
A Practical Attack on the MIFARE Classic

Gerhard de Koning Gans, Jaap-Henk Hoepman,
and Flavio D. Garcia

Institute for Computing and Information Sciences
Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
gkoningg@sci.ru.nl,

jhh@cs.ru.nl,
flaviog@cs.ru.nl

Abstract. The mifare Classic is the most widely used contactless smart
card in the market. Its design and implementation details are kept se-
cret by its manufacturer. This paper studies the architecture of the card
and the communication protocol between card and reader. Then it gives
a practical, low-cost, attack that recovers secret information from the
memory of the card. Due to a weakness in the pseudo-random genera-
tor, we are able to recover the keystream generated by the CRYPTO1
stream cipher. We exploit the malleability of the stream cipher to read
all memory blocks of the first sector of the card. Moreover, we are able
to read any sector of the memory of the card, provided that we know one
memory block within this sector. Finally, and perhaps more damaging,
the same holds for modifying memory blocks.

1 Introduction

RFID and contactless smart cards have become pervasive technologies nowadays.
Over the last few years, more and more systems adopted this technology as
replacement for barcodes, magnetic stripe cards and paper tickets for a variety
of applications. Contact-less cards consist of a small piece of memory that can
be accessed wirelessly, but unlike RFID tags, they also have some computing
capabilities. Most of these cards implement some sort of simple symmetric-key
cryptography, which makes them suitable for applications that require access
control.

A number of high profile applications make use of contactless smart cards for
access control. For example, they are used for payment in several public transport
systems like the Octopus card1 in Hong Kong, the Oyster card2 in London, and
the OV-Chipkaart3 in The Netherlands, among others. Many countries have al-
ready incorporated a contactless card in their electronic passports [3] and several
car manufacturers have it embedded in their car keys as an anti-theft method.
1 http://www.octopuscards.com/
2 http://oyster.tfl.gov.uk
3 http://www.ov-chipkaart.nl/

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 267–282, 2008.
c© IFIP International Federation for Information Processing 2008

http://www.octopuscards.com/
http://oyster.tfl.gov.uk
http://www.ov-chipkaart.nl/

268 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

Many office buildings and even secured facilities like airports and military bases,
use contactless smart cards for access control.

On the one hand, the wireless interface has practical advantages: without
mechanical components between readers and cards, the system has lower main-
tenance costs, is more reliable, and has shorter reading times, providing higher
throughput. On the other hand, it represents a potential threat to privacy [3]
and it is susceptible to relay, replay and skimming attacks that were not possible
before.

There is a huge variety of cards on the market. They differ in size, casing,
memory and computing power. They also differ in the security features they
provide. A well known and widely used system is mifare. mifare is a product
family from NXP semiconductors (formerly Philips). According to NXP there
are about 200 million mifare cards in use around the world, covering 85% of the
contactless smartcard market. The mifare family contains four different types of
cards: Ultralight, Standard, DESFire and SmartMX. The mifare Classic cards
come in three different memory sizes: 320B, 1KB and 4KB. The mifare Classic
is the most widely used contactless card in the market. Throughout this paper
we focus on this card. mifare Classic provides mutual authentication and data
secrecy by means of the so called CRYPTO1 stream cipher. This cipher is a
proprietary algorithm of NXP and its design is kept secret.

Nohl and Plötz [7] have recently reverse engineered the hardware of the chip
and exposed several weaknesses. Among them, due to a weakness on the pseudo-
random generator, is the observation that the 32-bit nonces used for authenti-
cation have only 16 bits of entropy. They also noticed that the pseudo-random
generator is stateless. They claim to have knowledge of the exact encryption al-
gorithm which would facilitate an off-line brute force attack on the 48-bit keys.
Such an attack would be feasible, in a reasonable amount of time, especially if
dedicated hardware is available.

Our Contribution. We used a Proxmark III4 to analyze mifare cards and
mount an attack. To do so, we have implemented the ISO 14443-A functionality
on the Proxmark, since only ISO 14443-B was implemented at that time. We
programmed both processing and generation of reader-to-tag and tag-to-reader
communication at physical and higher levels of the protocol. The source code of
the firmware is available in the public domain5. Concurrently, and independently
from Nohl and Plötz results, we also noticed a weakness in the pseudo-random
generator.

