 
execution of the underlying system [20], [21]; and (4) a method 
of constructing large software systems based on algebraic 
specification of system modules [22]. 

Yet despite the richness of the notations and the maturity of 
the techniques and tools for programming with assertions, as- 
sertions are a development tool that has seen little widespread 
use in practice. There appear to be two reasons for this state 
of affairs: 

1) The tools that have been developed to support 
programming with assertions fail to meet the needs of 
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the “average” software developer. They do not work well 
in conjunction with existing development tools, nor do 
they allow suitable flexibility in customizing assertion 
checks and in enabling or disabling checking at 
runtime. 
It is not yet well understood what kinds of assertions are 
most effective at detecting faults. This is due in part to 
a dearth of case studies that describe experience using 
assertions to build real systems. Consequently, most 
software developers have little idea of what information 
should be specified in assertions. 

This second point has left some programmers with the impres- 
sion that writing assertions is akin to “writing the program 
twice”. Yet an effective assertion does not merely restate 
something appearing in the program text; unlike the program, 
it succinctly and untibiguously states an important property 
of the program in a way that is understandable by anyone who 

reads it. Effectiveness of assertions is an especially important 
issue, as demonstrated by the wide variance in the fault 
detection capabilities of the self-checks that were written by 
participants in a case study conducted by Leveson et aZ. [23]. 

To address these concerns and begin making assertions a 
natural and practical aid to software development, I have been 
developing and using an assertion processing system called 
APP, an Annotation PreProcessor for C programs developed 
in UNIXI-based programming environments. APP has been 
designed to be easily integrated with other UNIX development 
tools. In particular, APP was designed as a replacement for the 
standard preprocessor pass of C compilers, making the process 
of creating and running self-checking programs as simple as 
building unannotated C programs. Furthermore, APP provides 
complete flexibility in specifying how violated assertions are 
handled at runtime and how much or how little checking is to 
be performed each time a self-checking program is executed. 
APP does not require complete specifications for its correct 
operation, and the assertions one writes for APP typically are 
not complete specifications in any formal sense. 

An initial prototype of APP was completed five years 
ago. Since then, I have applied APP to the development of 
systems comprising around lO-20,000 lines of code. The 
assertion checks that were applied during the development 
of these systems automatically revealed a number of serious 
faults, and the diagnostic information they provided was often 
sufficient to quickly isolate and remove the faults. Based on 
this experience, it is possible to classify the kinds of assertions 
that were most effective at detecting faults. 

The paper begins with a brief description of APP. The paper 
then presents a classification of assertions that is based on a 
retrospective analysis of the systems that were developed with 
APP and the faults that were detected by the generated checks. 
To demonstrate the effectiveness of the proposed classes of 
assertions, the paper presents an analysis of the fault data from 
one of the systems that was developed. The paper concludes 
with a discussion of plans for future enhancements to and 
experimentation with APP. It is hoped that the classification 

’ UNIX is a registered trademark in the United States and other countries, 
licensed exclusively through X/OPEN corporation. 

presented in this paper will prove to be a useful first step in 

developing a method of programming with assertions. 

II. APP 

In Perry and Evangelist’s empirical study, it was shown 
that most software faults are interface faults [24], [25]. Hence, 
APP was initially designed to process assertions on function 
interfaces, as well as simple assertions in function bodies.2 APP 
also supports a number of facilities for specifying the response 
to a failed assertion check and for controlling the amount of 
checking that is performed at runtime. 

A. Assertion Constructs 

APP recognizes assertions that appear as annotations of 
C source text. In particular, the assertions are written in- 
side comment regions using the extended comment indicators 

/*@ . . . @*/. Informal comments can be written in an assertion 
region by writing each comment between the delimiter // and 
the end of the line.3 

Each APP assertion specifies a constraint that applies to 
some state of a computation. The constraint is specified 
using C’s expression language, with the C convention that 
an expression evaluating to zero is false, while a nonzero 
expression is true. To discourage writing assertion expressions 
that have side effects, APP disallows the use of C’s assignment, 
increment and decrement operators in assertion expressions. 
Of course, functions that produce side effects can be invoked 
within assertion expressions, but such expressions should be 
avoided except in the rarest of circumstances (such as in the 
example of Section III-A.5 below), since assertions should 
simply provide a check on a computation rather than be an 
active part of it. 

APP recognizes two enhancements to the C expression 
language within assertion regions: quantifiers and the operator 
in. Existential and universal quantification over finite domains 
can be specified using a syntax that is similar to C’s syntax 
for for loops. The operator in can be used to indicate that an 
expression is to be evaluated in the entry state of the function 
that encloses the expression.4 These extensions are illustrated 
in the examples below. 

‘In keeping with the terminology of C, this paper uses the generic term 
“function” to refer to subprograms. A C function whose return type is void 
returns no result to its caller, while a non-void function in C always returns 
a result. 

3The syntax of informal comments in assertion regions is the same as the 
comment syntax of C++. 

4The operator in of APP is similar to the hook in VDM. whereby a hook 
is placed over a variable in a post-condition of an operation to refer to the 
value of the variable prior to the execution of the operation [26]. In a similar 
fashion, in the Z notation a variable can be unprimed or primed within an 
operation schema to refer, respectively, to the value of the variable in the 
state before or the state after the execution of the operation [27]. The operator 
in of APP differs from the operator in of Anna, in that the former always 
applies to the entry state of the enclosing function, while the latter applies to 
the observable state of the computation immediately prior to the assertion; in 
the case of in-annotations on function interfaces, this observable state is the 
entry state of the function. Thus, the operator has the same meaning in both 
APP and Anna within interface assertions and different meanings within body 
assertions. See the Anna Reference Manual for details [ZB]. 
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APP recognizes four assertion constructs, each indicated by 
a different keyword: 

l assume-specifies a precondition on a function; 
l promise-specifies a postcondition on a function; 

l return-specifies a constraint on the return value of a 
function; and 

l assert-specifies a constraint on an intermediate state of 
a function body. 

