
A Practical Attack against
Knapsack based Hash Functions

(extended abstract)

Antoine Joux 1 and Louis Granboulan 2

1 DGA/CELAR
2 ENS/LIENS

Abs t rac t . In this paper, we show that lattice reduction is a very pow-
erful tool to find collision in knapsack based compression-fimctions and
hash-functions. In particular, it can be used to break the knapsack based
hash-function that was introduced by Damgard [3]

1 I n t r o d u c t i o n

The knapsack problem, is a well-know NP-complete problem that can quite
easily be used to construct cryptosystems or hash-functions. Thus many cryp-
tographic functions have been based on this problem, however, lattice reduction
is a very powerful tool to break knapsack-based cryptosystems. This was shown
by Lagarias and Odlyzko [5], and their result was improved by Coster and al in
[2].

In this article, we show that lattice reduction can also be used to find collisions
in knapsack-based compression-functions. And we apply this tool to Damgard's
hash-function based on such a knapsack compression function. A completely
different kind of attack was already presented by P. Camion and J. Patarin in
[1], however, it was not implemented, and it permit ted to find collisions in the
compression function rather than in the full hash function.

Throughout this paper, in order to simplify the analysis of the problem, we
suppose that we are granted access to a lattice reduction oracle, that given any
lattice produces a shortest vector in this lattice. In practice, this oracle will
be replaced either by the LLL algorithm [6] or a blockwise Korkine-Zolatarev
algorithm [7]. This approach, which enables us to focus on the reduction of
collision search to lattice reduction, without needing to worry about the state of
the art in lattice reduction algorithms, is also used in [2].

2 F i r s t a p p r o a c h t o t h e r e d u c t i o n t e c h n i q u e

In this section, we define a lattice associated to a given knapsack-based compression-
function in such a way that collisions correspond to short vectors.

Let us now make a few notations precise, before describing the reduction
technique. Given any set of n integers, al, . . . , an, we can define a integer valued
function which given any vector x in {0, 1}'* computes S(x) = ~~i'=1 aixi. We can

59

also define the density of S, d = n Then v = 1/d is the compression rate of
m a x , a , "

the compression function S, since S transform n bits into an + log2(n) bits. In
the sequel, in order to simplify the analysis, we want to ignore the log2(n) term,
thus we will work with modular knapsacks instead of usual knapsacks�9 However,
similar results can be obtained in the non-modular ease, as will be shown in the
full paper. In this paper, we use the same approach as in Coster's analysis of the
Lagarias-Odlyzko attack, more precisely, we fix a value for T we let m = [Tn]
and choose for the ai random values lower than 2 "~. As n tends toward infinity,
this generating process models random knapsacks of compression rate v. These
knapsack are then considered modulo 2 m.

In order to search collisions in such a modular knapsack, we reduce the
following lattice:

0
B = 1 0 0

0 1 0
"Note that this lattice is a modular variation of Lagarias-Odlyzko's lattice for
solving knapsack problems (see [5]). Let us consider the various short vectors
that can occur. Since K is large, it is clear that the first component of a short
vector is 0. Looking at the other components, two things can happen, either they
are all 0, 1 or - 1 , or not. If the shortest vector is of the first type, we clearly get
a collision, since having the vector:

in the lattice B, with all es 0, 1 or - 1 implies:

i=l
and thus:

~ ai :- ~ ai,
e , ~ l e , ~ - - - 1

In general, we cannot show that the shortest vector will be of the proper
type, we actually expect that the probability for such a vector to occur, tends
exponentially fast towards 0. However, we show in the next section, that using
a lattice reduction oracle, we can find collisions in a knapsack compression func-
tion, must faster than by exhaustive search or a birthday paradox attack. We
also show that in small dimensions, the naive algorithm works in practice by giv-
ing experimental result on the success rate of the non-modular naive algorithm
using LLL, or a blockwise Korkine-Zolotarev reduction algorithm in place of the
lattice reduction oracle.

60

3 A v e r a g e s i z e o f t h e c o l l i s i o n

In this section, we show how to compute the average size of a collision for the
kind of knapsacks we are looking at. Let us consider random knapsacks of n
elements and fixed compression rate r, we have:

L e m m a 1. Let p be a fixed constant such that

p + H2(p) > v > p

With probability tending exponentially to 1 when n tends to infinity, there exists
a relation

~ ~iai = 0
i=1

where all eis are O, 1 or - 1 and where

I'it _< ,on

In the above Z2(a) denotes, as usual, - a l o g a - (1 - a) l o g (1 - a).
Let us sketch the proof:

Consider the family of all possible vectors with n coordinates, all of them 0, 1
or -1 , with size pn. The number of elements in this family is roughly 2~"2 H2(p)".
A collision is expected for N > 2 ~", thus leading to the above lemma.