Our contribution is threefold: First and foremost, using the weakness of the
pseudo-random generator, and given access to a particular mifare card, we
are able to recover the keystream generated by the CRYPTO1 stream cipher,
without knowing the encryption key. Secondly, we describe in detail the com-
munication between tag and reader. Finally, we exploit the malleability of the
stream cipher to read all memory blocks of the first sector (sector zero) of the
card (without having access to the secret key). In general, we are able to read
4 http://cq.cx/proxmark3.pl
5 http://www.proxmark.org

http://cq.cx/proxmark3.pl
http://www.proxmark.org

A Practical Attack on the MIFARE Classic 269

any sector of the memory of the card, provided that we know one memory block
within this sector. After eavesdropping a transaction, we are always able to read
the first 6 bytes of every block in that sector, and in most cases also the last 6
bytes. This leaves only 4 unrevealed bytes in those blocks.

We would like to stress that we notified NXP of our findings before publishing
our results. Moreover, we gave them the opportunity to discuss with us how to
publish our results without damaging their (and their customers) immediate
interests. They did not take advantage of this offer.

Consequences of Our Attack. Any system using mifare Classic cards that
relies on the secrecy or the authenticity of the information stored on sector zero
is now insecure. Our attack recovers, in a few minutes, all secret information
in that sector. It also allows us to modify any information stored there. This is
also true for most of the data in the remaining sectors, depending on the specific
scenario. Besides, our attack complements Nohl and Plötz results providing the
necessary plaintext for a brute force attack on the keys. This is currently work
in progress.

Outline of this Paper. Section 2 describes the architecture of the mifare
cards and the communication protocol. Section 3 describes the hardware used to
mount the attack. Section 4 discusses the protocol by a sample trace. Section 5
exposes weaknesses in the design of the cards. The attack itself is described in
Section 6. Finally, Section 8 gives some concluding remarks and detailed sugges-
tions for improvement.

2 MIFARE Classic

Contactless smartcards are used in many applications nowadays. Contactless
cards are based on radio frequency identification technology (RFID) [1]. In 1995
NXP, Philips at that time, introduced mifare6. Some target applications of
mifare are public transportation, access control and event ticketing. The mifare
Classic [8] card is a member of the mifare product family and is compliant with
ISO 14443 up to part 3. ISO 14443 part 4 defines the high-level protocol and
here the implementation of NXP differs from the standard. Section 2.1 discusses
the different parts of the ISO standard.

2.1 Communication Layer

The communication layer of the mifare Classic card is based on the ISO 14443
standard [4]. This ISO standard defines the communication for identification
cards, contactless integrated circuit(s) cards and proximity cards. The standard
consists of four parts.

Part 1 describes the physical characteristics and circumstances under which
the card should be able to operate.

6 http://www.nxp.com

http://www.nxp.com

270 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

Part 2 defines the communication between the reader and the card and vice
versa. The data can be encoded and modulated in two ways, type A and type B.
mifare Classic uses type A. For more detailed information about the commu-
nication on RFID we refer to the “RFID Handbook” by Klaus Finkenzeller [1].

Part 3 describes the initialization and anticollision protocol. The anticollision
is needed in order to select a particular card when more cards are present within
the reading range of the reader. After a successful initialization and anticollision
the card is in an active state and ready to receive a command.

Part 4 defines how commands are send. This is the point where mifare Classic
differs from the ISO standard, using a proprietary and undisclosed protocol. The
mifare Classic starts with an authentication, after that all communication is
encrypted. On every eight bits a parity bit is computed to detect transmission
errors. In the mifare Classic protocol this parity bit is also encrypted which
means that integrity checks are only possible in the application layer.

2.2 Logical Structure

A mifare Classic card is in principle a memory card with few extra functionali-
ties. The memory is divided into data blocks of 16 bytes. Those data blocks are
grouped into sectors. The mifare Classic 1k card has 16 sectors of 4 data blocks
each. The first 32 sectors of a mifare Classic 4k card consists of 4 data blocks
and the remaining 8 sectors consist of 16 data blocks. Every last data block of
a sector is called sector trailer. A schematic of the memory of a mifare Classic
4k card is shown in Figure 1.