The first three kinds of assertions are associated syntactically 
with function interface declarations, while the last kind is 

associated syntactically with single statements in function 
bodies. The assert construct corresponds to the assert macro 
found in many C implementations, in the sense that it con- 
strains only the state of the program at the place of the 
assert. As was mentioned above, the choice of what assertion 
constructs to support in APP was governed primarily by a 
desire to provide a facility for specifying function interfaces. 
Having gained sufficient experience with these constructs, 
other constructs will be supported in future versions of APP, 
including assertions that apply over smaller regions of function 
bodies such as loops and nested blocks. 

To illustrate these four constructs, consider first a function 
called square-root that returns the greatest positive integer 
less than or equal to the square root of its integer argument. 
Such a function can be specified as shown in Fig. 1. The first 
assertion is a precondition of square-root, as indicated by 

the keyword assume. It states that the implementation of the 
function assumes it is given a nonnegative argument; if this 
precondition is not satisfied at runtime, nothing can be guat- 
anteed about the behavior of the function. The remaining two 
assertions are constraints on the return value of square-root, 
as indicated by the keyword return. Each return constraint 
declares a local variable (called y in the return constraints 
of this example) that is used to refer to the return value of 
the function within the constraint. The first return constraint 

states that the function returns positive roots. The second one 
states the required relationship between the argument and the 

return value. It is of course possible to conjoin these two 
return constraints into a single one; however, it is often useful 

to separate constraints not only for the sake of clarity, but 
especially when using APP’S severity level and violation action 

features (described below). Note that these assertions merely 
state what the function does, not how it does it. 

Consider next a function called swap that swaps two 

integers without using a temporary variable. The function 
takes as arguments a pointer to each of the two integers, and 
it performs the swap through the pointers using a series of 
exclusive-or operations on the integer values. The function 
can be specified and implemented as shown in Fig. 2. The 
assumption states the precondition that the pointers x and y be 

non-null (and thus evaluate to true) and not equal to each other. 
The two postconditions, indicated by the keyword promise, 
use the operator in to relate the values of the integers upon 
exit from the function to their values upon entry. In particular, 
the first promise states that the exit value of the integer pointed 
to by x should equal the value pointed to by y upon entry, 
while the second promise states the reverse. The assertion in 

int square-root (x1 

int x; 

/*a 

assume x >= 0; 

return y where y >= 0; 

return y where y*y <= X 8t& X c (y+i>*(y+i>; 

e*/ 

C 

. . . 

Fig. I. Specification of function square-root. 

void swap(x,y) 

in-t* x; 

int* y; 

/*a 

assume x &t y && x != y; 

promise *x == in *y; 

promise *y == in *x; 

Cl*/ 

I 

*x = *x - *y; 

*Y = *x - *y; 

/*(P 

assert *y == in *x; 

(P*/ 

*x = sx - *y; 

1 

Fig. 2. Specification of function swap. 

the body of swap, indicated by the keyword assert, states an 
intermediate constraint on the integers at the point where one 
of the promises must become satisfied. 

As a final example, consider a function sort that sorts two 
arrays of integers. The specification of this function in Fig. 3 
describes its required behavior at a level of abstraction that 
allows the use of any sorting algorithm to implement the 
function body. In this function, x is the unsorted input array, 
and size is the number of elements in the array. The function 
returns a pointer to the sorted result. The specification of sort 
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int* sort(x,size) 

int* x; 

int size ; 

/*0 

assume x && size > 0; 

return S where S // S is non-null 

&& all (int i=O; i < in size-l; i=i+l) SCil <= S[i+ll // S is orde& 

&& all (int i=O; i < in size; i=i+l) 

some (int j=O; j < in size; j=j+l) 

x[il == SCjl ; // S is a permutation of x 

a*/ 

Fig. 3. Specification of function sort. 

uses quantifiers to state both the obvious ordering requirement 

of the result (but disallowing duplicate elements) as well as 

the requirement that the result must be a permutation of the 
input array; note that informal comments are used in the figure 

to show exactly where these requirements are stated. 
An APP quantifier can be thought of as a sequential iterator 

over a set of values, with the quantified expression evaluated 

for each element in the set; these individual evaluations are 
combined in the obvious way for the particular kind of 

quantifier. Syntactically, a quantified expression resembles a 
for loop in C. Indeed, as will be described further in Section 
II-C, APP translates each quantified expression into a for loop, 

with nested quantifiers translated into appropriately nested for 

loops. 
As shown in Fig. 3, an APP quantifier specification contains 

the existential specifier some or universal specifier all, fol- 
lowed by a parenthesized sequence of three fields separated 

by semicolons. The first field is a declaration of the variable 

over which quantification is to be performed, including its 
name, type and the initial value of the set. The second field 

is a condition that must be true in order for the iteration to 
continue. The third field is an expression that describes how 
to compute the next value in the set. Thus, the first universally 

quantified expression in the return annotation says that each 
element but the last of the result must be less than its successor 
element. The second universally quantified expression contains 

a nested existentially quantified expression to state that for all 
elements of the input array x, there exists an equal element 

of the result array. 
Quantifiers can be used to quantify over any finite set of 

values, not just a range of integers. For instance, a quantifier 
over the elements of a linked list would specify the head of 

the list as the initial value, a non-null next pointer as the 
continuation condition, and a dereference of the next pointer 
to retrieve the next value in the set. Since it is considered 
impractical for runtime checks to quantify over large domains 
such as the full range of integers, the syntax of quantifiers was 
designed to encourage careful quantification over reasonably 
sized domains. Experience has shown that the syntax achieves 
this aim without reducing the expressive power of traditional 
quantifiers of first-order predicate logic. 

