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ABSTRACT Ciphertext-policy attribute-based encryption can provide fine-grained access control and secure

data sharing to the data users in cloud computing. However, the encryption/decryption efficiency of existing

schemes can be further improved when encrypting a large document collection. In this paper, we propose

a practical Ciphertext-Policy Attribute-Based Hierarchical document collection Encryption scheme named

CP-ABHE. By practical, we mean that CP-ABHE is more efficient in both computation and storage space

without sacrificing data security. In CP-ABHE, we first construct a set of integrated access trees based on the

documents’ attribute sets. We employ the greedy strategy to build the trees incrementally and grow the trees

dynamically by combining the small ones. Then, all the documents on an integrated access tree are encrypted

together. Different to existing schemes, the leaves in different access trees with the same attribute share the

same secret number, which is employed to encrypt the documents. This greatly improves the performance

of CP-ABHE. The security of our scheme is theoretically proved based on the decisional bilinear Diffie–

Hellman assumption. The simulation results illustrate that CP-ABHE performs very well in terms of security,

efficiency, and the storage size of the ciphertext.

INDEX TERMS Cloud computing, attribute-based document collection encryption, encryption/decryption

efficiency, information security.

I. INTRODUCTION

Cloud computing collects and organizes a large amount of

information technique resources to provide secure, efficient,

flexible and on demand services [29]. Attracted by these

advantages, more and more enterprise and individual users

trend to outsource the local documents to the cloud. In gen-

eral, the documents need to be encrypted before being out-

sourced to protect them against leaking. If the data owner

wants to share these documents with an authorized data user,

they can employ any searchable encryption techniques [2],

[6], [9], [14], [30], [31] or privacy-preserving multi-keyword

document search schemes [3], [5], [8], [37] to achieve this

goal. However, all these schemes cannot provide fine-grained

access control mechanisms to the encrypted documents.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zheng Yan.

Attribute-based encryption (ABE) schemes can provide

complicated systems to diversify the data users’ access

paths. In ABE schemes, each document is encrypted indi-

vidually and a data user can decrypt a document if her

attribute set matches the access structure of the document.

Existing ABE schemes can be divided into Key-Policy

ABE (KP-ABE) schemes [11], [12], [15], [16], [20],

[24], [25], [28] and Ciphertext-Policy ABE (CP-ABE)

schemes [1], [7], [10], [19], [21]–[23], [27], [34]. Com-

pared with KP-ABE schemes, CP-ABE schemes are more

flexible and suitable for general applications. In the fol-

lowing, we first analyze the existing ABE schemes in

detail and further present the novelty and innovation of

the CP-ABHE scheme proposed in this paper. For con-

venience, we choose the schemes in [1] and [11] as

typical examples of KP-ABE scheme and CP-ABE scheme,

respectively.
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LetG0 andG1 be twomultiplicative cyclic groups of prime

order p. Let g be a generator of G0 and e be a bilinear map,

e : G0 × G0 = G1. Further, let H : {0, 1}∗ → G0

be a hash function which can map an attribute string to a

random element in G0. Assume that we need to encrypt

a set of documents F = {F1,F2, · · · ,FN }. Attribute set

A = {A1,A2, · · · ,AM } is the common attribute dictionary

of both documents and data users. We further assume that

document Fi is related with a set of attributes, denoted as

att(Fi). We encrypt F in two phases. First, each document Fi
is encrypted by a proper symmetric encryption algorithmwith

a unique content key cki. Second, all the content keys ofF are

encrypted by ABE schemes. Note that, both the ciphtexts of

Fi and cki are provided to data users. In decryption process,

data users need to first decrypt cki based on their attribute-

related secret keys and then decrypt document Fi based on

cki. In this way, ciphertext of Fi can be decrypted only by

the data users who have the matched attributes with att(Fi).

Considering that the first encryption phase does not fall in

the scope of this paper, we focus on the second phase which

is strongly related to the proposed scheme.

To encrypt all the content keys of F , KP-ABE scheme

in [9] is executed as follows.

