
IEEE TKANSACTIONS ON SOFIWARE ENGINEERING. VOL. 21, NO. 1, JANUARY 1995 19

A Practical Approach to
Programming With Assertions

David S. Rosenblum, Member, IEEE

Abstract- Embedded assertions have been recognized as a
potentially powerful tool for automatic runtime detection of
software faults during debugging, testing, maintenance and even
production versions of software systems. Yet despite the richness
of the notations and the maturity of the techniques and tools that
have been developed for programming with assertions, assertions
are a development tool that has seen little widespread use in
practice. The main reasons seem to be that (1) previous assertion
processing tools did not integrate easily with existing program-
ming environments, and (2) it is not well understood what kinds
of assertions are most effective at detecting software faults. This
paper describes experience using an assertion processing tool that
was built to address the concerns of ease-of-use and effective-
ness. The tool is called APP, an Annotation PreProcessor for C
programs developed in UNIX-based development environments.
APP has been used in the development of a variety of software
systems over the past five years. Based on this experience,
the paper presents a classification of the assertions that were
most effective at detecting faults. While the assertions that are
described guard against many common kinds of faults and errors,
the very commonness of such faults demonstrates the need for
an explicit, high-level, automatically checkable specification of
required behavior. It is hoped that the classification presented
in this paper will prove to be a useful first step in developing a
method of programming with assertions.

Index Terms-Anna, APP, assertions, C, consistency checking,
formal specifications, formal methods, programming environ-
ments, runtime checking, software faults.

I. INTRODUCTION

A SSERTIONS are formal constraints on software system
behavior that are commonly written as annotations of a

source text. The primary goal in writing assertions is to specify
what a system is supposed to do rather than how it is to do it.
The idea of using embedded assertions as an aid to software
development is not new. Indeed, more than 25 years ago Floyd
demonstrated the need for loop assertions for verification of
programs [l]. Luckham et al. elaborated the basic principles
outlined by Floyd into an algorithm for mechanical program
verification that was based on the generation and proof of
simple assertions called veriJicatiun conditians [2]; this algo-
rithm was implemented in the Stanford Pascal Verifier [3]. In
addition to their use in formal verification, assertions have long
been recognized as a potentially powerful tool for automatic
runtime detection of software faults during debugging, testing
and maintenance. More recently, assertions have been viewed

Manuscript received February, 1993; revised October, 1994.
D. S. Rosenblum is with AT&T Bell Laboratories, Murray Hill, NJ 07974

USA (e-mail: dsr@research.att.com).
IEEE Log Number 9407721.

as a permanent defensive programming mechanism for runtime
fault detection in production versions of software systems [4].

As long ago as the 1975 International Conference on Reli-
able Software, several authors described systems for deriving
runtime consistency checks from simple assertions [5]-[7].
For instance, in Stucki and Foshee’s approach, the assertions
were written as annotations of a FORTRAN source text, and
a preprocessor was then used to convert the annotations to
embedded self-checks that were invoked at appropriate times
during the execution of the program.

Today, assertion features are available as programming
language extensions, as programming language features, and
in complete high-level formal specification languages. The C
programming language [8] has traditionally provided a simple
assertion facility in the form of the predefined macro assert,

which is expanded inline into an if statement that aborts
the program if the assertion expression evaluates to zero.
Extensions have been proposed for other languages such as
C++ [9] that originally provided no higher-level assertion
capability [lo], [Ill. Still other programming languages, such
as Turing [121 and Eiffel [131, provide assertion features

as part of the language definition. Such languages can be
used to specify system behavior at the design level. Many
such languages are suitable not only for generating runtime
consistency checks, but also for static analysis of semantic
consistency, as in the Inscape environment [141. These uses
of high-level formal specifications offer a practical alternative
to mechanical proof of correctness.

Much of the recent research on automatic derivation of
runtime consistency checks from assertions is exemplified by
the work on Anna (ANNotated Ada), a high-level specification
language for Ada [15]. This work includes (1) a method
of generating consistency checks from annotations on types,
variables, subprograms and exceptions [161, [171; (2) a method
that uses incremental theorem proving to check algebraic
specifications at runtime [181, [191; (3) a method of generating
consistency checks that run in parallel with respect to the
execution of the underlying system [20], [21]; and (4) a method
of constructing large software systems based on algebraic
specification of system modules [22].

Yet despite the richness of the notations and the maturity of
the techniques and tools for programming with assertions, as-
sertions are a development tool that has seen little widespread
use in practice. There appear to be two reasons for this state
of affairs:

1) The tools that have been developed to support
programming with assertions fail to meet the needs of

OO98-5589/95$04.00 0 1995 IEEE

IEEE TRANSACTIONS ON SOFTWARE! ENGINEERING, VOL. 21, NO. 1, JANUARY 1995 20

2)

the “average” software developer. They do not work well
in conjunction with existing development tools, nor do
they allow suitable flexibility in customizing assertion
checks and in enabling or disabling checking at
runtime.
It is not yet well understood what kinds of assertions are
most effective at detecting faults. This is due in part to
a dearth of case studies that describe experience using
assertions to build real systems. Consequently, most
software developers have little idea of what information
should be specified in assertions.

This second point has left some programmers with the impres-
sion that writing assertions is akin to “writing the program
twice”. Yet an effective assertion does not merely restate
something appearing in the program text; unlike the program,
it succinctly and untibiguously states an important property
of the program in a way that is understandable by anyone who

reads it. Effectiveness of assertions is an especially important
issue, as demonstrated by the wide variance in the fault
detection capabilities of the self-checks that were written by
participants in a case study conducted by Leveson et aZ. [23].

To address these concerns and begin making assertions a
natural and practical aid to software development, I have been
developing and using an assertion processing system called
APP, an Annotation PreProcessor for C programs developed
in UNIXI-based programming environments. APP has been
designed to be easily integrated with other UNIX development
tools. In particular, APP was designed as a replacement for the
standard preprocessor pass of C compilers, making the process
of creating and running self-checking programs as simple as
building unannotated C programs. Furthermore, APP provides
complete flexibility in specifying how violated assertions are
handled at runtime and how much or how little checking is to
be performed each time a self-checking program is executed.
APP does not require complete specifications for its correct
operation, and the assertions one writes for APP typically are
not complete specifications in any formal sense.

An initial prototype of APP was completed five years
ago. Since then, I have applied APP to the development of
systems comprising around lO-20,000 lines of code. The
assertion checks that were applied during the development
of these systems automatically revealed a number of serious
faults, and the diagnostic information they provided was often
sufficient to quickly isolate and remove the faults. Based on
this experience, it is possible to classify the kinds of assertions
that were most effective at detecting faults.

The paper begins with a brief description of APP. The paper
then presents a classification of assertions that is based on a
retrospective analysis of the systems that were developed with
APP and the faults that were detected by the generated checks.
To demonstrate the effectiveness of the proposed classes of
assertions, the paper presents an analysis of the fault data from
one of the systems that was developed. The paper concludes
with a discussion of plans for future enhancements to and
experimentation with APP. It is hoped that the classification

’ UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/OPEN corporation.

presented in this paper will prove to be a useful first step in

developing a method of programming with assertions.