B. Violation Actions, PredeJned Macros and Severity Levels 

APP converts each assertion to a runtime check, which tests 
for the violation of the constraint specified in the assertion. If 
the check fails at runtime, then additional code generated with 
the check is executed in response to the failure. The default 
response code generated by APP prints out a simple diagnostic 
message such as the following, which indicates the violation 
of the first promise of function swap: 
promise violated: file swap.c, line 6, 

function swap 
The default response provides a minimal amount of informa- 
tion needed to isolate the fault that the failed check reveals. 
However, the response to a violated assertion can be cus- 
tomized to provide diagnostic information that is unique to the 
context of the assertion. This customization is accomplished 
by attaching a violation action to the assertion, written in C. 

For instance, in order to determine what argument values 
cause the first promise of swap to be violated, the promise 
can be supplied with a violation action as shown in Fig. 4 
(using C’s library function printf for formatted output). Using 
some preprocessor macros that are predefined by APP, this 
violation action can be enhanced as shown in Fig. 5 to print 
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promise *x == in *y 

c 

printf (“out *x == %d, out *y == %d\n” , 

*x, *y); 

3 
Fig. 4. Violation action for promise of function swap. 

promise *x == in *y 

C 

printf("Xs invalid: file 7.8, ", -ANNONAKE-_. -_FILE.-); 

printf("line Y.d, function Xs:\n", -ANNOLINE.-, -JUNCTION-); 

printf("out *x == %d, out *y == Y.d\n", *I, *y); 

> 

Fig. 5. Enhancement of the violation action of Fig. 4. . 

1: assume x >= 0; 

2: return y where y >= 0; 

1: return y where y*y <= x 

&& x < (y+l)*(y+l); 

Fig. 6. Severity levels for assertions of function square-root. 

out the same information that is printed out by the default 
violation action. The macro --ANNONAME-- expands to 
the keyword of the enclosing assertion. The macro --FILE-- 
expands to the name of the source file in which the enclosing 
assertion is specified. The macro --ANNOLINE-- expands 

to the starting line number of the enclosing assertion. The 
macro --FUNCTION-- expands to the name of the function 
in which the assertion is specified. 

In addition to violation actions, APP supports the specifi- 
cation of an optional severity level for each assertion, with 
1 being the default and indicating the highest severity. A 

severity level indicates the relative importance of an assertion 
and determines whether or not the assertion will be checked 
at runtime. Severity levels can be used to control the amount 
of assertion checking that is performed at runtime without 
recompiling the program to add or remove checks. For ex- 
ample, the assertions on square-root can be given severity 
levels as shown in Fig. 6. Under level-l checking at runtime, 
only the assumption and the second return constraint would be 
checked. If one of these assertions were violated at runtime, 
it might then be desirable to re-execute the program under 
level-2 checking, in order to additionally enable checking 
of the first return constraint and obtain more information 
about the cause of the assertion violation. Level-O checking 
disables all checking at runtime. Severity levels are useful for 
implementing the “two-dimensional pinpointing” method of 
debugging described by Luckham, Sankar, and Takahashi [29]. 
The mechanism for controlling the checking level at runtime 
is described below. 

. . . 

Id 
(linker) 

Fig. 7. Generating self-checking C programs with APP. 

The macro --DEFAULTACTION-- expands to the default 
violation action, while the macro --DEFAULTLEVEL-- 
expands to the default severity level. Both of these macros 
can be redefined to alter the default processing of APP. 

C. Generating and Running Self-Checking Programs 

APP translates an input annotated C program into an equiv- 
alent C program with embedded assertion checks. APP has the 
same command-line interface as cpp, the standard preprocessor 
pass of C compilers (which are usually called cc). In particular, 
APP accepts the macro definition options -D and -U and 
the interface or “header” file directory option -1, and it 
performs all of the macro preprocessing of cpp in addition 
to its assertion processing. Hence, to compile an annotated 
C source file, APP is simply invoked through cc by using 
appropriate command-line options that tell cc to use APP as 
its preprocessor pass; such options are a standard feature of 

every C compiler. Furthermore, standard build tools such as 
make [30] and nmuke [3 l] can be used to build executable self- 
checking programs, with only slight modifications to existing 
makefiles or build scripts. These build techniques are illustrated 
in Fig. 7, which depicts nmake compiling the n source files 
of some program with APP and then linking the resulting 
object files together into a self-checking executable. This 
method of integrating assertion processing with standard C 
development tools greatly simplifies the generation of self- 
checking programs and requires almost no change to one’s 
customary use of UNIX and C programming environments. 

Execution of a self-checking program proceeds with check- 
ing performed at the severity level specified by the user in the 
UNIX shell environment variable APP-OPTIONS (or at the 
default level if the environment variable is undefined). Note 
that a self-checking program can be treated like any other 
program in a C programming environment. For instance, a 
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self-checking program can be run inside a symbolic debugger 
such as dbn. The debugger can be used to set breakpoints at 
assertions, single-step through them, trace their execution, and 
so on, all relative to the contents and line numbering of the 
original source files in which the assertions were specified. 