This proof can be made precise, and will be presented in [4].

4 F i n d i n g c o l l i s i o n s u s i n g a l a t t i c e r e d u c t i o n o r a c l e

Given a random knapsack of size n and compression rate r, we know that almost
surely it contains a collision of size (L(r) + e)n. Suppose now, that we can guess
an non zero elements of such a collision, then we can form another random
modular knapsack by replacing the an dements involved in the guess by their
ponderated sum modulo 2 m. We thus obtain a modular knapsack containing
(1 - (~)n + 1 random modular numbers b0, bl, . . . , b(l_~),~. We can associate to
the knapsack the following lattice:

B' = i o 1 0 0 .

0 1 0

By construction, this lattice contains a short vector of size (L (r) + e - a) n + 1.
Transposing the main argument from Lagarias-Odlyzko, we can show that with
a probability tending exponentially fast towards 1, this vector is the shortest
existing in the lattice B', as soon as the density of the new knapsack is smaller

6]

than a function of the relative size of the short vector in the new knapsack. This
relative size is:

L(r) + e -

1 - a '
and the density is:

1 - c t

T

Since the condition from Lagarias-Odlyzko involves complicated functions, we
can' t give a close form for the solution. However, we have computed the graph
of a as a function of r , see figure 4 for the curve corresponding to the limiting
c a s e ~ ~ 0 .

We can now derive an semi-exhaustive search algorithm, where we try random
subsets of size ~n, and all partitions of these subsets into Is and - I s . The
probability for a random subset to be part of a fixed collision of size L(v)n (we
are still considering the case e = 0) is roughly 2 m~, where # is a function of r (see
figure 4). Thus this semi-exhaustive algorithme costs 0(2(~+v)n) steps, where
each step is a call to the lattice reduction oracle. In the worst case, when v = 1,
this yields a running time of approximately 0(2 nil~176176 steps. This proves that
in the general case, searching a collision in a knapsack problem is much more
efficient using lattice reduction than using a birthday paradox attack (0(2 ~nP)
steps). On the other hand, this is still an exponential t ime algorithm.

5 Practical results in small size

Looking at the results of the previous section, it is tempting to forget that we
are dealing with asymptotic results, and to look what happen if we substitute
finite values for n in the formulaes. Moreover, as long as an stays below 1, we
can argue that there is no need to guess the missing bit and hope that a single
lattice reduction will find a collision.

In this section we give a table of practical results, using the worst case com-
pression rate 1, and various lattice reduction algorithms, namely LLL and Block-
wise Korkine-Zolotarev reduction with blocs of size 10 and 20. These results
concern non-modular knapsacks, and thus use the following lattice:

B =

I Kal Ka2 ... Kan l

i ~ ~
1 0

0 1
The tables in figures 5, 5 and 5 contain success rate and average user running

times on a Sun sparcstation for knapsacks with compression rate 1, i.e. for worst
case compression knapsacks. For each choice of dimension and algorithm, the
success rate and running are averaged over 10 random knapsacks. These tables
show that using LLL, we can find collisions with non-negligible success rate up
to dimension ~ 60, with BKZ10 up to dimension ~ 90 and with BKZ20 up to
dimension ~ 105.

0.00035

0.0003

0.00025

0.0002

0.00015

0.0001

5e-05

0
0

i

0.2

62

s !

i i

0.4 0.6

F i g . I . c~ as a f u n c t i o n of r

!

