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Abs t rac t .  In this paper, we show that lattice reduction is a very pow- 
erful tool to find collision in knapsack based compression-fimctions and 
hash-functions. In particular, it can be used to break the knapsack based 
hash-function that was introduced by Damgard [3] 

1 I n t r o d u c t i o n  

The knapsack problem, is a well-know NP-complete problem that  can quite 
easily be used to construct cryptosystems or hash-functions. Thus many cryp- 
tographic functions have been based on this problem, however, lattice reduction 
is a very powerful tool to break knapsack-based cryptosystems. This was shown 
by Lagarias and Odlyzko [5], and their result was improved by Coster and al in 
[2]. 

In this article, we show that  lattice reduction can also be used to find collisions 
in knapsack-based compression-functions. And we apply this tool to Damgard's 
hash-function based on such a knapsack compression function. A completely 
different kind of attack was already presented by P. Camion and J. Patarin in 
[1], however, it was not implemented, and it permit ted to find collisions in the 
compression function rather than in the full hash function. 

Throughout  this paper, in order to simplify the analysis of the problem, we 
suppose that  we are granted access to a lattice reduction oracle, that  given any 
lattice produces a shortest vector in this lattice. In practice, this oracle will 
be replaced either by the LLL algorithm [6] or a blockwise Korkine-Zolatarev 
algorithm [7]. This approach, which enables us to focus on the reduction of 
collision search to lattice reduction, without needing to worry about the state of 
the art  in lattice reduction algorithms, is also used in [2]. 

2 F i r s t  a p p r o a c h  t o  t h e  r e d u c t i o n  t e c h n i q u e  

In this section, we define a lattice associated to a given knapsack-based compression- 
function in such a way that  collisions correspond to short vectors. 

Let us now make a few notations precise, before describing the reduction 
technique. Given any set of n integers, al,  . . . ,  an, we can define a integer valued 
function which given any vector x in {0, 1}'* computes S(x)  = ~~i'=1 aixi.  We can 
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also define the density of S, d = n Then v = 1/d is the compression rate of 
m a x ,  a ,  " 

the compression function S, since S transform n bits into an + log2(n ) bits. In 
the sequel, in order to simplify the analysis, we want to ignore the log2(n ) term, 
thus we will work with modular knapsacks instead of usual knapsacks�9 However, 
similar results can be obtained in the non-modular ease, as will be shown in the 
full paper. In this paper, we use the same approach as in Coster's analysis of the 
Lagarias-Odlyzko attack, more precisely, we fix a value for T we let m = [Tn] 
and choose for the ai random values lower than 2 "~. As n tends toward infinity, 
this generating process models random knapsacks of compression rate v. These 
knapsack are then considered modulo 2 m. 

In order to search collisions in such a modular knapsack, we reduce the 
following lattice: 

0 
B =  1 0 0 

0 1 0 
"Note that  this lattice is a modular variation of Lagarias-Odlyzko's lattice for 
solving knapsack problems (see [5]). Let us consider the various short vectors 
that  can occur. Since K is large, it is clear that the first component of a short 
vector is 0. Looking at the other components, two things can happen, either they 
are all 0, 1 or - 1 ,  or not. If the shortest vector is of the first type, we clearly get 
a collision, since having the vector: 

in the lattice B, with all es 0, 1 or - 1  implies: 

i=l 
and thus: 

~ ai :- ~ ai, 
e , ~ l  e , ~ - - - 1  

In general, we cannot show that  the shortest vector will be of the proper 
type, we actually expect that  the probability for such a vector to occur, tends 
exponentially fast towards 0. However, we show in the next section, that  using 
a lattice reduction oracle, we can find collisions in a knapsack compression func- 
tion, must faster than by exhaustive search or a birthday paradox attack. We 
also show that  in small dimensions, the naive algorithm works in practice by giv- 
ing experimental result on the success rate of the non-modular naive algorithm 
using LLL, or a blockwise Korkine-Zolotarev reduction algorithm in place of the 
lattice reduction oracle. 
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3 A v e r a g e  s i z e  o f  t h e  c o l l i s i o n  

In this section, we show how to compute the average size of a collision for the 
kind of knapsacks we are looking at. Let us consider random knapsacks of n 
elements and fixed compression rate r, we have: 