APP translates its input in a single pass without building 
an internal parse tree. However, APP uses internal text buffers 
and buffer stacks for temporary storage of certain regions of 
the translated source text. This use of buffers arises from the 
need to order some regions differently from the order in which 
they appear in the input source text: 

l Function pre- and postconditions we= 
syntactically before. their associated function body. Yet 
the precondition checks must be inserted immediately 
after the declarations in the function body, while the 
postcondition checks must be inserted at the end of the 
function body (with return statements in the original 
source translated to gotos to the postcondition checks). 

l In expressions require the generation of temporary vari- 
ables for their evaluation, and these temporary variables 
must be placed at the very beginning of the function body 
to ensure that the entry values of the expressions are 
captured before any other computation takes place within 
the body. 

l Each quantified expression is translated into a loop that 

evaluates the quantified expression into a temporary vari- 
able, followed by a usage of the temporary variable in the 
surrounding context. Multiply-nested quantified expres- 
sions, such as the one shown in Fig. 3, are translated in 
such a way that the loop/usage pair for an inner quantified 
expression appears between the loop and the usage for the 
next outer quantified expression. 

These regions of translated source text are saved in buffers 
until it is appropriate to output them. 

III. A CLASSIFICATION OF ASSERTIONS 

I have been using APP for five years in the development 
of a number of software systems, including APP itself. The 
assertions written for these systems have proven effective 
at discovering faults. Indeed, the effort of constructing the 
assertions has repeatedly paid off in quick, automatic detection 
and isolation of faults that otherwise would have consumed 
several hours of effort using more primitive debugging tools 
such as core dumps and symbolic debuggers. Not only have 
the assertions provided a powerful fault detection capability, 
but the process of writing the assertions in the first place 
appears to have resulted in much more careful development 
of implementation components. 

Based on this experience, it now would be fruitful to exam- 
ine these systems and to characterize the kinds of assertions 
that were most effective in uncovering faults. The categories 
of assertions described in this section guard against many 
common kinds of faults and errors. Yet the very commonness 
of such faults demonstrates the need for an explicit, high-level, 
automatically checkable specification of required behavior. 
Table I summarizes the assertion classification, which is or- 

ganized according to the kind of system behavior each class 
of assertion is intended to capture. 

The examples provided for each category are abstracted 
from actual assertions. A few of the assertions are used to 
overcome inherent weaknesses in the type system of C; in 
certain cases such assertions would not be needed in programs 
written in languages that provide a strong type model, such as 
AdaS However, most of the assertions described below express 
constraints that are too complex to express in the type or 
data model of common programming languages. For instance, 
programming languages rarely, if ever, provide features for 
explicit specification of data consistency at the level of a 
function interface. 

When using this classification, it should be remembered 
that the general goal in writing any assertion should be to 
specify some required constraint or relationship of the system 
succinctly and at a relatively high level of abstraction. It 
is not necessary that this specification be complete in any 
formal sense; a specification of only the most important 
aspects of a constraint or relationship can provide a high 
degree of fault detection ability. Given a particular informal 
constraint on a function, it may be difficult sometimes to 
develop a formal assertion of the constraint that is less 
complex than the function implementation itself. Even so, 
the redundancy provided by such an assertion may prove 
useful, in the sense that an inconsistency between the assertion 
and the function implementation would be symptomatic of 
some incompleteness in one’s understanding of the informal 
constraint on which they are both based. 

A. Speci$cation of Function Interfaces 

The primary goal of specifying a function interface is to 
ensure that the arguments, return value and global state are 
valid with respect to the intended behavior of the function. 
The common characteristic of all function interface constraints 
is that they are stated independently of any implementation 
for the function. That is, they describe function behavior at 

the level of abstraction seen by the callers of the function. 
The constraints described in this section are special forms of 
traditional preconditions and postconditions. 

1) Consistency Between Arguments: For each function in 
the system, specify how the value of each of its arguments 
depends on the values of its other arguments. 

Function arguments are often interdependent, even though 
such mutual dependencies cannot be specified directly in the 
programming language. Assertions can be used to specify 
mutual consistency constraints. In most cases these assertions 
will be preconditions on arguments passed by value. For 
instance, consider a language processing system that uses 
a function called store-token to store unique copies of the 
tokens found in an input stream. As shown in Fig. 8, the 
function takes as arguments an enumeration value specifying 

5Flater et aZ., describe a system called Robusr C that automatically in- 
struments C programs for runtime detection of the most common classes 
of C coding faults, such as violation of array bounds [32]. And a number 
of research techniques and commercial tools are available for automatically 
detecting memory-related coding faults in C programs at runtime (e.g., see 
Austin et al. [33], and Purify [34]). 
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enum TokanXind { identifier, number, string 3; void delete-namecname) 

void store_tokenckind, token) char* name; 
enum Token-Kind kind; 

char* token; /*a 

/+a assume hashget(symbols, name); 

promise ! hashget (symbols, name) ; 

assume (kind == identifier 88 tokenLO >= ‘a’ &k tokenlO <= ‘2’) 

1) (kind == number tk tokenLO >= ‘0’ k& tokenC01 <= ‘9’) 

I I (kind == string && token[Ol == ““1; 

Fig. 8. Specifying consistency between function arguments. 

the kind of token and a pointer to the token string. The 
Fig. 9. Specifying the effect on the global state. 

assumption checks that the syntax of the token is consistent 
with the value of argument kind: If the token is an identifier, 
its first character (i.e., the zeroth component of the character 

void print-warningccode, line, file) 

array pointed to by token) should be a lower case letter.6 If int code; 
the token is a number, it should begin with a digit. And if 
the token is a string, it should begin with the double-quote int line; 
character. 

2) Dependency of Return Value on Arguments: For each char* file; 

function in the -system, provide postconditions that specify 
how its return value(s) depends on the values of its arguments. 