For each content key cki with attribute set att(Fi) and

access tree T , the public key is calculated as PK =

{e(g, g)α, ∀j ∈ att(cki),Tj = grj} where α is a random num-

ber in Zp and rj is a number randomly chosen from Zp
for attribute j. Then the ciphertext of cki is calculated as

CTcki = {T , cki · e(g, g)αs, ∀j ∈ att(Fi),Ej = T sj } where

s is a random number in Zp. The above process must be

executed for N times to encrypt all the content keys. The

total number of elements in the ciphertext can be calculated

as Ncip = N +
∑N

i=1 |att(Fi)|, where |att(Fi)| denotes the

number of attributes in att(Fi). To decrypt the ciphertext of

cki, a data user needs to store the secret key SK = {∀j ∈

att(Fi),Dj = g

qj(0)

rj }, where qj(x) is the polynomial of the

leaf node in T corresponding to attribute j. To decrypt all the

content keys, N secret keys for the N access trees need to be

stored by a data user and the number of total secret values

in the keys can be calculated as Nsk =
∑N

i=1 |att(Fi)|. It can

be observed that Nsk increases with the increasing of docu-

ments’ number and we call this as the secret key expanding

problem.

To encrypt all the content keys of F , CP-ABE scheme

in [12] is executed as follows.

For each content key cki with attribute set att(Fi) and

access tree T , the public key is calculated as PK =

{h = gβ , e(g, g)α}, where β and α are random numbers

in Zp. Then the scheme calculates the ciphertext of cki
as CTcki = {T , cki · e(g, g)αs,C = hs, ∀j ∈ att(Fi),

Cj = gqj(0),C ′
j = H (j)qj(0)}, where qj(x) is the poly-

nomial of the leaf node in T corresponding to attributes

j. Similar to KP-ABE, the above process is also executed

for N times to encrypt all the content keys. The total

number of elements in the ciphertext can be calculated as

Ncip = 2 ∗ N + 2 ∗
∑N

i=1 |att(Fi)|. Apparently, Ncip
greatly expands with the increasing of documents’ number.

To decrypt the ciphertext of cki, the secret key of a data

user is calculated as SK = {D = g
(α+r)

β , ∀j ∈ att(Fi),

Dj = grH (j)rj ,D′
j = grj} where r is a random num-

ber in Zp and rj is a random number chosen from Zp for

attribute j.

Both the KP-ABE and CP-ABE schemes are impractical

to encrypt a large document collection because of the fol-

lowing reasons. First, the encryption process in both the two

schemes is executed N times, leading to high computation

complexity. Second, there is a tradeoff between the size of the

content keys’ ciphertext and data users’ secret keys. In KP-

ABE, the number of secret values in a data user’s secret

key is extremely large for a document collection, imposing

a heavy burden on the data user. In CP-ABE, the size of

the ciphertext is extremely large. Consequently, CP-ABE

scheme increases the data transmission amount between the

cloud server and data users, which is a huge challenge for

the network. This is reasonable considering that the access

structure of each document must be embedded into the

ciphertext or the secret keys. Third, decrypting the ciphertext

is also time-consuming considering that each document is

encrypted individually. Recently, Wang et al. [33] attempted

to improve the encryption efficiency and propose a file hierar-

chy attribute-based encryption scheme named FH-CP-ABE.

However, this scheme focused only on how to encrypt a set

of documents that share an integrated access tree and hence

it also cannot be directly employed to encrypt a document

collection.

In this paper, we design an attribute-based document

hierarchical encryption scheme named CP-ABHE which

performs well in terms of computation and storage space effi-

ciency. The scheme consists of two modules including inte-

grated access tree construction and tree encryption. We first

propose an algorithm to generate the integrated access trees

for a document collection. The most important design goal of

the algorithm is decreasing the number of integrated access

trees which can greatly improve the encryption/decryption

efficiency.

Then, the documents that share an access tree are encrypted

together. Each node in a tree is assigned with a secret number

which is used to encrypt the content keys of documents on

the node. The secret numbers of the nodes are constructed in

a bottom-up manner and it is totally different to the methods

in KP-ABE, CP-ABE, and FH-CP-ABE schemes. In this way,

the number of all the elements in content keys’ ciphertext is

smaller than 2 ∗ N and it is much smaller than that in KP-

ABE scheme and CP-ABE scheme. In addition, we decrease

the number of secret values in the keys stored by the data

users compared with KP-ABE. To decrypt all the documents

in F , only 2 ∗ |A| + 1 secret values need to be stored by

a data user, where |A| is the size of A. In conclusion, both

the encryption/decryption efficiency and storage efficiency

of CP-ABHE are very high. The security of our scheme is
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FIGURE 1. The architecture of document outsourcing and sharing.

proved theoretically and we evaluate the scheme’s efficiency

by a series of simulation.