0.8

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

I ' ~ I , I

0.2 0.4 0.6 0.8
t
1

F i g . 2. V as a f u n c t i o n of r

Dimension Successes (/10) User CPU
5 10 0.0s
7 10 O.Os
9 10 O.Os
11 10 O.Os
13 10 O.Os
15 10 0.0s
17 9 0.0s
19 10 0.0s
21 10 0.0s
23 10 0.0s
25 9 0.6s
27 10 1.0s
29 9 1.2s
31 9 2.0s
33 9 2.0s
35 9 2.9s
37 6 3.3s
39 4 3.7s
41 8 4.3s
43 8 5.2s
45 5 5.6s
47 2 7.5s
49 2 7.6s
51 1 8.8s
53 3 9.0s
55 0 l l . 3 s
57 1 12.2s
59 2 13.1s
61 0 14.4s
63 1 15.0s
65 0 17.9s

63

Dimension Successes (/10) User CPU
6 10 0.0s
8 10 0.0s
10 10 0.0s
12 10 0.0s
!14 10 0.0s
16 10 0.0s
!18 9 O.Os
20 10 0.0s
!22 10 O.Os
~4 10 0.0s

9 0.9s
28 9 1.1s
30 10 1.4s
32 10 1.9s
34 5 2.5s
36 7 2.9s
38 7 3.5s
40 5 4.5s
42 7 5.3s
44 5 5.5s
46 6 6.3s
48 3 7.5s
50 2 8.2s
52 2 8.8s
54 3 10.8s
56 0 10.9s
58 1 12.5s
60 0 14.6s
62 0 16.3s
64 0 17.4s

F ig . 3. Results using LLL

6 Attacking Damgard hash-function

In [3], D a m g a r d p roposed to base an hash func t ion on a knapsack compress ion
func t ion us ing 256 non m o d u l a r number s of size 120 bi ts . Th is roughly corre-
sponds to a compress ion ra te of 1/2. However, in generM, f inding coll is ions for
a hash func t ion is ha rde r t h a n in for the cor responding compress ion funct ion ,
because the first ha l f of the d a t a en ter ing the compress ion funct ion is e i ther a
f ixed i n i t i a l i s a t i on value or the resul t of previous rounds of the hash funct ions .
Luckily, here we can get r id of th is p rob lem, by removing the first ha l f of the
knapsack . We thus get a compress ion func t ion wi th compress ion r a t e roughly
1. However , accord ing to our analysis , i t is s t i l l poss ible to f ind col l is ion in a
compress ion func t ion involv ing 128 number s of 120 bits .

T h e m a i n p r o b l e m in order to i m p l e m e n t th is a t t a c k aga ins t D a m g a r d hash-

64

Dimens ion Successes (/10) Use r C P U
10 10 0.0s
12 10 0.0s
14 10 0.0s
16 10 0.0s
18 9 0.0s
20 10 0.0s
22 10 0.5s
24 9 1.1s
26 10 1.Ts
28 10 3.0s
30 9 3.9s
32 10 7.2s
34 10 7.8s
36 10 l l . l s
38 10 14.0s
40 10 19.3s
42 9 25.1s
44 10 31.3s
46 10 32.0s
48 10 45.3s
50 9 53.7s
52 7' 63.1s
54 10 75.5s
56 10 71.7s
58 7 77.5s
60 8 130.7s
62 6 109.8s
64 6 143.4s
66 9 151.2s
68 4 147.0s
70 3 190.2s
72 1 185.8s
74 0 186.9s
76 4 198.8s
78 4 235.2s
80 4 298.3s
82 2 329.1s
84 2 344.8s
86 2 360.9s
88 1 379.3s
90 0 373.2s
92 0 419.3s

Dimension Successes (/10) User C P U
11 10 0.0s
13 10 0.0s
15 10 0.0s
17 9 0.0s
19 10 0.0s
21 10 0.3s
23 10 1.1s
25 10 1.6s
27 10 2.3s
29 10 2.9s

10 6.8s

35 10 10.1s
37 10 13.1s
39 10 20.0s
41 9 20.6s
43 10 26.5s
45 9 32.7s
47 10 38.5s
49 10 40.9s
51 10 55.8s
53 9 65.2s
55 10 68.0s
57 6 90. Is
59 9 100. Is
61 7 95.8s
63 6 126.0s
65 8 135.4s
67 5 158.7s
69 5 153.3s
71 4 192.8s
73 2 186.1s
75 3 190.9s
77 2 220.6s
79 2 244.0s
81 1 285.8s
83 3 331.2s
85 0 290.2s
87 0 350.9s
89 0 309.0s
91 0 395.9s
93 0 403.2s