Assertions can be used to specify the relationship between 

/*0 

the return value of a function (or the values of its reference 
assume warnings-on; 

arguments upon exit) and the function’s arguments upon entry. @*/ 
This relationship need not be specified completely; it suffices 
to merely state the most important aspects of this relationship. ( 

The second return constraint of function square-root shown 
in Fig. 1 and the promises of function swap shown in Fig. 2 

. . . 

illustrate this kind of assertion. 1 
3) Effect on Global State: For each function in the system, 

specify what changes the function makes to the values of the 
global variables that are visible to it. 

Functions in procedural languages often have side effects. 
Assertions can be used to specify the key ways in which 
a function changes the global program state. For instance, 
consider a language processing system that uses a routine 
called deletename to remove entries from a global symbol 
table called symbols. The specification of delete-name is 
shown in Fig. 9; assume that symbols is a hash table that is 
searched using the routine hashget, which returns a nonzero 
pointer to a table entry if successful and zero if unsuccessful. 
The assumption states that the argument to delete-name 
should have an entry in symbols. In particular, upon entry 
to deletename a call to hashget with the name argument 
must return a nonzero or “true” result. The promise states 
that delete-name removes the record for its argument from 
symbols, so that upon exit from deletename, a call to 
hashget with the name argument must return zero, and thus 
the negation of the hashget result (obtained using the negation 
operator !) must be true. 

‘C arrays are always indexed starting at zero. 

Fig. 10. Specifying the context in which a function is called. 

4) The Context in Which a Function is Called: For each 

function in the system, specify how the values of its arguments 

and the values of the global variables visible to it govern when 

it is valid for the function to be called. 

Sometimes a function should be called only within certain 

processing contexts, even though the function may behave 
correctly within all contexts. Assertions can be used to ensure 

that functions are called in appropriate contexts. For instance, 

Fig. 10 shows a function print-warning that is used by a 
language processor to output detailed warning messages only if 

a certain command-line option has been given to the processor 

(as indicated by a nonzero value for the global variable 
warnings-on). The function always generates a correct warn- 
ing message for any combination of code number, line number 

and file name. But the assumption is used to check that the 

function is called only when the appropriate command-line 

option has been specified. 
5) Frame Specijcations: For each function in the system, 

specify each case when the value of an argument passed to the 
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promise strcmp(in name, in strdup(name)) == 0; 

Fig. 11. Specifying a frame constraint for function deletename of Fig. 9. 

function by reference, or the value of a global variable visible 
to the function, is to be left unchanged by the function. 

Functions are often required to leave certain data unchanged. 
Such requirements, which are called frame specifications, are 
usually implicitly derived or assumed in proof-based reasoning 
systems, but for purposes of runtime checking they must be 
stated explicitly. Assertions can be used to state a system’s 
frame specifications. For instance, to specify that the function 
deletename shown in Fig. 9 should not modify its argument 
(a string passed by reference), the promise shown in Fig. 11 
can be added to its-interface assertions. The promise uses the 
standard C library function strcmp (which returns zero when 

its two string arguments are equal) to ensure that the values of 
the string upon entry to and exit from the function are equal. 
Notice that it is not sufficient to refer to the entry value of the 
string with the expression in name, since in name evaluates 
to the entry value of the pointer name, not the entry value of 
the string pointed to by name. The standard C library function 

strdup creates a heap-resident copy of a string, and thus the 
expression in strdup(name) can be used to provide a pointer 
to the entry value of the string pointed to by name.7 Notice 
also that because the function might modify the pointer value 
of name, the exit value of name may differ from its entry 
value. Thus, the strcmp expression checks mat the location in 
memory designated by name upon entry to the function (i.e., 
in name) still contains the value it had upon entry (i.e., in 
strdup(name)). 

This example also illustrates a rare situation where it is 
desirable for an assertion expression to produce a side effect, in 
this case an allocation of heap memory. However, APP is able 
to compensate for this particular side effect, because it ensures 
that any heap memory that is dynamically allocated as a result 
of the evaluation of an assertion expression is deallocated upon 
exit from the function enclosing the assertion. 

6) Subrange Membership of Data: For each function in the 

system, specify all subrange constraints on the values of its 
arguments, return value(s) and global variables that are of 

numeric type. Also specify all subrange constraints on the 
values used to index its array-valued arguments, return value(s) 
and global variables. 

C does not allow the specification of subrange constraints on 
numeric types. This weakness can be overcome with simple 
assertions that specify appropriate bounds on the values of 
numeric data. However, this weakness becomes particularly 
troublesome in C’s treatment of arrays, which are indexed 
by integers. C has a rather weak notion of array, which 
is just a region of memory that is referenced through a 
pointer. Overrunning array bounds in C is thus very common, 
especially when handling strings (character arrays), which 
in C require an additional string-termination character that 
is frequently overlooked. Assertions can be used to specify 

7Note that it is nor necessary to use the expression in strdup(in name), 
since the operator in distributes across all subexpressions of the expression to 
which it is applied. 

#define BUFFSIZE 80 

char bufferCBUFFSIZE1; 

void fill-and-truncate0 

/*a 

promise some (int i=O; i < BUFFSIZE; i=i+l) buffer[i] == '\O'; 

a*/ 

I 

> 

Fig. 12. Specifying a subrange constraint. 

constraints that guard against the mishandling of arrays. For 
example, Fig. 12 shows a function fill-and-truncate that is 
used to fill a global string buffer with a line of input text, 
truncating the line if it exceeds the size of the buffer. The 
promise states one of the constraints the function must satisfy, 
namely that according to C programming conventions, it must 
place the string-termination character ‘\O’ at the end of the 
buffered text, but still within the bounds of the global buffer. 
That is, there must be a subrange (of size one) of the array 
buffer that contains the string-termination character.8 

This constraint is expressed using an existentially-quantified 
expression to state that upon exit from the function some 
element of the buffer must contain the string terminator. 
In particular, the expression states that there exists some i 
between zero and BUFFSIZE- such that the ith character of 
buffer is the string-termination character. 