L e m m a  1. Let p be a fixed constant such that 

p + H2(p) > v > p 

With probability tending exponentially to 1 when n tends to infinity, there exists 
a relation 

~ ~iai = 0 
i=1 

where all eis are O, 1 or - 1  and where 

I'it _< ,on 

In the above Z2(a) denotes, as usual, - a l o g a -  ( 1 -  a ) l o g ( 1 -  a). 
Let us sketch the proof: 

Consider the family of all possible vectors with n coordinates, all of them 0, 1 
or -1 ,  with size pn. The number of elements in this family is roughly 2~"2 H2(p)". 
A collision is expected for N > 2 ~", thus leading to the above lemma. 

This proof can be made precise, and will be presented in [4]. 

4 F i n d i n g  c o l l i s i o n s  u s i n g  a l a t t i c e  r e d u c t i o n  o r a c l e  

Given a random knapsack of size n and compression rate r, we know that almost 
surely it contains a collision of size (L(r)  + e)n. Suppose now, that we can guess 
an  non zero elements of such a collision, then we can form another random 
modular knapsack by replacing the an dements involved in the guess by their 
ponderated sum modulo 2 m. We thus obtain a modular knapsack containing 
( 1 -  (~)n + 1 random modular numbers b0, bl, . . . ,  b(l_~),~. We can associate to 
the knapsack the following lattice: 

B' = i o 1 0 0 . 

0 1 0 

By construction, this lattice contains a short vector of size ( L ( r ) +  e - a ) n  + 1. 
Transposing the main argument from Lagarias-Odlyzko, we can show that with 
a probability tending exponentially fast towards 1, this vector is the shortest 
existing in the lattice B', as soon as the density of the new knapsack is smaller 
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than a function of the relative size of the short vector in the new knapsack. This 
relative size is: 

L( r )  + e - 

1 - a  ' 
and the density is: 

1 - c t  

T 

Since the condition from Lagarias-Odlyzko involves complicated functions, we 
can' t  give a close form for the solution. However, we have computed the graph 
of a as a function of r ,  see figure 4 for the curve corresponding to the limiting 
c a s e  ~ ~ 0 .  

We can now derive an semi-exhaustive search algorithm, where we try random 
subsets of size ~n, and all partitions of these subsets into Is and - I s .  The 
probability for a random subset to be part of a fixed collision of size L(v)n (we 
are still considering the case e = 0) is roughly 2 m~, where # is a function of r (see 
figure 4). Thus this semi-exhaustive algorithme costs 0(2(~+v)n) steps, where 
each step is a call to the lattice reduction oracle. In the worst case, when v = 1, 
this yields a running time of approximately 0(2 nil~176176 steps. This proves that  
in the general case, searching a collision in a knapsack problem is much more 
efficient using lattice reduction than using a birthday paradox attack (0(2 ~nP) 
steps). On the other hand, this is still an exponential t ime algorithm. 

5 Practical  results in small size 

Looking at the results of the previous section, it is tempting to forget that  we 
are dealing with asymptotic results, and to look what happen if we substitute 
finite values for n in the formulaes. Moreover, as long as an stays below 1, we 
can argue that  there is no need to guess the missing bit and hope that  a single 
lattice reduction will find a collision. 

In this section we give a table of practical results, using the worst case com- 
pression rate 1, and various lattice reduction algorithms, namely LLL and Block- 
wise Korkine-Zolotarev reduction with blocs of size 10 and 20. These results 
concern non-modular knapsacks, and thus use the following lattice: 

B = 

I Kal Ka2 ... Kan l 

i ~ ~ 
1 0 

0 1 
The tables in figures 5, 5 and 5 contain success rate and average user running 