II. APP

In Perry and Evangelist’s empirical study, it was shown
that most software faults are interface faults [24], [25]. Hence,
APP was initially designed to process assertions on function
interfaces, as well as simple assertions in function bodies.2 APP
also supports a number of facilities for specifying the response
to a failed assertion check and for controlling the amount of
checking that is performed at runtime.

A. Assertion Constructs

APP recognizes assertions that appear as annotations of
C source text. In particular, the assertions are written in-
side comment regions using the extended comment indicators

/*@ . . . @*/. Informal comments can be written in an assertion
region by writing each comment between the delimiter // and
the end of the line.3

Each APP assertion specifies a constraint that applies to
some state of a computation. The constraint is specified
using C’s expression language, with the C convention that
an expression evaluating to zero is false, while a nonzero
expression is true. To discourage writing assertion expressions
that have side effects, APP disallows the use of C’s assignment,
increment and decrement operators in assertion expressions.
Of course, functions that produce side effects can be invoked
within assertion expressions, but such expressions should be
avoided except in the rarest of circumstances (such as in the
example of Section III-A.5 below), since assertions should
simply provide a check on a computation rather than be an
active part of it.

APP recognizes two enhancements to the C expression
language within assertion regions: quantifiers and the operator
in. Existential and universal quantification over finite domains
can be specified using a syntax that is similar to C’s syntax
for for loops. The operator in can be used to indicate that an
expression is to be evaluated in the entry state of the function
that encloses the expression.4 These extensions are illustrated
in the examples below.

‘In keeping with the terminology of C, this paper uses the generic term
“function” to refer to subprograms. A C function whose return type is void
returns no result to its caller, while a non-void function in C always returns
a result.

3The syntax of informal comments in assertion regions is the same as the
comment syntax of C++.

4The operator in of APP is similar to the hook in VDM. whereby a hook
is placed over a variable in a post-condition of an operation to refer to the
value of the variable prior to the execution of the operation [26]. In a similar
fashion, in the Z notation a variable can be unprimed or primed within an
operation schema to refer, respectively, to the value of the variable in the
state before or the state after the execution of the operation [27]. The operator
in of APP differs from the operator in of Anna, in that the former always
applies to the entry state of the enclosing function, while the latter applies to
the observable state of the computation immediately prior to the assertion; in
the case of in-annotations on function interfaces, this observable state is the
entry state of the function. Thus, the operator has the same meaning in both
APP and Anna within interface assertions and different meanings within body
assertions. See the Anna Reference Manual for details [ZB].

ROSENBLUM: A PRACTICAL APPROACH TO PROGRAMMING 21

APP recognizes four assertion constructs, each indicated by
a different keyword:

l assume-specifies a precondition on a function;
l promise-specifies a postcondition on a function;

l return-specifies a constraint on the return value of a
function; and

l assert-specifies a constraint on an intermediate state of
a function body.

The first three kinds of assertions are associated syntactically
with function interface declarations, while the last kind is

associated syntactically with single statements in function
bodies. The assert construct corresponds to the assert macro
found in many C implementations, in the sense that it con-
strains only the state of the program at the place of the
assert. As was mentioned above, the choice of what assertion
constructs to support in APP was governed primarily by a
desire to provide a facility for specifying function interfaces.
Having gained sufficient experience with these constructs,
other constructs will be supported in future versions of APP,
including assertions that apply over smaller regions of function
bodies such as loops and nested blocks.

To illustrate these four constructs, consider first a function
called square-root that returns the greatest positive integer
less than or equal to the square root of its integer argument.
Such a function can be specified as shown in Fig. 1. The first
assertion is a precondition of square-root, as indicated by

the keyword assume. It states that the implementation of the
function assumes it is given a nonnegative argument; if this
precondition is not satisfied at runtime, nothing can be guat-
anteed about the behavior of the function. The remaining two
assertions are constraints on the return value of square-root,
as indicated by the keyword return. Each return constraint
declares a local variable (called y in the return constraints
of this example) that is used to refer to the return value of
the function within the constraint. The first return constraint

states that the function returns positive roots. The second one
states the required relationship between the argument and the

return value. It is of course possible to conjoin these two
return constraints into a single one; however, it is often useful

to separate constraints not only for the sake of clarity, but
especially when using APP’S severity level and violation action

features (described below). Note that these assertions merely
state what the function does, not how it does it.

Consider next a function called swap that swaps two

integers without using a temporary variable. The function
takes as arguments a pointer to each of the two integers, and
it performs the swap through the pointers using a series of
exclusive-or operations on the integer values. The function
can be specified and implemented as shown in Fig. 2. The
assumption states the precondition that the pointers x and y be

non-null (and thus evaluate to true) and not equal to each other.
The two postconditions, indicated by the keyword promise,
use the operator in to relate the values of the integers upon
exit from the function to their values upon entry. In particular,
the first promise states that the exit value of the integer pointed
to by x should equal the value pointed to by y upon entry,
while the second promise states the reverse. The assertion in

int square-root (x1

int x;

/*a

assume x >= 0;

return y where y >= 0;

return y where y*y <= X 8t& X c (y+i>*(y+i>;

e*/

C

. . .

Fig. I. Specification of function square-root.

void swap(x,y)

in-t* x;

int* y;

/*a

assume x &t y && x != y;

promise *x == in *y;

promise *y == in *x;

Cl*/

I

*x = *x - *y;

*Y = *x - *y;

/*(P

assert *y == in *x;

(P*/

*x = sx - *y;

1

Fig. 2. Specification of function swap.

the body of swap, indicated by the keyword assert, states an
intermediate constraint on the integers at the point where one
of the promises must become satisfied.

As a final example, consider a function sort that sorts two
arrays of integers. The specification of this function in Fig. 3
describes its required behavior at a level of abstraction that
allows the use of any sorting algorithm to implement the
function body. In this function, x is the unsorted input array,
and size is the number of elements in the array. The function
returns a pointer to the sorted result. The specification of sort

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. I, JANUARY 1995

int* sort(x,size)

int* x;

int size ;

/*0

assume x && size > 0;

return S where S // S is non-null

&& all (int i=O; i < in size-l; i=i+l) SCil <= S[i+ll // S is orde&

&& all (int i=O; i < in size; i=i+l)

some (int j=O; j < in size; j=j+l)

x[il == SCjl ; // S is a permutation of x

a*/

Fig. 3. Specification of function sort.