7) Enumeration Membership of Data: For each function in 

the system, specify all membership constraints on the values 
of its arguments, return value(s) and global variables that are 
of enumeration type. 

As is the case with arrays, enumeration types in C are 

also weak, in that they are type compatible with integers. In 
particular, enumeration literals are interchangeable with their 
internal integer values, and any integer can be used where 
an enumeration literal is required. Assertions can be used to 
ensure that variables of an enumeration type contain valid 
values of the type. For instance, the function store-token 
shown in Fig. 8 takes an argument whose value belongs to an 
enumeration type. The assumptions shown in Fig. 13 can be 
added to the function’s interface assertions. The two assump- 
tions are equivalent, and they both check that the function is 
given valid values of the enumeration type Token-Kind.’ 

8) Non-Null Pointers: For each function in the system, 
specify which pointer-valued arguments, return value(s) and 
global variables must not be null. 

C programs make very extensive use of pointers to reference 
arrays and strings, to access dynamically allocated storage, and 
to pass arguments to functions by reference. Assertions can 
be used to specify when pointers should be non-null. Such 

8Anything stored after the first string-termination character would be 
ignored by C’s string-processing functions, so it is not necessary that the 
function fill the unused portion of the buffer with string-termination characters 
each time it is called. 

9 Of course, the second form of assertion must be used for enumeration 
types whose literals are given explicit, noncontiguous internal values, such as 
enum Token-Kind(identifierz2, number=4, string=6}; 
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assume kind >= identifier && kind <= string; 

assume kind == identifier I I kind == number 

I I kind == string; 

Fig. 13. 
Fig. 8. 

Specifying an enumeration constraint for function store-token of 

assume token kk 

((kind == identifier kk token[Ol >= ‘a’ kk tokenCO1 <= ‘2’) 

(1 (kind == number kk tokea[Ol >= ‘0’ kk token[Ol <= ‘9’) 

I I (kind == string kk t.okenCOl == ““)); 

Fig. 14. Specifying a pointer constraint for function store-token of Fig. 8 

assertions are especially useful because the self-checks they 
generate can provide information prior to the aborted execution 
and core dump that usually result from dereferencing a null 
poititer. The assumption “assume x && y && x ! = y” 
specified on the function swap shown in Fig. 2 illustrates an 
assertion that constrains a pointer argument to be non-null. 

It is also necessary to first state that a pointer is non-null 
before specifying constraints on the data to which the pointer is 
pointing. For instance, the assumption on function store-token 
of Fig. 8 should be strengthened as shown in Fig. 14 to ensure 
that the string pointer token is non-null (and thus “true”) 
before it is dereferenced in the array subscripting operations. 

B. Specijcation of Function Bodies 

Function bodies often contain long sequences of complex 
control statements, which offer many opportunities for intro- 
ducing faults. Assertions that are stated in terms of a particular 
function implementation can be used as “enforced comments” 
to guard against such faults. 

1) Condition of the Else Part of Complex If Statements: For 
each if statement in the system that contains a final else part, 

explicitly specify the implicit condition of the final else part 

as an initial assertion in that part. 
The implicit condition of the default branch of an if state- 

ment (i.e., the final else part) is often intended to be stronger 
than the simple negation of the disjunction of the explicit, 
nondefault conditions. Assertions can be used to specify the 
intended default condition explicitly. Suppose that the function 
store-token shown in Fig. 8, rather than taking an argument 
indicating the kind of token it is given, instead makes that 
determination in its implementation. The function might use 
an lf statement like the one shown in Fig. 15. The final, default 
else branch of this if statement will be executed for all values 
of token whose first character is not a digit or lower-case letter. 
But since the function should only be processing string tokens 
in the default branch, the assertion restricts the execution of the 
default branch to those situations in which the first character 
of token is the double-quote character. 

2) Condition of the Default Case of a Switch Statement: For 
each switch statement in the system that contains a default 
case, explicitly specify the implicit condition of the default 
case as an initial assertion in that case. For each switch 
statement without a default case, provide a default case 
containing an assertion that always evaluates to false. 

if (token[O] >= ‘a’ && token101 <- ‘2’) 

/* Handle identifier */ 

. . . 

else if (token[O] >= ‘0’ && tokenC01 <= ‘9’) 

/* Handle number */ 

. . . 

else 

/* Handle string */ 

/*a 
assert. token CO1 == ’ ” ’ ; 

0*/ 

. . . 

Fig. 15. Specifying the condition of a default else branch. 

As is true of if statements, switch statements often contain a 
default case that is intended to operate on only a subset of the 

possible domain of the default case, especially when the switch 
is performed on a value of an enumeration type. Assertions can 
be used to describe the limited domain, in a manner similar 
to the way the default else branch was constrained in the if 
statement of Fig. 1.5. Since it is wise to supply default cases 
for switch statements even if they should never be executed, 
a special form of this kind of assertion is an assertion that 
always evaluates to false, as shown in Fig. 16. 

3) Consistency Between Related Data: For each function 
body in the system, specify consistency constraints on 
mutually dependent data at frequent intervals within the code 
that manipulates that data. 