The contributions of this paper are mainly summarized as

follows:
• An algorithm to construct the integrated access trees

incrementally for the document collection is proposed

and it can significantly decrease the number of the access

trees.

• A document collection hierarchical encryption scheme

is proposed. All the documents that share an integrated

access tree are encrypted together which can signif-

icantly improve the encryption/decryption efficiency.

Moreover, the secret key expanding problem is solved

properly.

• The security of CP-ABHE is theoretically proved and

the effectiveness of the integrated access tree construc-

tion algorithm is analyzed in detail. In addition, a thor-

ough comparison between CP-ABHE, KP-ABE, and

CP-ABE in terms of encyption/decryption efficiency

and storage space is provided.

The rest of this paper is organized as follows: We present

the systemmodel and preliminaries in Section 2. The detailed

process of access trees construction is given in Section 3 and

Section 4 discusses the scheme to encrypt the document col-

lection. We analyze the security and efficiency of our scheme

theoretically in Section 5. Section 6 evaluates the perfor-

mance of the integrated access trees and the efficiency of CP-

ABHE is analyzed and simulated in Section 7. In Section 8,

the related work is provided and this paper is concluded in

Section 9.

II. SYSTEM MODEL AND PRELIMINARIES

A. SYSTEM MODEL

Fig. 1 describes the document outsourcing and sharing system

which mainly comprises four entities: the data owner, data

user, certificate authority (CA) center and cloud server. The

entire process of querying a set of interested documents for a

data user includes 6 phases:

1© Data owner is responsible for collecting documents

and assigning a proper attribute set to each document. The

documents are encrypted in two phases. Each document is

first encrypted by a symmetric encryption algorithm with a

FIGURE 2. The flow chart of document encryption and decryption.

unique content key. Then, the content keys are encrypted by

ABE-schemes. At last, both the encrypted documents and

content keys are outsourced to the cloud server.

2© To search the interested documents in the cloud server,

a data user first needs to register herself to the CA center.

Then, the CA center assigns an attribute set to the data user

and sends an attribute-related secret key to the data user.

3© The authorized data user can send query requests to the

cloud server. In this paper, we assume that the cloud server

is trustable. Otherwise, we may need to further integrate the

secure kNN algorithm [35] into our scheme to encrypt the

document vectors and query vectors [3], [5], [8], [37].

4© Once a query request is received, the cloud server first

communicates with the CA center to check the identity of the

data user and an ID certification message is received if the

data user is authorized.

5© For an authorized query, the cloud server employs a

search engine to search the encrypted document collection

and get the related ciphertexts to the query. Note that only the

documents whose attributes match the data user are returned.

6© Having received the encrypted documents and content

keys, the data user first decrypts the content keys by her

attribute-related secret key and then decrypt the documents

based on the content keys. At last, the document retrieval

process is completed.

The whole document outsourcing and sharing system con-

tains numerous research lines. In this paper, we restrict our

attention to the document collection encryption/decryption

process and ignore the other technical challenges such as

symmetric encryption algorithms and encrypted document

search algorithms. The flowchart of encrypting/decrypting

a document collection is shown in Fig. 2. Given a set of

documents, the data owner first randomly selects a set of

content keys ck = {ck1, ck2, · · · , ckN } which are used

to encrypt the documents in F symmetrically, i.e., Ci =

Ecki (Fi), i = 1, 2, · · ·N where Ci is the ciphertext of Fi.

Then, the content keys are encrypted by the proposed scheme

CP-ABHE. Encrypting the document collection in a two-

tier manner is reasonable considering that directly encrypting

the documents based on the bilinear map is of extremely

large computation complexity and this is impractical. At last,

all the encrypted documents, hierarchical access structures

and encrypted content keys are outsourced to the cloud

server. In the decryption process, the data users first decrypt
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the content keys with their secret keys and further decrypt the

documents based on the decrypted content keys. Encrypting

the documents symmetrically by the content keys is out of this

paper’s scope and we mainly discuss how to encrypt/decrypt

the content keys in detail.