Note that block 0 of sector 0 contains special data. The first 4 data bytes
contain the unique identifier of the card (UID) followed by its 1-byte bit count
check (BCC). The bit count check is calculated by successively XOR-ing all UID

Fig. 1. mifare Classic 4k Memory

A Practical Attack on the MIFARE Classic 271

bytes. The remaining bytes are used to store manufacturer data. This data block
is read-only. The reader needs to authenticate for a sector before any memory
operations are allowed. The sector trailer contains the secret keys A and B which
are used for authentication. The access conditions define which operations are
available for this sector.

The sector trailer has special access conditions. Key A is never readable and
key B can be configured as readable or not. In that case the memory is just used
for data storage and key B cannot be used as an authentication key. Besides the
access conditions (AC) and keys, there is one data byte (U) remaining which has
no defined purpose. A schematic of the sector trailer is shown in Figure 2a. A
data block is used to store arbitrary data or can be configured as a value block.
When used as a value block a signed 4-byte value is stored twice non-inverted
and once inverted. Inverted here means that every bit of the value is XOR-ed
with 1. These four bytes are stored from the least significant byte on the left
to the most significant byte on the right. The four remaining bytes are used to
store a 1-byte block address that can be used as a pointer.

(a) Sector Trailer (b) Value Block

Fig. 2. Block contents

2.3 Commands

The command set of mifare Classic is small. Most commands are related to a
data block and require the reader to be authenticated for its containing sector.
The access conditions are checked every time a command is executed to deter-
mine whether it is allowed or not. A block of data might be configured to be
read only. Another example of a restriction might be a value block which can
only be decremented.

Read and Write. The read and write commands read or write one data block.
This is either a data block or a value block. The write command can be used to
format a data block as value block or just store arbitrary data.

Decrement, Increment, Restore and Transfer. These commands are only
allowed on data blocks that are formatted as value blocks. The increment and
decrement commands will increment or decrement a value block with a given
value and place the result in a memory register. The restore command loads a
value into the memory register without any change. Finally the memory register
is transferred in the same block or transferred to another block by the transfer
command.

272 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

2.4 Security Features

The mifare Classic card has some built-in security features. The communication
is encrypted by the proprietary stream cipher CRYPTO1.

Keys. The 48-bit keys used for authentication are stored in the sector trailer of
each sector (see section 2.2). mifare Classic uses symmetric keys.

Authentication Protocol. mifare Classic makes use of a mutual three pass
authentication protocol that is based on ISO 9798-2 according to the mifare
documentation [8]. However, it turned out that this is not completely true [2].
In this paper we only use the first initial nonce that is send by the card. The
reader sends a request for sector authentication and the card will respond with
a 32-bit nonce NC . Then, the reader sends back an 8-byte answer to that nonce
which also contains a reader random NR. This answer is the first encrypted
message after the start of the authentication procedure. Finally, the card sends
a 4-byte response. As far as our attack is concerned this description captures all
the necessary information.

3 Hardware and Software

An RFID system consists of a transponder (card) and a reader [1]. The reader
contains a radio frequency module, a control unit and a coupling element to
the card. The card contains a coupling element and a microchip. The control
unit of a mifare Classic enabled reader is typically a mifare microchip with a
closed design. This microchip communicates with the application software and
executes commands from it. Note that the actual modulation of commands is
done by this microchip and not by the application software. The design of the
microchip of the card is closed and so is the communication protocol between
card and reader.

Fig. 3. The Proxmark III

We want to evaluate the security properties of
the mifare system. Therefore we need hardware to
eavesdrop a transaction. It should also be possible
to act like a mifare reader to communicate with
the card. The Proxmark III developed by Jonathan
Westhues has these possibilities7. Because of its
flexible design, it is possible to adjust the Digi-
tal Signal Processing to support a specific protocol.
This device supports both low frequency (125 kHz -
134kHz) and high frequency (13.56MHz) signal processing. The signal from the
antenna is routed through a Field Programmable Gate Array (FPGA). This
FPGA relays the signal to the microcontroller and can be used to perform
some filtering operations before relaying. The software implementation allows
the Proxmark to eavesdrop communication (Figure 4) between an RFID tag