It is often necessary to process related data in different ways 
and ensure that the data remain consistent after processing. For 
instance, consider a furiction that creates an entry in a priority 
queue before performing other processing on the new entry. 
The function might first use a loop to find where in the queue 
the new entry belongs. The function might then use a separate 
check to determine if the new entry was placed at the end of 
the queue, in which case the queue’s tail pointer would need 
to be updated. An assertion like the one shown in Fig. 17 can 
be used to ensure that the two parts of the insertion code have 
treated the tail pointer consistently. The assertion requires the 
tail pointer to point to the new entry if the new entry contains 
a null forward link after insertion. 

4) Intermediate Snapshot of Computation: For each func- 
tion body in the system, specify at frequent intervals the key 
constraints the function body must satisfy. 
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switch (kind) 

I 

case identifier: 

. . . 

break; 

case number 

. . . 

break; 

case string: 

. . . 

break; 

default : 

/* Control should never reach here */ 

/*a 

// assert that 0 (i.e., false) 

// is true: 

assert 0; 

(o*/ 

break; 

1 

Fig. 16. Specifying the condition of the default branch of a switch statement. 

assert new-entry-hext != 0 

I I queue.tail == new-entry; 

a*/ 
Fig. 17. Specifying consistency between related data. 

Assertions can be used to summarize periodically the effect 
of a complex function at key places in its body. The assertion 
in the body of function swap shown in Fig. 2 illustrates this 
kind of assertion. Because the manipulations of the integer 

arguments are unintuitive, the body assertion helps to identify 
the exact point at which one of the promises of swap must 
become satisfied. 

IV. EXPERIENCE 

The YeastlO event-action system [35] serves as an excellent 
example of a software system developed with APP. Yeast 

comprises roughly 12,000 lines of C, yacc and Zen: code. 

“Yet another Event-Action Specification Tool. 

TABLE I 
SUMMARY OF CLASSIFICATION OF ASSERTIONS 

4ssertion Code Description 

[ Specification of Function Interfaces 

Ll Consistency Between Arguments 

12 Dependency of Return Value on Arguments 

13 Effect on Global State 

[4 Context in which Function Is Called 

15 Frame Specifications 

16 Subrange Membership of Data 

I7 Enumeration Membership of Data 

I8 Non-Null Pointers 

B Specification of Function Bodies 

Bl Condition of Else Part of If Statement 

B2 Condition of Default Branch of Switch Statemenl 

B3 Consistency Between Related Data 

B4 Intermediate Snapshot of Computation 

I developed Yeast with one other person, and each of us 
developed roughly half of the source code; the other person 
developed his half without assertions and without using APP. 

My half of the source code contains 116 assertions in 95 

assertion regions. Of these 95 assertion regions, 39 are function 
interface specifications, which contain a total of 61 asser- 

tions. The self-checking executables are 3.7% larger than the 
nonself-checking executables, and they run with no discernible 
difference in speed.’ ’ 

Since first releasing Yeast to other people within AT&T, 
we have discovered and removed 19 faults, all of which were 
interface faults. Ten of these faults were located in my half 
of the code. In their empirical study, Perry and Evangelist 
identified 15 different kinds of interface faults in the software 
change request data that they analyzed [24], [25]; Table II 
summarizes their interface fault classification.” Table III 
characterizes each of the 19 faults in Yeast according to the 
Perry and Evangelist fault classification of Table II. Table III 
also identifies which kinds of assertions in the classification of 
Table I revealed each fault. The faults are listed in increasing 
chronological order of discovery. Included in the description 
of each fault is an indication of whether or not the fault 
was in a function or functions that had been specified with 
assertions; this information indicates that there was no clear 
correlation between the location of a fault and the location of 
the assertions that revealed it. 

” In the version of this paper that appeared in the ICSE-14 conference 
proceedings, the size increase was erroneously reported as 12%. which 
included both assertion checks and code that was inserted by the compiler 
to support the use of a symbolic debugger. 

“The reader is referred to Perry and Evangelist’s papers for a more detailed 
description of their fault classification. Other useful fault classifications have 
been described by Ostrand and Weyuker [36] and Endres [37]. 
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TABLE 11 TABLE IV 
FAULTS IN YEAST THAT COULD HAVE BEEN DETECTEI) BY ASSERTIONS FERRY AND EVANGELIST’S CLASSIFICAT[ON OF INTERFACE FAULTS 

Fault Code Interface Fault 

1 1 18, B3 I 

3 1 12, B4 

TABLE V 
EFFWTIVE ASSERTIONS FOR DETECTING INTERFACE FA~JLTS 

TABLE III 

Fault Code Effective Assertions 

(from Table II) (from Table I) 

Fl 11,12 

F2 11, 13, 14, preconditions 

F3 12, 13,14,15 

F4 none 

F5 .none 

F6 I 

F7 11, 15, 16,17, 18, B3 

F8 I, B 

F9 

FlO 

Fll 

F12 

F13 

F14 

F15 

I, B 

13 

12, 13, postconditions 

11, 13,16,17,18, B3 

12, 13, 15,16, 17, B3 

none 

I 

Of the 19 faults, 8 were discovered by one or more assertion 
violations. Of the 11 faults that were not detected by assertions, 
6 could have been caught by assertions that were not written; 
Table IV shows which classes of assertions were needed to 
detect these faults. Of the remaining 5 faults that were not 
detected by assertions, faults 4 and 11 were detected by 

a dynamic storage certification routine, while faults 6, 10, 

and 17 could only be detected by assertion features more 

powerful than those currently supported by APP (such as event 
sequencing constraints). 