B. DEFINITIONS AND PRELIMINARY TECHNIQUES

1) MONOTONE ACCESS STRUCTURE

LetA = {A1,A2, · · · ,AM } be a set of attributes. A collection

A ⊆ 2A is monotone: Given ∀B,C, if B ∈ A and B ⊆ C ,

then C ∈ A. A monotone access structure of a document

is a monotone collection A of non-empty subsets of A, i.e.,

A ⊆ 2A\{∅}. The sets in A are called the authorized sets

and the sets not in A are called the unauthorized sets. In this

paper, we assume that the access structure of each document

is monotone.

2) BILINEAR MAPS

Let G0 and G1 be two multiplicative groups of prime order

p. Naturally, they are cyclic groups and each non-identity

element inGi(i = 0, 1) is a generator of the groupGi. Let g be

a generator ofG0 and e be a bilinear map, e : G0×G0 → G1,

with the following properties:

1) Bilinearity: For all u, v ∈ G0 and a, b ∈ Zp,
e(ua, vb) = e(u, v)ab.

2) Non-degeneracy: e(g, g) 6= 1.

3) Distributivity: For u, v,w ∈ G0 and a, b, c ∈ Zp,
e(ua, vbwc) = e(ua, vb)e(ua,wc).

In addition, G0 is a bilinear group if the group operations

in G0 and the bilinear map, e : G0 × G0 → G1, are both

efficiently computable.

3) LAGRANGE INTERPOLATION

Given a set of data points {(x1, y1), (x2, y2), · · · , (xn, yn)} and

xi 6= xj if i, j ∈ {1, 2, , n}, i 6= j, they uniquely decide a

n − 1 degree polynomial which can be constructed by

Lagrange interpolation algorithm. Specifically, the polyno-

mial can be represented as follows:

f (x) =
∑

i∈{1,2,··· ,n}

(yi
∏

j∈{1,2,··· ,n},j 6=i

x − xj

xi − xj
),

where
∏

j∈{1,2,··· ,n},j 6=i
x−xj
xi−xj

is the Lagrange Coefficient. For

convenience, we denote the coefficient as 1i,S for i ∈ Zp
and a set, S, of elements in Zp and it is defined as

1i,S (x) =
∏

j∈S,j 6=i (x − j)/(i− j).

4) DECISIONAL BILINEAR DIFFIE-HELLMAN (BDH)

ASSUMPTION

Assume that a, b, c, t are randomly selected from Zp and g

is a generator of G0. The decisional BDH assumption is that

no probabilistic polynomial-time algorithm B can distinguish

the tuple (A = ga,B = gb,C = gc, e(g, g)abc) from the

tuple (A = ga,B = gb,C = gc, e(g, g)t ) with more than

a negligible advantage.

In addition, we say that an adversary Adv can solve the

decisional BDH problem with an advantage ǫ if:

|Pr[Adv(g, ga, gb, gc, e(g, g)abc) = 0]

−Pr[Adv(g, ga, gb, gc, e(g, g)z) = 0]| > ǫ

5) SELECTIVE-SET SECURITY GAME

In this paper, [1], [11], and [33] to prove our scheme’s secu-

rity. The game is composed of 6 phases and they are presented

as follows.

Init: The adversary declares an access tree with a set of

attributes S that he wants to be challenged upon.

Setup: The challenger runs the Setup algorithm of CP-

ABHE to generate the public parameters which are provided

to the adversary.

Query Phase 1:The adversary is allowed to issue queries to

obtain the secret keys of any access structureA∗ with attribute

set S ′, where S * S ′.

Challenge: The adversary provides two different messages

M0 andM1 with equal length to the challenger. The challenger

randomly flips a coin µ and encryptsMµ with attribute set S.

Then the encrypted message is sent to the adversary.

Query phase 2: Query Phase 1 is repeated.

Guess: Based on the obtained information, the adversary

outputs a guess µ′ of µ.

We say that our scheme is secure if all the polynomial

time adversaries have at most a negligible advantage in

the game, where the advantage of the adversary is defined

as
∣

∣Pr(µ′ = µ) − 1/2
∣

∣. Note that, if our scheme can resist

the Selective-set security game, it naturally resists collusion

attack which is an extremely important property for the ABE

schemes. This can be explained by the fact that the adversary

can take multiple secret key queries before and after the

challenge phase.