7 Hardware design and software is publicly available at http://cq.cx/proxmark3.pl

http://cq.cx/proxmark3.pl

A Practical Attack on the MIFARE Classic 273

Fig. 4. Experimental Setup

and a reader, emulate a tag and a reader. In this case our tag will be the mi-
fare Classic card. Despite the basic hardware support for these operations the
actual processing of the digitized signal and (de)modulation needs to be pro-
grammed for each specific application. The physical layer of the mifare Classic
card is implemented according to the ISO14443-A standard [4]. We had to im-
plement the ISO14443-A functionality since it was not implemented yet. This
means we had to program both processing and generation of reader-to-tag and
tag-to-reader communication in the physical layer and higher level protocol. To
meet the requirements of a replay attack we added the functions ‘hi14asnoop’ to
make traces, ‘hi14areader’ to act like a reader and ‘hi14asim’ to simulate a card.
We added the possibility to send custom parity bits. This was needed because
parity bits are part of the encryption.

4 Communication Characteristics

To find out what the mifare Classic communication looks like we made traces
of transactions between mifare readers and cards. This way, we gathered many
traces which gave us some insights on the high-level protocol of mifare Clas-
sic. In this section we explain a trace we recorded as an example, which is
shown in Figure 5. This trace contains every part of a transaction. We refer
to the sequence number (SEQ) of the messages we discuss. The messages from
the reader are shown as PCD (Proximity Coupling Device) messages and from
the card as TAG messages. The time between messages is shown in Elementary
Time Units (ETU). One ETU is a quarter of the bit period, which equals 1.18µs.
The messages are represented in hexadecimal notation. If the parity bit of a byte
is incorrect8, this is shown by an exclamation mark. We will discuss only the
most significant messages.

Anticollision. The reader starts the SELECT procedure. The reader sends 93
20 (#3), on which the card will respond with its unique identifier (#4). The
8 Encrypted parity bits show up as parity error in the message.

274 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

ETU SEQ sender bytes

0 : 01 : PCD 26

64 : 02 : TAG 04 00

12097 : 03 : PCD 93 20

64 : 04 : TAG 2a 69 8d 43 8d

16305 : 05 : PCD 93 70 2a 69 8d 43 8d 52 55

64 : 06 : TAG 08 b6 dd

��������
�������

Anticollision

16504 : 07 : PCD 60 04 d1 3d

112 : 08 : TAG 3b ae 03 2d

6952 : 09 : PCD c4! 94 a1 d2 6e! 96 86! 42
64 : 10 : TAG 84 66! 05! 9e!

����
���

Authentication

396196 : 11 : PCD a0 61! d3! e3
208 : 12 : TAG 0d

8442 : 13 : PCD 26 42 ea 1d f1! 68!
5120 : 14 : PCD 8d! ca cd ea

2816 : 15 : TAG 06!

������
�����

Increment & Transfer

1349238 : 16 : PCD 2a 2b 17 97

72 : 17 : TAG 49! 09! 3b! 4e! 9e! 5e b0 06 d0!
07! 1a! 4a! b4! 5c b0! 4f c8! a4!

��
� Read

Fig. 5. Trace of a card with default keys, recorded by the Proxmark III

reader sends 93 70 followed by the UID and two CRC bytes (#5) to select the
card.

Authentication. The card is in the active state and ready to handle any higher
layer commands. In Section 2.4 we discussed the authentication protocol. In
Figure 5, messages #7 to #10 correspond to the authentication.

The authentication request of the reader is 60 04 d1 3d (#07). The first byte
60 stands for an authentication request with key A. For authentication with key
B, the first byte must be 61. The second byte indicates that the reader wants to
authenticate for block 4. Note that block 4 is part of sector 1 and therefore this
is an authentication request for sector 1. The last two bytes are CRC bytes.

Encrypted Communication. After this successful authentication the card is
ready to handle commands for sector 1. The structure of the commands can be
recognized clearly. Since we control the mifare Classic reader we knew which
commands were sent. Message #11 to #15 show how an increment is performed.
The increment is immediately followed by a read command (#16 and #17).