Nearly 50 percent of the faults in the Perry and Evangelist 
study were faults of inadequate error processing (F8), con- 

29 
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struction (Fl) or inadequate functionality (F2). As Table III 
and Table IV show, the assertions in the classification of Table 
I can be used to guard against these common kinds of faults 
as well as many of the other kinds of faults described by 
Perry and Evangelist. Table V summarizes these observations 
by noting which assertions from Table I are best-suited to 

detecting each kind of interface fault. In some cases the faults 
described by Perry and Evangelist call for broader classes 
of assertions, such as preconditions or postconditions; these 
broader classes are noted in Table V where applicable. 

V. CONCLUSION 

This paper has described an assertion processing system for 
C and UNIX called APP. APP provides a rich collection of fea- 
tures for specifying not only the assertions themselves but also 
the responses to failed runtime assertion checks. APP fits easily 
into the process of developing C programs, requiring minimal 
change to one’s accustomed use of C and UNIX programming 
environments. APP can process approximately 20,000 lines of 
C code per CPU-minute on a Sun-4 workstation. The assertion 
checks generated by APP introduce negligible time and space 
overhead into the generated self-checking programs. APP is 
currently being licensed to universities for research use under 
certain terms and conditions. 

This paper has also described a classification of assertions 
that is based on experience using APP. Systems that are spec- 
ified with assertions need not contain a complete specification 
of the system, in any sense of the word “complete”. Incomplete 
specifications that capture the essence of the intended behavior 
are quite sufficient for reliably detecting software faults at 
runtime. Experience with APP has demonstrated that faults in 
reasonably well-annotated code (with at least every function 
interface supplied with assertions) often generate multiple 
assertion violations. One might think that diagnostic messages 
from multiple violations would be useless, since diagnostics 
generated by violations subsequent to the first violation might 
not provide reliable information. However, diagnostics from 
multiple violations have often provided useful information 
about the context of the revealed fault, making fault elim- 
ination in many cases a simple matter of interpreting the 
diagnostic messages without the aid of any other debugging 

tool. 
The design of APP was influenced to a great extent by the 

previous work on Anna. Anna is a rich specification language, 
and its large number of features were a natural outgrowth of 
the large number of programming constructs provided in Ada. 
This is especially noticeable with respect to packages, which 
are arguably the most important feature of Ada, providing 
a powerful means for structuring a software system and 
encapsulating its data types. The availability of packages in 
Ada required a means for specifying the behavior of a package 
in totality, both as an algebraic data type and as an object with 
state. ConsequentIy, a significant subset of Anna deals with 
specification of package state and package state transitions, 
and with axiomatic specification of the behavior and result of 
combining package operations. Just as the richness of Anna 
derives from the richness of Ada, the simplicity of APP’S 

specification language is well-matched to the simplicity of C. 
In C the primary construct of interest is the function, and thus 
APP has been designed primarily to support the specification 
of function behavior. 

What APP lacks in its diversity of specification constructs, 
it more than makes up for in the greater flexibility it provides 

to the developer of self-checking programs. In Anna, the 
response to a failed annotation check is defined by the Anna 

Reference Manual (which specifies the response to be the 
raising of the predefined exception ANNA-ERROR) and by 
the Anna Transformer and Anna Debugger tools (which add 
generic diagnostic information and a simple debugging in- 
terface for running self-checking programs). ANNA-ERROR 
provides some measure of programmability for defining the 
response to a failed check. However, it does not identify 
which particular annotation or annotations were violated, and 

handlers for ANNA-ERROR may not always have access to 
the context of a violated annotation (e.g., the values of relevant 

variables), depending on where the handlers are defined. In 
contrast, APP provides violation actions in order to allow the 
specifier complete flexibility in defining the response to a 
failed assertion check, allowing selection from a wide range 

of possible responses. The response to a failed assertion check 
can be tailored to the special nature of the application, to 
the development task at hand, to production versions of the 
system, or to other aspects of system development. 

Furthermore, APP provides severity levels in order to give 
the specifier greater control over the amount of assertion 
checking that is performed at runtime, without having to 
modify the program or rebuild the self-checking executable. 
Finally, while Anna supports quantification only over types, 
APP provides a quantification syntax that is more convenient 
for describing a set of iterated values and that leads to more 
computationally-feasible runtime checks. 

An interesting thing to note about the assertion classification 
described in this paper is the absence of certain classes of 
assertions that are important for program verification, such as 
loop invariants or inductive assertions. Inductive assertions can 
be notoriously difficult to construct and do not always capture 
one’s intuitive understanding of intended system behavior. In 
contrast, the assertions described in this paper represent an 
attempt to formalize such intuitions. Thus, it remains to be seen 
whether or not assertions that are constructed especially for 
program verification are also useful for runtime fault detection. 

APP will be extended to support other kinds of assertions and 
higher-level abstraction facilities. New features will include 
constraints on types and global variables, a richer abstrac- 
tion of arrays and other abstract data types, and constructs 
for specifying interactions between program units that are 
larger than functions (such as specification of the behavior 
of sequences of function calls). In addition, a version of APP 
will be developed for C++. The C++ version of APP will 
provide additional specification constructs that are suited to 
specification of class behavior; a good starting point for the 
design of these constructs would be the package specification 
features of Anna. 

Until verification and other sophisticated static analysis 
methods become practical for large systems comprising many 
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modules and several thousand lines of code, developers of 
large systems must rely on alternative means of identifying 
and removing faults in their systems. Assertion checking is 
one such alternative-it is powerful, practical, scalable and 
simple to use. While it is hoped that others can benefit 
from the experience described in this paper, in the future 
more comprehensive, controlled experimental studies on larger 
systems with multiple developers will help to further reveal the 
most effective techniques for using assertions to improve the 
quality and reliability of software systems. 
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