times on a Sun sparcstation for knapsacks with compression rate 1, i.e. for worst 
case compression knapsacks. For each choice of dimension and algorithm, the 
success rate and running are averaged over 10 random knapsacks. These tables 
show that  using LLL, we can find collisions with non-negligible success rate up 
to dimension ~ 60, with BKZ10 up to dimension ~ 90 and with BKZ20 up to 
dimension ~ 105. 
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Dimension Successes (/10) User CPU 
5 10 0.0s 
7 10 O.Os 
9 10 O.Os 
11 10 O.Os 
13 10 O.Os 
15 10 0.0s 
17 9 0.0s 
19 10 0.0s 
21 10 0.0s 
23 10 0.0s 
25 9 0.6s 
27 10 1.0s 
29 9 1.2s 
31 9 2.0s 
33 9 2.0s 
35 9 2.9s 
37 6 3.3s 
39 4 3.7s 
41 8 4.3s 
43 8 5.2s 
45 5 5.6s 
47 2 7.5s 
49 2 7.6s 
51 1 8.8s 
53 3 9.0s 
55 0 l l . 3 s  
57 1 12.2s 
59 2 13.1s 
61 0 14.4s 
63 1 15.0s 
65 0 17.9s 

63 

Dimension Successes (/10) User CPU 
6 10 0.0s 
8 10 0.0s 
10 10 0.0s 
12 10 0.0s 
!14 10 0.0s 
16 10 0.0s 
!18 9 O.Os 
20 10 0.0s 
!22 10 O.Os 
~4 10 0.0s 

9 0.9s 
28 9 1.1s 
30 10 1.4s 
32 10 1.9s 
34 5 2.5s 
36 7 2.9s 
38 7 3.5s 
40 5 4.5s 
42 7 5.3s 
44 5 5.5s 
46 6 6.3s 
48 3 7.5s 
50 2 8.2s 
52 2 8.8s 
54 3 10.8s 
56 0 10.9s 
58 1 12.5s 
60 0 14.6s 
62 0 16.3s 
64 0 17.4s 

F ig .  3. Results using LLL 

6 Attacking Damgard hash-function 

In [3], D a m g a r d  p roposed  to  base  an hash func t ion  on a knapsack  compress ion  
func t ion  us ing 256 non m o d u l a r  number s  of  size 120 bi ts .  Th is  roughly  corre- 
sponds  to  a compress ion  ra te  of  1/2.  However,  in generM, f inding coll is ions for 
a hash  func t ion  is ha rde r  t h a n  in for the  cor responding  compress ion  funct ion ,  
because  the  first  ha l f  of  the  d a t a  en ter ing  the  compress ion  funct ion  is e i ther  a 
f ixed i n i t i a l i s a t i on  value  or  the  resul t  of  previous  rounds  of  the  hash  funct ions .  
Luckily,  here we can  get  r id  of  th is  p rob lem,  by  removing  the  first ha l f  of  the  
knapsack .  We thus  get  a compress ion  func t ion  wi th  compress ion  r a t e  roughly  
1. However ,  accord ing  to  our  analysis ,  i t  is s t i l l  poss ible  to  f ind col l is ion in a 
compress ion  func t ion  involv ing  128 number s  of  120 bits .  

T h e  m a i n  p r o b l e m  in order  to  i m p l e m e n t  th is  a t t a c k  aga ins t  D a m g a r d  hash-  
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Dimens ion  Successes ( /10 )  Use r  C P U  
10 10 0.0s 
12 10 0.0s 
14 10 0.0s 
16 10 0.0s 
18 9 0.0s 
20 10 0.0s 
22 10 0.5s 
24 9 1.1s 
26 10 1.Ts 
28 10 3.0s 
30 9 3.9s 
32 10 7.2s 
34 10 7.8s 
36 10 l l . l s  
38 10 14.0s 
40 10 19.3s 
42 9 25.1s 
44 10 31.3s 
46 10 32.0s 
48 10 45.3s 
50 9 53.7s 
52 7' 63.1s 
54 10 75.5s 
56 10 71.7s 
58 7 77.5s 
60 8 130.7s 
62 6 109.8s 
64 6 143.4s 
66 9 151.2s 
68 4 147.0s 
70 3 190.2s 
72 1 185.8s 
74 0 186.9s 
76 4 198.8s 
78 4 235.2s 
80 4 298.3s 
82 2 329.1s 
84 2 344.8s 
86 2 360.9s 
88 1 379.3s 
90 0 373.2s 
92 0 419.3s 

Dimension Successes ( /10 )  User  C P U  
11 10 0.0s 
13 10 0.0s 
15 10 0.0s 
17 9 0.0s 
19 10 0.0s 
21 10 0.3s 
23 10 1.1s 
25 10 1.6s 
27 10 2.3s 
29 10 2.9s 