5 Weakness in MIFARE Classic

Nohl and Plötz partially recovered the CRYPTO1 algorithm that is used to
encrypt the communication between the card and the reader [7,5]. The pseudo-
random generator on the card, which initiates the algorithm by generating a
nonce, is weak. In our analysis, we use this weakness to extend the work of Nohl
and Plötz with a practical attack, which delivers the needed known plaintext for

A Practical Attack on the MIFARE Classic 275

brute-force, and a description of the mifare Classic protocol. In this attack, we
do not need knowledge about the CRYPTO1 algorithm other than that it is a
stream cipher which encrypts bitwise.

During our experiments, independently, we also noted the weakness of the
pseudo-random generator of the card by requesting many card nonces. We were
able to request about 600,000 nonces every hour. Within one hour, a nonce
reappeared at least about four times. The nonce is generated by a Linear Feed-
back Shift Register (LFSR) [5] which shifts every 9.44µs. This is exactly one
bit period in the communication. Therefore a random nonce could theoretically
reappear after 0.618s, if the card is queried at exactly the right time.

In another expirement, we tried to request a nonce at a fixed time after
powering-up9 the card. This way, we could reduce the card nonces to ten different
ones, which decreases the waiting time.

Without knowing the cryptographic algorithm, only an online brute force
attack on the key can be mounted. Because of the communication delay, this
would take 5ms for each attempt. An exhaustive key search would then take
16,289,061 days, which equals about 44,627 years.

When the cryptographic algorithm is known, an off-line brute force attack
can be mounted using a few eavesdropped traces of an authentication run. Nohl
and Plötz state that with dedicated hardware of around $17,000 this would take
about one hour. For this attack to work, some known plaintext is required. Our
analysis provides this plaintext.

6 Keystream Recovery Attack

In Section 5 we discussed a weakness in the pseudo-random generator of the
mifare Classic. In this section we deploy a method to recover the keystream
that was used in an earlier recorded transaction between a reader and a card. As
a result the keystream of the communication will be recovered. For this attack
we need to be in possession of the card. The following reasons make this attack
interesting:

1. Our attack provides the known plaintext necessary to mount a brute force
attack on the key.

2. Using our attack we recovered details about the byte commands.
3. Using the recovered keystream we can read card contents without knowing

the key.
4. Using the recovered keystream we can also modify the contents of the card

without knowing the key.

6.1 Keystream Recovery

To recover the keystream we exploit the weakness of the pseudo-random gener-
ator. As it is this random nonce in combination with only one valid response of
9 As was suggested by Nohl and Plötz [7].

276 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

the reader what determines the remaining keystream. For this attack we need
complete control over the reader (Proxmark) and access to a (genuine) card. The
attack consists of the following steps:

1. Eavesdrop the communication between a reader and a card. This can be for
example in an access control system or public transport system.

2. Make sure that the card will use the same keystream as in the recorded
communication. This is possible because the card repeats the same nonce in
reasonable time, and we completely control the reader.

3. Modify the plaintext, such that the card receives a command for which we
know plaintext in the response (e.g., by changing the block number in a read
command).

4. For each segment of known plaintext, compute the corresponding keystream
segment.

5. Use this keystream to partially decrypt the trace obtained in 1.
6. Try recovering more keystream bits by shifting commands.

The plaintext P1 in the communication is XOR-ed bitwise with a keystream K
which gives the encrypted data C1. When it is possible to use the same keystream
on a different plaintext P2 and either P1 or P2 is known, then both P1 and P2

are revealed.

P1 ⊕ K = C1

P2 ⊕ K = C2

}
C1 ⊕ C2 ⇒ P1 ⊕ P2 ⊕ K ⊕ K ⇒ P1 ⊕ P2 (1)

The weak pseudo-random generator makes it possible to replay an earlier
recorded transaction. We can flip ciphertext bits to try to modify the first com-
mand such that it gives another result. Another result gives us another plain
text. The attack is based on this principle.