uses quantifiers to state both the obvious ordering requirement

of the result (but disallowing duplicate elements) as well as

the requirement that the result must be a permutation of the
input array; note that informal comments are used in the figure

to show exactly where these requirements are stated.
An APP quantifier can be thought of as a sequential iterator

over a set of values, with the quantified expression evaluated

for each element in the set; these individual evaluations are
combined in the obvious way for the particular kind of

quantifier. Syntactically, a quantified expression resembles a
for loop in C. Indeed, as will be described further in Section
II-C, APP translates each quantified expression into a for loop,

with nested quantifiers translated into appropriately nested for

loops.
As shown in Fig. 3, an APP quantifier specification contains

the existential specifier some or universal specifier all, fol-
lowed by a parenthesized sequence of three fields separated

by semicolons. The first field is a declaration of the variable

over which quantification is to be performed, including its
name, type and the initial value of the set. The second field

is a condition that must be true in order for the iteration to
continue. The third field is an expression that describes how
to compute the next value in the set. Thus, the first universally

quantified expression in the return annotation says that each
element but the last of the result must be less than its successor
element. The second universally quantified expression contains

a nested existentially quantified expression to state that for all
elements of the input array x, there exists an equal element

of the result array.
Quantifiers can be used to quantify over any finite set of

values, not just a range of integers. For instance, a quantifier
over the elements of a linked list would specify the head of

the list as the initial value, a non-null next pointer as the
continuation condition, and a dereference of the next pointer
to retrieve the next value in the set. Since it is considered
impractical for runtime checks to quantify over large domains
such as the full range of integers, the syntax of quantifiers was
designed to encourage careful quantification over reasonably
sized domains. Experience has shown that the syntax achieves
this aim without reducing the expressive power of traditional
quantifiers of first-order predicate logic.

B. Violation Actions, PredeJned Macros and Severity Levels

APP converts each assertion to a runtime check, which tests
for the violation of the constraint specified in the assertion. If
the check fails at runtime, then additional code generated with
the check is executed in response to the failure. The default
response code generated by APP prints out a simple diagnostic
message such as the following, which indicates the violation
of the first promise of function swap:
promise violated: file swap.c, line 6,

function swap
The default response provides a minimal amount of informa-
tion needed to isolate the fault that the failed check reveals.
However, the response to a violated assertion can be cus-
tomized to provide diagnostic information that is unique to the
context of the assertion. This customization is accomplished
by attaching a violation action to the assertion, written in C.

For instance, in order to determine what argument values
cause the first promise of swap to be violated, the promise
can be supplied with a violation action as shown in Fig. 4
(using C’s library function printf for formatted output). Using
some preprocessor macros that are predefined by APP, this
violation action can be enhanced as shown in Fig. 5 to print

ROSENBLUM: A PRACTICAL APPROACH TO PROGRAMMING

promise *x == in *y

c

printf (“out *x == %d, out *y == %d\n” ,

*x, *y);

3
Fig. 4. Violation action for promise of function swap.

promise *x == in *y

C

printf("Xs invalid: file 7.8, ", -ANNONAKE-_. -_FILE.-);

printf("line Y.d, function Xs:\n", -ANNOLINE.-, -JUNCTION-);

printf("out *x == %d, out *y == Y.d\n", *I, *y);

>

Fig. 5. Enhancement of the violation action of Fig. 4. .

1: assume x >= 0;

2: return y where y >= 0;

1: return y where y*y <= x

&& x < (y+l)*(y+l);

Fig. 6. Severity levels for assertions of function square-root.

out the same information that is printed out by the default
violation action. The macro --ANNONAME-- expands to
the keyword of the enclosing assertion. The macro --FILE--
expands to the name of the source file in which the enclosing
assertion is specified. The macro --ANNOLINE-- expands

to the starting line number of the enclosing assertion. The
macro --FUNCTION-- expands to the name of the function
in which the assertion is specified.

In addition to violation actions, APP supports the specifi-
cation of an optional severity level for each assertion, with
1 being the default and indicating the highest severity. A

severity level indicates the relative importance of an assertion
and determines whether or not the assertion will be checked
at runtime. Severity levels can be used to control the amount
of assertion checking that is performed at runtime without
recompiling the program to add or remove checks. For ex-
ample, the assertions on square-root can be given severity
levels as shown in Fig. 6. Under level-l checking at runtime,
only the assumption and the second return constraint would be
checked. If one of these assertions were violated at runtime,
it might then be desirable to re-execute the program under
level-2 checking, in order to additionally enable checking
of the first return constraint and obtain more information
about the cause of the assertion violation. Level-O checking
disables all checking at runtime. Severity levels are useful for
implementing the “two-dimensional pinpointing” method of
debugging described by Luckham, Sankar, and Takahashi [29].
The mechanism for controlling the checking level at runtime
is described below.

. . .

Id
(linker)

Fig. 7. Generating self-checking C programs with APP.

The macro --DEFAULTACTION-- expands to the default
violation action, while the macro --DEFAULTLEVEL--
expands to the default severity level. Both of these macros
can be redefined to alter the default processing of APP.

C. Generating and Running Self-Checking Programs

APP translates an input annotated C program into an equiv-
alent C program with embedded assertion checks. APP has the
same command-line interface as cpp, the standard preprocessor
pass of C compilers (which are usually called cc). In particular,
APP accepts the macro definition options -D and -U and
the interface or “header” file directory option -1, and it
performs all of the macro preprocessing of cpp in addition
to its assertion processing. Hence, to compile an annotated
C source file, APP is simply invoked through cc by using
appropriate command-line options that tell cc to use APP as
its preprocessor pass; such options are a standard feature of

every C compiler. Furthermore, standard build tools such as
make [30] and nmuke [3 l] can be used to build executable self-
checking programs, with only slight modifications to existing
makefiles or build scripts. These build techniques are illustrated
in Fig. 7, which depicts nmake compiling the n source files
of some program with APP and then linking the resulting
object files together into a self-checking executable. This
method of integrating assertion processing with standard C
development tools greatly simplifies the generation of self-
checking programs and requires almost no change to one’s
customary use of UNIX and C programming environments.

Execution of a self-checking program proceeds with check-
ing performed at the severity level specified by the user in the
UNIX shell environment variable APP-OPTIONS (or at the
default level if the environment variable is undefined). Note
that a self-checking program can be treated like any other
program in a C programming environment. For instance, a

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 21, NO. I, JANUARY 1995

self-checking program can be run inside a symbolic debugger
such as dbn. The debugger can be used to set breakpoints at
assertions, single-step through them, trace their execution, and
so on, all relative to the contents and line numbering of the
original source files in which the assertions were specified.

APP translates its input in a single pass without building
an internal parse tree. However, APP uses internal text buffers
and buffer stacks for temporary storage of certain regions of
the translated source text. This use of buffers arises from the
need to order some regions differently from the order in which
they appear in the input source text:

l Function pre- and postconditions we=
syntactically before. their associated function body. Yet
the precondition checks must be inserted immediately
after the declarations in the function body, while the
postcondition checks must be inserted at the end of the
function body (with return statements in the original
source translated to gotos to the postcondition checks).

l In expressions require the generation of temporary vari-
ables for their evaluation, and these temporary variables
must be placed at the very beginning of the function body
to ensure that the entry values of the expressions are
captured before any other computation takes place within
the body.

l Each quantified expression is translated into a loop that

evaluates the quantified expression into a temporary vari-
able, followed by a usage of the temporary variable in the
surrounding context. Multiply-nested quantified expres-
sions, such as the one shown in Fig. 3, are translated in
such a way that the loop/usage pair for an inner quantified
expression appears between the loop and the usage for the
next outer quantified expression.