F i g . 4 . Resul ts us ing BKZ10

Dimension Successes (/10) User CPU
20 10 0.1s
22 10 0.5s
24 10 1.2s
26 10 2.1s
28 10 3.5s
30 10 5.2s
32 10 9.0s
34 10 13.7s
36 10 13.9s
38 10 27.8s
40 10 37.5s
42 10 43.0s
44 8 56.0s
46 10 84.9s
48 10 91.5s
50 10 134.1s
52 9 163.7s
54 10 303.8s
56 10 205.4s
58 9 320.6s
60 10 424.2s
62 10 404.7s
64 9 404. Is
66 8 445.3s
68 7 518.3s
70 10 783.3s
72 8 706.4s
74 8 685.5s
76 8 740.1s
78 3 924.0s
80 5 945.2s
82 5 1215.9s
84 6 1239.2s
86 5 1461.2s
88 4 1654.3s
90 2 1693.5s
92 3 1997.1s
94 4 1876.6s
96 1 1921.6s
98 0 1934.0s
100 2 2064.2s
102 0 2490.7s
104 1 2562.0s

65

Dimension Successes (/10) User CPU
21 10 0.2s
23 10 1.0s
!25 10 1.4s
27 10 2.7s
:29 10 3.7s
131 I0 6.0s
33 lO l l .9s
35 10 16.5s
37 10 19.9s
39 10 26.98
41 10 41.1s
43 10 55.8s
45 9 51.3s
47 10 93.0s
49 10 108.5s
51 10 184.2s
53 10 223.1s
55 10 243.4s
57 10 255.9s
59 10 285.5s
51 10 378.3s
63 8 463.9s
65 8 464.9s
67 8 656.3s
69 7 545.0s
71 10 597.5s
73 8 513.0s
75 4 744.0s
77 6 747.0s
79 5 979.7s
81 4 993.7s
83 7 1025.4s
85 5 1248.8s
87 2 1434.8s
89 5 1251.4s
91 2 1773.3s
93 2 2074.4s
95 2 1869.3s
97 0 2201.8s
99 0 1788.4s
101 0 2493.1s
103 0 2622.5s
105 0 2750.3s

F ig . 5. Results using BKZ20

66

function is to find a suitable lattice reduction algorithm. We know from the
previous section that BKZ20 is not strong enough in this case, and BKZ reduc-
tion with larger blocks is too slow. Luckily, C.P. Schnorr and M. Euchner have
presented in their paper [7], a very efficient lattice reduction algorithm called
pruned blockwise Korkine-Zolotarev reduction. We have slightly modified the
algori thm in order to tune it for the lattices we are dealing with, and we also
introduced a limit on the running t ime of the program. Tests were performed
both on the Sun sparcstat ion 10 and on an IBM RS6000 model 590 which is
roughly 1.7 times faster. We used t ime limit lh and 4h on the IBM and 24h on
the sparcstat ion (this correspond roughly to 14h on the IBM). We obtained the
following success rates:

Time limit # trials # success rate
lh 100 3 0.03
4h 100 10 0.10

14h 30 8 0.27

This clearly that collisions can be found in Damgard ' s hash-function.

7 Acknowledgments

We would like to thank Jacques Stern for his helpful comments and for his proof
of l emma 1.

R e f e r e n c e s

1. P. Camion and J. Patarin. The knapsack hash-function proposed at crypto'89 can
be broken. In D. W. Davies, editor, Advances in Cryptology, Proceedings of Euro-
crypt'91, volume 547 of Lecture Notes in Computer Science, pages 39-53, New York,
1991. Springer-Verlag.

2. M.J . Costerr, A. Joux, B. A. LaMacchia, A.M. Odlyzko, C.-P. Sclmorr, and
J. Stem. Subset sum algorithms. Comp. Complexity, 2:11-28, 1992.

3. I. Damgard. A design principle for hash functions. In Advances in Cryptology,
Proceedings of Crypto '89, volume 435 of Lecture Notes in Computer Science, pages
25-37, New York, 1989. Springer-Verlag.

4. A. Joux and J. Stem. Lattice reduction: a toolbox for the cryptanalyst, submitted
to the Journal of Cryptology, 1994.

5. J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. J.
Assoc. Comp. Mach., 32(1):229-246, 1985.

6. A. K. Lenstra, H. W. Lenstra, and L. Lov~sz. Factoring polynomials with rational
coefficients. Math. Ann., 261:515-534, 1982.

7. C.-P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems. In L. Budach, editor, Proceedings of Fun-
damentals of Computation Theory 91, volume 529 of Lecture Notes in Computer
Science, pages 68-85, New York, 1991. Springer-Verlag.