6.2 Keystream Mapping

The data is encrypted bitwise. When the reader sends or receives a message, the
keystream is shifted the number of bits in this message on both the reader and
card side. This is needed to stay synchronized and use the same keystream bits to
encrypt and decrypt. The stream cipher does not use any feedback mechanism.
Despite that, when we tried to reveal the contents of a message sequence using
a known keystream of an earlier trace, something went wrong. We recorded an
increment followed by a transfer command. We used this trace to apply our
attack and changed the first command to a read command which consists of 4
command bytes and delivers 18 response bytes. Together with the parity bits this
makes it a 198 bit stream. The plaintext was known and therefore we recovered
198 keystream bits.

When we used this keystream to map it on the original trace of the increment
(Figure 6), it turned out that the keystream was not in phase after the first
command. The reason was the short 4-bit answer of the card that is not followed

A Practical Attack on the MIFARE Classic 277

by a parity bit. In our original trace we are now half way the first response byte.
This means that after 4 more bits we arive at the parity bit in the original trace.
However, in our new trace we are then half way the next command byte. To
correct this we needed to throw away the keystream bit that was originaly used
to encrypt the parity bit.

But what to do when we need to decrypt a parity bit in the new situation and
we are half way a byte with respect to the first trace? The solution is to encrypt
the parity bit with the next bit from the recovered keystream and use this same
keystream bit to decrypt the next data bit.

From this we can conclude that parity bits are encrypted with keystream bits
that are also used to encrypt databits.

INCREMENT ACK VALUE TRANSFER ACK

Plaintext c1 04 f6 8b 0a 01 00 00 00 bb 4a b0 04 ea 62 0a

Ciphertext 4c 88 31 bc! 0a! e2 79!2a!14 35!6f! 04!81 2d!1e! 0c!

Fig. 6. Recovering the Keystream and Commands

The following method successfully maps the keystream on another message
sequence as we described above.

Take the recovered keystream and strip all the keystream bits from it that
were at parity bit positions. The remaining keystream can be used to encrypt new
messages. Every time a parity bit needs to be encrypted, use the next keystream
bit without shifting the keystream, in all other cases use the next keystream bit
and shift the keystream.

6.3 Authentication Replay

To replay an authentication we first need a trace of a successful authentication
between a genuine mifare reader and card. An example of an authentication
followed by one read command is shown below.

1 PCD 60 03 6e 49
2 TAG e0 92 93 98
3 PCD ad e7 96! 48! 20! 22 df 93
4 TAG bf 06 91! 82
5 PCD b5! 05! 47 3f
6 TAG 3f 14! 4f e9! 86 38! 96! 85 3e!

f3 e3! 3d! eb! 2b! a2 d4 dd 76!

After we recorded an authentication between card and reader, we do not modify
the memory. This ensures that the memory of the card remains unaltered and
therefore it will return the same plaintext. Now we will act like a mifare reader
and try to initiate the same authentication. In short:

278 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

Fig. 7. Recovering Sector Zero

1. We recorded a trace of a successful authentication between a genuine card
and reader.

2. We send authentication requests (#1) until we get a nonce that is equal to
the one (#2) in the original trace.

3. We send the recorded response (#3) to this nonce. It consists of a valid
response to the challenge nonce and a challenge from the reader.

4. We retrieve the response (#4) to the challenge from the card.
5. Now we are at the point where we could resend the same command (#5) or

attempt to modify it.

6.4 Reading Sector Zero

We will show that it is possible to read sector 0 from a card without knowing the
key. We only need one transaction between a genuine mifare reader and card.
Every mifare Classic card has some known memory contents. The product
information published by NXP [8] gives this information.

When a sector trailer is read the card will return logical ‘0’s instead of key
A because key A is not readable. If key B is not readable the card also returns
logical ‘0’s. It depends on the access conditions if key B is readable or not.
The access conditions can be recovered by using the manufacturer data. Block
0 contains the UID and BCC followed by the manufacturer data. The UID and
BCC cover 5 bytes and are known. The remaining 11 bytes are covered by the
manufacturer data. Some investigation on different cards (mifare Classic 1k and
4k) revealed that the first 5 bytes of the manufacturer data almost never change.
These bytes (MFR1) cover the positions of the access conditions (AC) and the
unkown byte U, as shown in Figure 7. This means that the keystream can be
recovered using the known MFR1 bytes by reading block 0 and block 3 (sector
trailer) subsequently. Remember that the access conditions are stored twice in 3
bytes. Once inverted and once non-inverted. This way it is easy to detect if we
indeed revealed the access conditions. The unknown byte U can be in any state
when the card leaves the manufacturer but appears to be often 00 or 69.