These regions of translated source text are saved in buffers
until it is appropriate to output them.

III. A CLASSIFICATION OF ASSERTIONS

I have been using APP for five years in the development
of a number of software systems, including APP itself. The
assertions written for these systems have proven effective
at discovering faults. Indeed, the effort of constructing the
assertions has repeatedly paid off in quick, automatic detection
and isolation of faults that otherwise would have consumed
several hours of effort using more primitive debugging tools
such as core dumps and symbolic debuggers. Not only have
the assertions provided a powerful fault detection capability,
but the process of writing the assertions in the first place
appears to have resulted in much more careful development
of implementation components.

Based on this experience, it now would be fruitful to exam-
ine these systems and to characterize the kinds of assertions
that were most effective in uncovering faults. The categories
of assertions described in this section guard against many
common kinds of faults and errors. Yet the very commonness
of such faults demonstrates the need for an explicit, high-level,
automatically checkable specification of required behavior.
Table I summarizes the assertion classification, which is or-

ganized according to the kind of system behavior each class
of assertion is intended to capture.

The examples provided for each category are abstracted
from actual assertions. A few of the assertions are used to
overcome inherent weaknesses in the type system of C; in
certain cases such assertions would not be needed in programs
written in languages that provide a strong type model, such as
AdaS However, most of the assertions described below express
constraints that are too complex to express in the type or
data model of common programming languages. For instance,
programming languages rarely, if ever, provide features for
explicit specification of data consistency at the level of a
function interface.

When using this classification, it should be remembered
that the general goal in writing any assertion should be to
specify some required constraint or relationship of the system
succinctly and at a relatively high level of abstraction. It
is not necessary that this specification be complete in any
formal sense; a specification of only the most important
aspects of a constraint or relationship can provide a high
degree of fault detection ability. Given a particular informal
constraint on a function, it may be difficult sometimes to
develop a formal assertion of the constraint that is less
complex than the function implementation itself. Even so,
the redundancy provided by such an assertion may prove
useful, in the sense that an inconsistency between the assertion
and the function implementation would be symptomatic of
some incompleteness in one’s understanding of the informal
constraint on which they are both based.

A. Speci$cation of Function Interfaces

The primary goal of specifying a function interface is to
ensure that the arguments, return value and global state are
valid with respect to the intended behavior of the function.
The common characteristic of all function interface constraints
is that they are stated independently of any implementation
for the function. That is, they describe function behavior at

the level of abstraction seen by the callers of the function.
The constraints described in this section are special forms of
traditional preconditions and postconditions.

1) Consistency Between Arguments: For each function in
the system, specify how the value of each of its arguments
depends on the values of its other arguments.

Function arguments are often interdependent, even though
such mutual dependencies cannot be specified directly in the
programming language. Assertions can be used to specify
mutual consistency constraints. In most cases these assertions
will be preconditions on arguments passed by value. For
instance, consider a language processing system that uses
a function called store-token to store unique copies of the
tokens found in an input stream. As shown in Fig. 8, the
function takes as arguments an enumeration value specifying

5Flater et aZ., describe a system called Robusr C that automatically in-
struments C programs for runtime detection of the most common classes
of C coding faults, such as violation of array bounds [32]. And a number
of research techniques and commercial tools are available for automatically
detecting memory-related coding faults in C programs at runtime (e.g., see
Austin et al. [33], and Purify [34]).

ROSENBLUM: A PRACTICAL APPROACH TO PROGRAMMING 25

enum TokanXind { identifier, number, string 3; void delete-namecname)

void store_tokenckind, token) char* name;
enum Token-Kind kind;

char* token; /*a

/+a assume hashget(symbols, name);

promise ! hashget (symbols, name) ;

assume (kind == identifier 88 tokenLO >= ‘a’ &k tokenlO <= ‘2’)

1) (kind == number tk tokenLO >= ‘0’ k& tokenC01 <= ‘9’)

I I (kind == string && token[Ol == ““1;

Fig. 8. Specifying consistency between function arguments.

the kind of token and a pointer to the token string. The
Fig. 9. Specifying the effect on the global state.

assumption checks that the syntax of the token is consistent
with the value of argument kind: If the token is an identifier,
its first character (i.e., the zeroth component of the character

void print-warningccode, line, file)

array pointed to by token) should be a lower case letter.6 If int code;
the token is a number, it should begin with a digit. And if
the token is a string, it should begin with the double-quote int line;
character.

2) Dependency of Return Value on Arguments: For each char* file;

function in the -system, provide postconditions that specify
how its return value(s) depends on the values of its arguments.

Assertions can be used to specify the relationship between

/*0

the return value of a function (or the values of its reference
assume warnings-on;

arguments upon exit) and the function’s arguments upon entry. @*/
This relationship need not be specified completely; it suffices
to merely state the most important aspects of this relationship. (

The second return constraint of function square-root shown
in Fig. 1 and the promises of function swap shown in Fig. 2

. . .

illustrate this kind of assertion. 1
3) Effect on Global State: For each function in the system,

specify what changes the function makes to the values of the
global variables that are visible to it.

Functions in procedural languages often have side effects.
Assertions can be used to specify the key ways in which
a function changes the global program state. For instance,
consider a language processing system that uses a routine
called deletename to remove entries from a global symbol
table called symbols. The specification of delete-name is
shown in Fig. 9; assume that symbols is a hash table that is
searched using the routine hashget, which returns a nonzero
pointer to a table entry if successful and zero if unsuccessful.
The assumption states that the argument to delete-name
should have an entry in symbols. In particular, upon entry
to deletename a call to hashget with the name argument
must return a nonzero or “true” result. The promise states
that delete-name removes the record for its argument from
symbols, so that upon exit from deletename, a call to
hashget with the name argument must return zero, and thus
the negation of the hashget result (obtained using the negation
operator !) must be true.

‘C arrays are always indexed starting at zero.

Fig. 10. Specifying the context in which a function is called.

4) The Context in Which a Function is Called: For each

function in the system, specify how the values of its arguments

and the values of the global variables visible to it govern when

it is valid for the function to be called.

Sometimes a function should be called only within certain

processing contexts, even though the function may behave
correctly within all contexts. Assertions can be used to ensure

that functions are called in appropriate contexts. For instance,

Fig. 10 shows a function print-warning that is used by a
language processor to output detailed warning messages only if

a certain command-line option has been given to the processor

(as indicated by a nonzero value for the global variable
warnings-on). The function always generates a correct warn-
ing message for any combination of code number, line number

and file name. But the assumption is used to check that the

function is called only when the appropriate command-line

option has been specified.
5) Frame Specijcations: For each function in the system,

specify each case when the value of an argument passed to the

26 IEEE TRANSACTIONS ON SOmARE ENGINEERING, VOL. 21. NO. I, JANUARY 1995

promise strcmp(in name, in strdup(name)) == 0;

Fig. 11. Specifying a frame constraint for function deletename of Fig. 9.

function by reference, or the value of a global variable visible
to the function, is to be left unchanged by the function.