10 6.8s 

35 10 10.1s 
37 10 13.1s 
39 10 20.0s 
41 9 20.6s 
43 10 26.5s 
45 9 32.7s 
47 10 38.5s 
49 10 40.9s 
51 10 55.8s 
53 9 65.2s 
55 10 68.0s 
57 6 90. Is  
59 9 100. Is  
61 7 95.8s 
63 6 126.0s 
65 8 135.4s 
67 5 158.7s 
69 5 153.3s 
71 4 192.8s 
73 2 186.1s 
75 3 190.9s 
77 2 220.6s 
79 2 244.0s 
81 1 285.8s 
83 3 331.2s 
85 0 290.2s 
87 0 350.9s 
89 0 309.0s 
91 0 395.9s 
93 0 403.2s 

F i g .  4 .  Resul ts  us ing  BKZ10  



Dimension Successes (/10) User CPU 
20 10 0.1s 
22 10 0.5s 
24 10 1.2s 
26 10 2.1s 
28 10 3.5s 
30 10 5.2s 
32 10 9.0s 
34 10 13.7s 
36 10 13.9s 
38 10 27.8s 
40 10 37.5s 
42 10 43.0s 
44 8 56.0s 
46 10 84.9s 
48 10 91.5s 
50 10 134.1s 
52 9 163.7s 
54 10 303.8s 
56 10 205.4s 
58 9 320.6s 
60 10 424.2s 
62 10 404.7s 
64 9 404. Is 
66 8 445.3s 
68 7 518.3s 
70 10 783.3s 
72 8 706.4s 
74 8 685.5s 
76 8 740.1s 
78 3 924.0s 
80 5 945.2s 
82 5 1215.9s 
84 6 1239.2s 
86 5 1461.2s 
88 4 1654.3s 
90 2 1693.5s 
92 3 1997.1s 
94 4 1876.6s 
96 1 1921.6s 
98 0 1934.0s 
100 2 2064.2s 
102 0 2490.7s 
104 1 2562.0s 

65 

Dimension Successes (/10) User CPU 
21 10 0.2s 
23 10 1.0s 
!25 10 1.4s 
27 10 2.7s 
:29 10 3.7s 
131 I0 6.0s 
33 lO l l .9s  
35 10 16.5s 
37 10 19.9s 
39 10 26.98 
41 10 41.1s 
43 10 55.8s 
45 9 51.3s 
47 10 93.0s 
49 10 108.5s 
51 10 184.2s 
53 10 223.1s 
55 10 243.4s 
57 10 255.9s 
59 10 285.5s 
51 10 378.3s 
63 8 463.9s 
65 8 464.9s 
67 8 656.3s 
69 7 545.0s 
71 10 597.5s 
73 8 513.0s 
75 4 744.0s 
77 6 747.0s 
79 5 979.7s 
81 4 993.7s 
83 7 1025.4s 
85 5 1248.8s 
87 2 1434.8s 
89 5 1251.4s 
91 2 1773.3s 
93 2 2074.4s 
95 2 1869.3s 
97 0 2201.8s 
99 0 1788.4s 
101 0 2493.1s 
103 0 2622.5s 
105 0 2750.3s 

F ig .  5. Results using BKZ20 
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function is to find a suitable lattice reduction algorithm. We know from the 
previous section that  BKZ20 is not strong enough in this case, and BKZ reduc- 
tion with larger blocks is too slow. Luckily, C.P. Schnorr and M. Euchner have 
presented in their paper  [7], a very efficient lattice reduction algorithm called 
pruned blockwise Korkine-Zolotarev reduction. We have slightly modified the 
algori thm in order to tune it for the lattices we are dealing with, and we also 
introduced a limit on the running t ime of the program. Tests were performed 
both  on the Sun sparcstat ion 10 and on an IBM RS6000 model 590 which is 
roughly 1.7 times faster. We used t ime limit lh  and 4h on the IBM and 24h on 
the sparcstat ion (this correspond roughly to 14h on the IBM). We obtained the 
following success rates: 

Time limit # trials # success rate 
lh  100 3 0.03 
4h 100 10 0.10 

14h 30 8 0.27 

This clearly that  collisions can be found in Damgard ' s  hash-function. 
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