The access conditions tell us whether key B is readable or not. In many
cases key B is not readable, for instance as in the OV-Chipkaart10 that is used

10 mifare Classic 4k card.

A Practical Attack on the MIFARE Classic 279

in the Dutch public transport system. The first 5 bytes of the manufacturer
data (MFR1 in Figure 7) recovered the access conditions for sector 0. Because
the access conditions for the sector trailer define key B as not readable, we know
the plaintext is zeros. Hence the whole sector trailer was revealed and therefore
the contents of the whole sector 0 were revealed as well.

7 Reading Higher Sectors

In the higher sectors of the mifare Classic card we do not have the advance of
the manufacturer data. We basically have the sector trailer and some unknown
data blocks. Because of key A we can recover always the first 10 keystream bytes.
Key B is in most cases not readable and therefore will give 6 more keystream
bytes, but leaves us with a gap of 4 bytes (AC and U).

Although it is harder to achieve, there is a potential threat for these sectors
to become compromised.

7.1 Proprietary Command Codes

At the time this research was performed, we were not aware that the command
codes, which we revealed with our attack, could already be found in example
firmware of NXP11. Note that the firmware refers to the command codes sent
from PC to reader. Our research shows that (perhaps obviously) these are the
same command codes sent from reader to card.

We used a card in transport configuration with default keys and empty data
blocks to reveal the encrypted commands used in the high-level protocol. All the
commands send by the reader consist of a command byte, parameter byte and
two CRC bytes. We made several attempts to reveal the command by modifying
the ciphertext of this command. The way to do this is to assume we actually
know the command. With this ‘knowledge’ we XOR the ciphertext which gives
us the keystream. To check if this is indeed the correct keystream, we XOR
it with a new command for which we know the response. If we guessed the
initial command right the response of the card will be that known response.
This method revealed the commands shown in Figure 8.

Now, one could try to replay the same authentication again and try to execute
a command that returns an ACK or NACK in order to recover more keystream.
Because an ACK or NACK is only 4 bits in size, it leaves some spare bits for
which we know the keystream. We can use these bits to execute another com-
mand for which we now know the plaintext. This delivers more known keystream
as a result, and this method can be applied repeatedly. However, this approach
does only work if a decrement, increment or transfer is allowed. These are the
commands that return an ACK and therefore are in total shorter than the read.
We can only send valid commands because otherwise the protocol aborts. The
read command returns 16 data bytes and 2 CRC bytes. On a write command

11 http://www.nxp.com/files/markets/identification/download/MC081380.zip

http://www.nxp.com/files/markets/identification/download/MC081380.zip

280 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

Fig. 8. Command set of mifare Classic

the card returns a 4-bit ACK, this indicates that the card is ready to receive 16
data bytes followed by 2 CRC bytes.

The decrement, increment and restore commands all follow the same proce-
dure. The card indicates that it is expecting a value from the reader by sending
a 4-bit ACK response. This value is 4 bytes and is followed by 2 CRC bytes. For
the restore this value is send but not used. The value is send as YY YY YY YY
ZZ ZZ, where YY are the value bytes and ZZ the CRC bytes.

Finally, a transfer command is send to transfer the result of one of the previous
commands to a memory block. The card response is an ACK if it went well.
Otherwise it responds with a NACK.

The 4-bit ACK is 0xa. When a command is not allowed the card sends 0x4.
When a transmission error is detected the card sends 0x5. The card does not
even give a response at all if the command is of the wrong length. The protocol
aborts on every mistake or disallowed command.

8 Conclusions and Recommendations

We have implemented a successful attack to recover the keystream of an earlier
recorded transaction between a genuine mifare Classic reader and card.

We used a mifare Classic reader in combination with a ‘blank’ card with
default keys to recover the byte commands that are used in the proprietary
protocol. Knowing the byte commands and a sufficiently long keystream allowed
us to perform any operation as if we were in possession of the secret key.