Functions are often required to leave certain data unchanged.
Such requirements, which are called frame specifications, are
usually implicitly derived or assumed in proof-based reasoning
systems, but for purposes of runtime checking they must be
stated explicitly. Assertions can be used to state a system’s
frame specifications. For instance, to specify that the function
deletename shown in Fig. 9 should not modify its argument
(a string passed by reference), the promise shown in Fig. 11
can be added to its-interface assertions. The promise uses the
standard C library function strcmp (which returns zero when

its two string arguments are equal) to ensure that the values of
the string upon entry to and exit from the function are equal.
Notice that it is not sufficient to refer to the entry value of the
string with the expression in name, since in name evaluates
to the entry value of the pointer name, not the entry value of
the string pointed to by name. The standard C library function

strdup creates a heap-resident copy of a string, and thus the
expression in strdup(name) can be used to provide a pointer
to the entry value of the string pointed to by name.7 Notice
also that because the function might modify the pointer value
of name, the exit value of name may differ from its entry
value. Thus, the strcmp expression checks mat the location in
memory designated by name upon entry to the function (i.e.,
in name) still contains the value it had upon entry (i.e., in
strdup(name)).

This example also illustrates a rare situation where it is
desirable for an assertion expression to produce a side effect, in
this case an allocation of heap memory. However, APP is able
to compensate for this particular side effect, because it ensures
that any heap memory that is dynamically allocated as a result
of the evaluation of an assertion expression is deallocated upon
exit from the function enclosing the assertion.

6) Subrange Membership of Data: For each function in the

system, specify all subrange constraints on the values of its
arguments, return value(s) and global variables that are of

numeric type. Also specify all subrange constraints on the
values used to index its array-valued arguments, return value(s)
and global variables.

C does not allow the specification of subrange constraints on
numeric types. This weakness can be overcome with simple
assertions that specify appropriate bounds on the values of
numeric data. However, this weakness becomes particularly
troublesome in C’s treatment of arrays, which are indexed
by integers. C has a rather weak notion of array, which
is just a region of memory that is referenced through a
pointer. Overrunning array bounds in C is thus very common,
especially when handling strings (character arrays), which
in C require an additional string-termination character that
is frequently overlooked. Assertions can be used to specify

7Note that it is nor necessary to use the expression in strdup(in name),
since the operator in distributes across all subexpressions of the expression to
which it is applied.

#define BUFFSIZE 80

char bufferCBUFFSIZE1;

void fill-and-truncate0

/*a

promise some (int i=O; i < BUFFSIZE; i=i+l) buffer[i] == '\O';

a*/

I

>

Fig. 12. Specifying a subrange constraint.

constraints that guard against the mishandling of arrays. For
example, Fig. 12 shows a function fill-and-truncate that is
used to fill a global string buffer with a line of input text,
truncating the line if it exceeds the size of the buffer. The
promise states one of the constraints the function must satisfy,
namely that according to C programming conventions, it must
place the string-termination character ‘\O’ at the end of the
buffered text, but still within the bounds of the global buffer.
That is, there must be a subrange (of size one) of the array
buffer that contains the string-termination character.8

This constraint is expressed using an existentially-quantified
expression to state that upon exit from the function some
element of the buffer must contain the string terminator.
In particular, the expression states that there exists some i
between zero and BUFFSIZE- such that the ith character of
buffer is the string-termination character.

7) Enumeration Membership of Data: For each function in

the system, specify all membership constraints on the values
of its arguments, return value(s) and global variables that are
of enumeration type.

As is the case with arrays, enumeration types in C are

also weak, in that they are type compatible with integers. In
particular, enumeration literals are interchangeable with their
internal integer values, and any integer can be used where
an enumeration literal is required. Assertions can be used to
ensure that variables of an enumeration type contain valid
values of the type. For instance, the function store-token
shown in Fig. 8 takes an argument whose value belongs to an
enumeration type. The assumptions shown in Fig. 13 can be
added to the function’s interface assertions. The two assump-
tions are equivalent, and they both check that the function is
given valid values of the enumeration type Token-Kind.’

8) Non-Null Pointers: For each function in the system,
specify which pointer-valued arguments, return value(s) and
global variables must not be null.

C programs make very extensive use of pointers to reference
arrays and strings, to access dynamically allocated storage, and
to pass arguments to functions by reference. Assertions can
be used to specify when pointers should be non-null. Such

8Anything stored after the first string-termination character would be
ignored by C’s string-processing functions, so it is not necessary that the
function fill the unused portion of the buffer with string-termination characters
each time it is called.

9 Of course, the second form of assertion must be used for enumeration
types whose literals are given explicit, noncontiguous internal values, such as
enum Token-Kind(identifierz2, number=4, string=6};

ROSENBLUM: A PRACTICAL APPROACH TO PROGRAMMING 27

assume kind >= identifier && kind <= string;

assume kind == identifier I I kind == number

I I kind == string;

Fig. 13.
Fig. 8.

Specifying an enumeration constraint for function store-token of

assume token kk

((kind == identifier kk token[Ol >= ‘a’ kk tokenCO1 <= ‘2’)

(1 (kind == number kk tokea[Ol >= ‘0’ kk token[Ol <= ‘9’)

I I (kind == string kk t.okenCOl == ““));

Fig. 14. Specifying a pointer constraint for function store-token of Fig. 8

assertions are especially useful because the self-checks they
generate can provide information prior to the aborted execution
and core dump that usually result from dereferencing a null
poititer. The assumption “assume x && y && x ! = y”
specified on the function swap shown in Fig. 2 illustrates an
assertion that constrains a pointer argument to be non-null.

It is also necessary to first state that a pointer is non-null
before specifying constraints on the data to which the pointer is
pointing. For instance, the assumption on function store-token
of Fig. 8 should be strengthened as shown in Fig. 14 to ensure
that the string pointer token is non-null (and thus “true”)
before it is dereferenced in the array subscripting operations.

B. Specijcation of Function Bodies

Function bodies often contain long sequences of complex
control statements, which offer many opportunities for intro-
ducing faults. Assertions that are stated in terms of a particular
function implementation can be used as “enforced comments”
to guard against such faults.

1) Condition of the Else Part of Complex If Statements: For
each if statement in the system that contains a final else part,

explicitly specify the implicit condition of the final else part

as an initial assertion in that part.
The implicit condition of the default branch of an if state-

ment (i.e., the final else part) is often intended to be stronger
than the simple negation of the disjunction of the explicit,
nondefault conditions. Assertions can be used to specify the
intended default condition explicitly. Suppose that the function
store-token shown in Fig. 8, rather than taking an argument
indicating the kind of token it is given, instead makes that
determination in its implementation. The function might use
an lf statement like the one shown in Fig. 15. The final, default
else branch of this if statement will be executed for all values
of token whose first character is not a digit or lower-case letter.
But since the function should only be processing string tokens
in the default branch, the assertion restricts the execution of the
default branch to those situations in which the first character
of token is the double-quote character.