We managed to read all memory blocks of the sector zero of the card, without
having access to the secret key. In general, we were able to read any sector of

A Practical Attack on the MIFARE Classic 281

the memory of the card, provided that we know one memory block within this
sector. Moreover, after recording a valid transaction on any sector, we were able
to read the first 6 bytes of any block in that sector and also the last 6 bytes if
key B is read only. Similarly, we are able to modify the information stored in a
particular sector.

Consequences. First of all, all data stored on the card (except the keys them-
selves) should no longer be considered secret. In particular, if the mifare Classic
card is used to store personal information (like name, date of birth, or travel in-
formation), this constitutes a direct privacy risk. The security risk is relatively
low because in general the security is guaranteed by the secrecy of the keys. Note
that in particular we are not able to clone cards, because the secret keys remain
secret.

Secondly, the integrity and authenticity of the data stored on the card can
no longer be relied on. This is quite a severe security risk. This is particularly
worrying in applications where the card is used to store a certain value, like
loyalty points or, even worse, some form of digital currency. The loyalty level or
the value stored in the electronic purse could easily be increased (or decreased,
in a denial-of-service type of attack).

Thirdly, knowledge of the plaintext (or the keystream) is a necessary condition
to perform brute force (or other more sophisticated) attacks to recover the secret
key. We are making good progress in developing a very efficient attack to recover
arbitrary sector keys of a mifare Classic card.

Recommendations. For short term improvements we recommend not to use
sector zero to store secret information. Configure key B as readable and store
random information in it. Do not store sensitive information in the first 6 bytes
of any sector. Use multiple sector authentications in one transaction to thwart
attackers in an attempt to recover plaintext. This is only helpful when value
block commands are not allowed. Value block commands are shorter than a
read command and will enable a shift of the keystream. Another possibility,
that might be viable for some applications, is to employ another encryption
scheme like AES in the backoffice, and store only encrypted information on the
tags. To prevent unauthorized modification of a data block, an extra authenti-
cation on this data could be added. This authentication is then verified in the
backoffice.

Proper fraud detection mechanisms and extra security features in the backof-
fice are necessary to signal or even prevent the types of attacks described above.
In general, the backoffice systems collecting and processing data that comes from
the readers are a very important second line of defence.

On the long term these countermeasures will not be sufficient. The mifare
Classic card has a closed design. Security by obscurity has shown several times
that at some point the details of the system will be revealed compromising
security [6]. Therefore we recommend to migrate to more advanced cards with
an open design architecture.

282 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

References

1. Finkenzeller, K.: RFID Handbook, 2nd edn. John Wiley and Sons, Chichester
(2003)

2. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Schreur, R.W.: Dismantling MIFARE Classic (forthcoming)

3. Hoepman, J.-H., Hubbers, E., Jacobs, B., Oostdijk, M., Schreur, R.W.: Crossing
Borders: Security and Privacy Issues of the European e-Passport. In: Yoshiura, H.,
Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006.
LNCS, vol. 4266, pp. 152–167. Springer, Heidelberg (2006)

4. ISO/IEC 14443. Identification cards - Contactless integrated circuit(s) cards - Prox-
imity cards (2001)

5. Nohl, S.K., Evans, D., Plötz, H.: Reverse-Engineering a Cryptographic RFID Tag.
In: USENIX Security Symposium, San Jose, CA, 31 July (2008)

6. Kerckhoffs, A.: La cryptographie militaire. Journal des sciences militaires, IX, pp.
5–38, January 1983, and pp. 161–191, February 1983(1983)

7. Nohl, K., Plötz, H.: MIFARE, Little Security, Despite Obscurity. In: Presentation
on the 24th Congress of the Chaos Computer Club in Berlin (December 2007)

8. NXP Semiconductors. MIFARE Standard 4KByte Card IC functional specification
(February 2007)

	A Practical Attack on the MIFARE Classic
	Introduction
	MIFARE Classic
	Communication Layer
	Logical Structure
	Commands
	Security Features

	Hardware and Software
	Communication Characteristics
	Weakness in MIFARE Classic
	Keystream Recovery Attack
	Keystream Recovery
	Keystream Mapping
	Authentication Replay
	Reading Sector Zero

	Reading Higher Sectors
	Proprietary Command Codes

	Conclusions and Recommendations
	References