2) Condition of the Default Case of a Switch Statement: For
each switch statement in the system that contains a default
case, explicitly specify the implicit condition of the default
case as an initial assertion in that case. For each switch
statement without a default case, provide a default case
containing an assertion that always evaluates to false.

if (token[O] >= ‘a’ && token101 <- ‘2’)

/* Handle identifier */

. . .

else if (token[O] >= ‘0’ && tokenC01 <= ‘9’)

/* Handle number */

. . .

else

/* Handle string */

/*a
assert. token CO1 == ’ ” ’ ;

0*/

. . .

Fig. 15. Specifying the condition of a default else branch.

As is true of if statements, switch statements often contain a
default case that is intended to operate on only a subset of the

possible domain of the default case, especially when the switch
is performed on a value of an enumeration type. Assertions can
be used to describe the limited domain, in a manner similar
to the way the default else branch was constrained in the if
statement of Fig. 1.5. Since it is wise to supply default cases
for switch statements even if they should never be executed,
a special form of this kind of assertion is an assertion that
always evaluates to false, as shown in Fig. 16.

3) Consistency Between Related Data: For each function
body in the system, specify consistency constraints on
mutually dependent data at frequent intervals within the code
that manipulates that data.

It is often necessary to process related data in different ways
and ensure that the data remain consistent after processing. For
instance, consider a furiction that creates an entry in a priority
queue before performing other processing on the new entry.
The function might first use a loop to find where in the queue
the new entry belongs. The function might then use a separate
check to determine if the new entry was placed at the end of
the queue, in which case the queue’s tail pointer would need
to be updated. An assertion like the one shown in Fig. 17 can
be used to ensure that the two parts of the insertion code have
treated the tail pointer consistently. The assertion requires the
tail pointer to point to the new entry if the new entry contains
a null forward link after insertion.

4) Intermediate Snapshot of Computation: For each func-
tion body in the system, specify at frequent intervals the key
constraints the function body must satisfy.

28 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21. NO. 1. JANUARY 1995

switch (kind)

I

case identifier:

. . .

break;

case number

. . .

break;

case string:

. . .

break;

default :

/* Control should never reach here */

/*a

// assert that 0 (i.e., false)

// is true:

assert 0;

(o*/

break;

1

Fig. 16. Specifying the condition of the default branch of a switch statement.

assert new-entry-hext != 0

I I queue.tail == new-entry;

a*/
Fig. 17. Specifying consistency between related data.

Assertions can be used to summarize periodically the effect
of a complex function at key places in its body. The assertion
in the body of function swap shown in Fig. 2 illustrates this
kind of assertion. Because the manipulations of the integer

arguments are unintuitive, the body assertion helps to identify
the exact point at which one of the promises of swap must
become satisfied.

IV. EXPERIENCE

The YeastlO event-action system [35] serves as an excellent
example of a software system developed with APP. Yeast

comprises roughly 12,000 lines of C, yacc and Zen: code.

“Yet another Event-Action Specification Tool.

TABLE I
SUMMARY OF CLASSIFICATION OF ASSERTIONS

4ssertion Code Description

[Specification of Function Interfaces

Ll Consistency Between Arguments

12 Dependency of Return Value on Arguments

13 Effect on Global State

[4 Context in which Function Is Called

15 Frame Specifications

16 Subrange Membership of Data

I7 Enumeration Membership of Data

I8 Non-Null Pointers

B Specification of Function Bodies

Bl Condition of Else Part of If Statement

B2 Condition of Default Branch of Switch Statemenl

B3 Consistency Between Related Data

B4 Intermediate Snapshot of Computation

I developed Yeast with one other person, and each of us
developed roughly half of the source code; the other person
developed his half without assertions and without using APP.

My half of the source code contains 116 assertions in 95

assertion regions. Of these 95 assertion regions, 39 are function
interface specifications, which contain a total of 61 asser-

tions. The self-checking executables are 3.7% larger than the
nonself-checking executables, and they run with no discernible
difference in speed.’ ’

Since first releasing Yeast to other people within AT&T,
we have discovered and removed 19 faults, all of which were
interface faults. Ten of these faults were located in my half
of the code. In their empirical study, Perry and Evangelist
identified 15 different kinds of interface faults in the software
change request data that they analyzed [24], [25]; Table II
summarizes their interface fault classification.” Table III
characterizes each of the 19 faults in Yeast according to the
Perry and Evangelist fault classification of Table II. Table III
also identifies which kinds of assertions in the classification of
Table I revealed each fault. The faults are listed in increasing
chronological order of discovery. Included in the description
of each fault is an indication of whether or not the fault
was in a function or functions that had been specified with
assertions; this information indicates that there was no clear
correlation between the location of a fault and the location of
the assertions that revealed it.

” In the version of this paper that appeared in the ICSE-14 conference
proceedings, the size increase was erroneously reported as 12%. which
included both assertion checks and code that was inserted by the compiler
to support the use of a symbolic debugger.

“The reader is referred to Perry and Evangelist’s papers for a more detailed
description of their fault classification. Other useful fault classifications have
been described by Ostrand and Weyuker [36] and Endres [37].

ROSENBLUM: A PRACTICAL APPROACH TO PROGRAMMING

TABLE 11 TABLE IV
FAULTS IN YEAST THAT COULD HAVE BEEN DETECTEI) BY ASSERTIONS FERRY AND EVANGELIST’S CLASSIFICAT[ON OF INTERFACE FAULTS

Fault Code Interface Fault

1 1 18, B3 I

3 1 12, B4

TABLE V
EFFWTIVE ASSERTIONS FOR DETECTING INTERFACE FA~JLTS

TABLE III

Fault Code Effective Assertions

(from Table II) (from Table I)

Fl 11,12

F2 11, 13, 14, preconditions

F3 12, 13,14,15

F4 none

F5 .none

F6 I

F7 11, 15, 16,17, 18, B3

F8 I, B

F9

FlO

Fll

F12

F13

F14

F15

I, B

13

12, 13, postconditions

11, 13,16,17,18, B3

12, 13, 15,16, 17, B3

none

I

Of the 19 faults, 8 were discovered by one or more assertion
violations. Of the 11 faults that were not detected by assertions,
6 could have been caught by assertions that were not written;
Table IV shows which classes of assertions were needed to
detect these faults. Of the remaining 5 faults that were not
detected by assertions, faults 4 and 11 were detected by

a dynamic storage certification routine, while faults 6, 10,

and 17 could only be detected by assertion features more

powerful than those currently supported by APP (such as event
sequencing constraints).

Nearly 50 percent of the faults in the Perry and Evangelist
study were faults of inadequate error processing (F8), con-

29

30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21. NO. 1, JANUARY 1995

struction (Fl) or inadequate functionality (F2). As Table III
and Table IV show, the assertions in the classification of Table
I can be used to guard against these common kinds of faults
as well as many of the other kinds of faults described by
Perry and Evangelist. Table V summarizes these observations
by noting which assertions from Table I are best-suited to

detecting each kind of interface fault. In some cases the faults
described by Perry and Evangelist call for broader classes
of assertions, such as preconditions or postconditions; these
broader classes are noted in Table V where applicable.

V. CONCLUSION

This paper has described an assertion processing system for
C and UNIX called APP. APP provides a rich collection of fea-
tures for specifying not only the assertions themselves but also
the responses to failed runtime assertion checks. APP fits easily
into the process of developing C programs, requiring minimal
change to one’s accustomed use of C and UNIX programming
environments. APP can process approximately 20,000 lines of
C code per CPU-minute on a Sun-4 workstation. The assertion
checks generated by APP introduce negligible time and space
overhead into the generated self-checking programs. APP is
currently being licensed to universities for research use under
certain terms and conditions.

This paper has also described a classification of assertions
that is based on experience using APP. Systems that are spec-
ified with assertions need not contain a complete specification
of the system, in any sense of the word “complete”. Incomplete
specifications that capture the essence of the intended behavior
are quite sufficient for reliably detecting software faults at
runtime. Experience with APP has demonstrated that faults in
reasonably well-annotated code (with at least every function
interface supplied with assertions) often generate multiple
assertion violations. One might think that diagnostic messages
from multiple violations would be useless, since diagnostics
generated by violations subsequent to the first violation might
not provide reliable information. However, diagnostics from
multiple violations have often provided useful information
about the context of the revealed fault, making fault elim-
ination in many cases a simple matter of interpreting the
diagnostic messages without the aid of any other debugging

tool.
The design of APP was influenced to a great extent by the

previous work on Anna. Anna is a rich specification language,
and its large number of features were a natural outgrowth of
the large number of programming constructs provided in Ada.
This is especially noticeable with respect to packages, which
are arguably the most important feature of Ada, providing
a powerful means for structuring a software system and
encapsulating its data types. The availability of packages in
Ada required a means for specifying the behavior of a package
in totality, both as an algebraic data type and as an object with
state. ConsequentIy, a significant subset of Anna deals with
specification of package state and package state transitions,
and with axiomatic specification of the behavior and result of
combining package operations. Just as the richness of Anna
derives from the richness of Ada, the simplicity of APP’S

specification language is well-matched to the simplicity of C.
In C the primary construct of interest is the function, and thus
APP has been designed primarily to support the specification
of function behavior.

What APP lacks in its diversity of specification constructs,
it more than makes up for in the greater flexibility it provides

to the developer of self-checking programs. In Anna, the
response to a failed annotation check is defined by the Anna

Reference Manual (which specifies the response to be the
raising of the predefined exception ANNA-ERROR) and by
the Anna Transformer and Anna Debugger tools (which add
generic diagnostic information and a simple debugging in-
terface for running self-checking programs). ANNA-ERROR
provides some measure of programmability for defining the
response to a failed check. However, it does not identify
which particular annotation or annotations were violated, and

handlers for ANNA-ERROR may not always have access to
the context of a violated annotation (e.g., the values of relevant

variables), depending on where the handlers are defined. In
contrast, APP provides violation actions in order to allow the
specifier complete flexibility in defining the response to a
failed assertion check, allowing selection from a wide range

of possible responses. The response to a failed assertion check
can be tailored to the special nature of the application, to
the development task at hand, to production versions of the
system, or to other aspects of system development.

Furthermore, APP provides severity levels in order to give
the specifier greater control over the amount of assertion
checking that is performed at runtime, without having to
modify the program or rebuild the self-checking executable.
Finally, while Anna supports quantification only over types,
APP provides a quantification syntax that is more convenient
for describing a set of iterated values and that leads to more
computationally-feasible runtime checks.

An interesting thing to note about the assertion classification
described in this paper is the absence of certain classes of
assertions that are important for program verification, such as
loop invariants or inductive assertions. Inductive assertions can
be notoriously difficult to construct and do not always capture
one’s intuitive understanding of intended system behavior. In
contrast, the assertions described in this paper represent an
attempt to formalize such intuitions. Thus, it remains to be seen
whether or not assertions that are constructed especially for
program verification are also useful for runtime fault detection.

APP will be extended to support other kinds of assertions and
higher-level abstraction facilities. New features will include
constraints on types and global variables, a richer abstrac-
tion of arrays and other abstract data types, and constructs
for specifying interactions between program units that are
larger than functions (such as specification of the behavior
of sequences of function calls). In addition, a version of APP
will be developed for C++. The C++ version of APP will
provide additional specification constructs that are suited to
specification of class behavior; a good starting point for the
design of these constructs would be the package specification
features of Anna.

Until verification and other sophisticated static analysis
methods become practical for large systems comprising many

ROSENBLUM: A PRACTICAL APPROACH TO PROGRAMMING 31

modules and several thousand lines of code, developers of
large systems must rely on alternative means of identifying
and removing faults in their systems. Assertion checking is
one such alternative-it is powerful, practical, scalable and
simple to use. While it is hoped that others can benefit
from the experience described in this paper, in the future
more comprehensive, controlled experimental studies on larger
systems with multiple developers will help to further reveal the
most effective techniques for using assertions to improve the
quality and reliability of software systems.

ACKNOWLEDGMENT

The author is grateful to A. Wolf, D. Perry, E. Amoroso,
F. Vokolos, P. Frankl, and D. Taylor, who provided many
helpful suggestions and comments on the content of this paper.
The comments of the anonymous referees were also helpful in
clarifying many of the key points of the paper.

REFERENCES

[II

[21

[31

[41

[51

[61

[71

[81

[91

1101

[Ill

[I21

(131

[I41

[I51

[I61

[I71

1181

R. W. Floyd, “Assip;ning meanings to programs,” in Proc. Symp. Appl.
Mark., “01: XIX, American Mathc~atical Society, Apr. 1967, pp. 19-32.
S. Igarashi, R. L. London, and D. C. Luckham, “Automatic program
verification I: A logical basis and its implementation,”
vol. 4. DD. 145-182. 1975.

Acra Informarica,

D. C. ‘L&&ham, S. h. German, F. W. von Henke, R. A. Karp, P. W.
Milne. D. C. Onoen. W. Polak. and W. L. Scherlis, “Stanford Pascal
Verifier user rniiualj’ Tech. Rep. 79-731, Dep. of Computer Science,
Stanford University, Mar. 1979, Program Analysis and Verification
Group Rep. 1 I.
B. Meyer, “Applying design by contract,” IEEE Compur., vol. 25, pp.
40-5 I, Oct. 1992.
L. G. Stucki and G. L. Foshee, “New assertion concepts for self-metric
software validation, ” in Proc. Inr. Conj: Reliable Software, ACM and
IEEE Computer Society, Apr. 1975, pp. 59-71.
B. W. Boehm, R. K. McClean, and D.B. Urfrig, “Some experience with
automated aids to the design of large-scale reliable software,” in Proc.
Inr. Conf: Reliable Software, ACM and IEEE Computer Society, Apr.
1975, pp. 105-113. _
S. S. Yau and R. C. Cheung, “Design of self-checking software,” in
Proc. Int. Conf Reliable Software, ACM and IEEE Computer Society,
Apr. 1975, pp. 450-457.
B. W. Kernighan and D. M. Ritchie, The C Programming Language.
Englewood Cliffs, NJ: Prentice-Hall, 1988, 2nd ed.
B. Stroustrup, The C++ Programming Language. Reading MA: Ad-
dison-Wesley, 1991, 2nd ed.
P. Gautron, “An assertion mechanism based on exceptions,” in Proc.
4th C++ Tech. Co@, USENIX Association, Aug. 1992, pp. 245-262.
M. P. Cline and D. Lea, “Using annotated C++,” in Proc. C++ at
Work, Sept. 1990.
R. C. Holt and J. R. Cordy, “The Turing programming language,”
Commun. ACM, vol. 31, no. 12, pp. 1410-1423, Dec. 1988.
B. Mever. Object-Oriented Software Consrruclion. Englewood Cliffs,
NJ: P&&e-Hall, 1988. ”
D. E. Perry, “The Inscape environment,” in Proc. llth Int. Con$
Software Eng., IEEE Computer Society, May 1989, pp. 2-12.
D. C. Luckham and F. W. von Henke, “An overview of Anna, a
specification language for Ada,” IEEE Software, vol. 2, pp. 9-23, Mar.
1985.
S. Sankar, D. S. Rosenblum, and R. B. Neff, “An implementation of
Anna,” in Ada in Use: Proc. Ada fnt. Con$, May 1985, pp. 285-296,
Cambridge Univ. Press.
S. Sankar and D. S. Rosenblum, “The complete transformation method-
ology for sequential runtime checking of an Anna subset,” Tech. Rep.
86-301, Computer Systems Laboratory, Stanford Univ.. June 1986,
Program Analysis and Verification Gro;p Report 30.
S. Sankar, “Automatic Runtime Consistency Checking and Debugging
of Formally Specified Programs,” Ph.D. thesis, Dep. of Computer
Science. Stanford Univ., Aug. 1989 Tech. Rep. 89-1282.

1191

[201

1211

1221

1231

~241

[251

[261

~271

1281

1291

[301

[311

[321

1331

[341

[351

1361

[371

S. Sankar, “Run-time consistency checking of algebraic specifications,”
in Proc. TAV4-The 4th Software Testing, Analysis and Verification Symp.
ACM SIGSOFT, Oct. 1991, pp. 123-129.
D. S. Rosenblum, S. Sankar, and D. C. Luckham, “Concurrent runtime
checking of Annotated Ada programs, ” in Proc. 6th Conf Foundations
of Sofiware Tech. and Theoretical Compur. Sci. New York: Springer-
Verlag (Lecture Notes in Computer Science No. 241), Dec. 1986, pp.
l&35
S. Sankar and M. Mandal, “Concurrent runtime monitoring of formally
specified programs,” IEEE Cornput., vol. 26, pp. 3241, Mar. 1993.
D. C. Luckham, Programming wifh Specifications: An Inrroduction lo
Anna, a Language for Specifying Ada Programs. New York: Springer-
Verlag, 1990.
N. G. Leveson, S. S. Cha, J. C. Knight, and T. J. Shimeall, “The use of
self checks and voting in software error detection: An empirical study,”
IEEE Trans. Sojiware Eng., vol. SE-16, pp. 432-443, Apr. 1990.
D. E. Perry and W. M. Evangelist, “An empirical study of software
interface faults,” in Proc. Inl. Symp. New Direcrions in Cornput., IEEE
Computer Society, Aug. 1985, pp. 32-38.
-, “An empirical study of software interface faults-an update,”
in Proc. 20th Ann. Hawaii Inc. Con$ Sysf. Sci., vol. II, Jan. 1987, pp.
113-126.
C. B. Jones, Systematic Software Development Using VDM. Engle-
wood Cliffs, NJ: Prentice-Hall, 1990, 2nd ed.
J. M. Spivey, The Z Notation: A Reference Manual. Englewood Cliffs,
NJ: Prentice-Hall, 1989.
D. C. Luckham, F. W. von Henke, B. Krieg-Briickner. and 0. Owe,
Anna-A Language for Annofaring Ada Programs. Lecture Notes in
Computer Science No. 260. New York: Springer-Verlag, 1987.
D. C. Luckham, S. Sankar, and S. Takahashi, “l%o-dimensional pin-
pointing: Debugging with formal methods,” IEEE Sofhvare, vol. 8, pp.
74-84, Jan. 1991.
S. I. Feldman, “Make-A program for maintaining computer programs,”
Software-Practice and Experience, vol. 9, no. 3, pp. 255-265, Mar.
1979.
G. S. Fowler, “A case for make,” Software-Practice and Experience,
vol. 20, no. Sl, pp. 35-46, June 1990.
D. W. Flater, Y. Yesha, and E. K. Park, “Extensions to the C program-

ming language for enhanced fault detection,” Sqfhvare-Pracfice and
Experience, vol. 23, no. 6, pp. 617-628, June 1993.
T. M. Austin, S. E. Breach, and G. S. Sohi, “Efficient detection
of all pointer and array access errors,” in Proc. ACM SIGPLAN’Y4
Conf Programm. Language Design and Implementation (PLDI), ACM
SIGPLAN, June 1994. pp. 290-30 I, appears in SIGPZAN Notices 29(61.
June 1994.
R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks
and access errors,” in Proc. Winter 1992 USENIX Co&. USENIX

I

Association, Jan. 1992, pp. 125-136.
D. S. Rosenblum and B. Krishnamurthy, “An event-based model of
software configuration management,” in Proc. 3rd Inf. Workshop on
Software Config. Management, P. H. Feiler, Ed., ACM SIGSOFT, June
1991, pp. 94-97.
T. J. Ostrand and E. J. Weyuker, “Collecting and categorizing software
error data in an industrial environment,” .I. Svst. Soffware, vol. 4, pp.

289-300, 1984.
A. Endres, “An analysis of errors and their causes in system programs,”
IEEE Trans. SofhYare Eng., vol. SE-l, pp. 140-149, June 1975.

David S. Rosenblum (S’83-M’87) received the
B.S. (summa cum laudej and M.S. degrees, both in
computer science, from North Texas State Univer-
sity, Denton, in 1982 and 1983, respectively. He also
received the M.S. and Ph.D. degrees in electrical
engineering from Stanford University in 1987 and
1988, respectively, where he participated in the
Anna and TSL specification language projects.

He is a Member of the Technical Staff in the Soft-
ware Engineering Research Department at AT&T
Bell Laboratories, Murray Hill, NJ. His research

rare testing and analysis, software process, formal
specification languages, and specification-based software development tools.

Dr. Rosenblum is a member of ACM, ACM SIGAda, ACM SIGPLAN,
ACM SIGSOFT, IEEE Computer Society, and IEEE Computer Society
Technical Committee on Software Engineering.