III. INTEGRATED ACCESS STRUCTURE OF

A DOCUMENT COLLECTION

A. ACCESS POLICY OF DOCUMENTS AND ACCESS TREES

In this paper, we assume that each document Fi is of several

attributes in att(Fi) and Fi can be accessed only by the data

users who possess all the attributes in att(Fi). As shown

in Fig. 3(a), we assume that the attribute dictionary of a

document collection includes three basic attributes including

‘‘communication’’, ‘‘computer’’ and ‘‘network’’. Each doc-

ument has at least one attribute and some documents may

have two or three attributes such as the documents in region

A, B, C and D. In this case, the documents in region A can

be accessed by the data users who own all the three roles of

communication researcher, computer researcher, and network

researcher. Apparently, the access structure of a document is

monotone. As an example, a data user who owns the attributes

of communication and computer researcher can access the

documents in region B. Meanwhile, any other data users who

have at least these two attributes can also access the docu-

ments in region B. Compared with the threshold-based access

policy proposed in [1], [11], and [33], our access policy is
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FIGURE 3. (a) Assumption of access control strategy. (b) The access tree
of the documents in region A.

FIGURE 4. Integrated access tree of Alice and Bob.

stricter andmore suitable for the documents with high privacy

requirements such as personal health records [36].

We can represent the access structure of a document by

an access tree T . Under our access policy, the leaf nodes in

the tree represent the attributes related to the document and

the root node represents an ‘‘AND’’ gate. The access tree of

a document in region A is shown in Fig. 3(b) and the tree

contains three leaf nodes representing three attributes. The

root node represents an ‘‘AND’’ gate. In this case, if the leaf

node set of an access tree is a subset of another access tree’s

leaf node set, we can combine these two trees to a new tree

which is called an integrated access tree. Apparently, each

non-leaf node in the integrated access tree also represents an

‘‘AND’’ gate. The integrated access tree of Alice, who is a

communication and computer researcher, and Bob, who is a

communication, computer, and network researcher, is shown

in Fig. 4. In a document collection, the attribute sets of the

documents are various and each document has an access tree.

How to combine these single access trees to a small number

of integrated trees is a huge challenge. To our knowledge,

given a set of single access trees, minimizing the number

of integrated access trees is an NP-hard problem and hence

we propose a greedy-strategy-based integrated access tree

construction algorithm in Section III-B.

B. ACCESS STRUCTURE OF A DOCUMENT COLLECTION

In this section, we present the process of constructing the

integrated access trees of a document collection F =

{F1,F2, · · · ,FN } with identifiers {f1, f2, · · · , fN }. Let T be

an integrated access tree of a set of documents and all the

integrated access trees compose the access structure of the

whole document collection. We first define some notations

and functions about the integrated access trees. The number

FIGURE 5. (a) Assumption of access control strategy. (b) The access tree
of the documents in region A.

of the child nodes of an internal node x is denoted as numx .

Note that, the child nodes of x means the nodes which are

derived from x and directly connected with x. Function att(x)

denotes the associated attributes with the node x, i.e., the

attributes represented by all the leaves derived from node x.

Each node x in a tree has a unique numerical identifier and

it is returned by index(x). Moreover, att(T ) returns all the

attributes in the tree.

We say that an attribute set S matches an access tree T

if and only if S exactly equals to att(T ). As an example

in Fig. 5(a), tree X matches S if and only if S = {A1,A2,A3}

and, in this time, we denotes it as S(X ) = 0. Moreover,

we say that an attribute set S covers tree X if and only if

S is a proper superset of att(X ). Apparently, S covers X if

S = {A1,A2,A3,A4}and we denote it as S(X ) = 1. Roughly

speaking, we construct ST of a document collection in an

incremental manner and ST is updated for one time once

a new document is entered. The integrated access trees in

ST grow by continuously combining the small access trees.

The pseudo-code of constructing the access structure for a

document collection F is presented in Algorithm 2.

In the initial, we sort the documents in ascent order based

on the number of their attributes. Then, the access tree of the

first document F1
′ is set as the first integrated access tree

and the identifier, f1
′, of F1

′ is inserted to the root node of

the tree. Given a set of integrated access trees, ST , we now

discuss how to update the trees when a new document,

Fi
′, arrives. The attribute set of the new document att(Fi

′)

faces three cases based on its relation to the trees in ST .

Specifically, att(Fi
′) can match an existing tree, cover some

trees, or att(Fi
′) neither matches nor covers the existing trees.

We first orderly scan the access trees in ST to find a tree that

matches att(Fi
′). If the tree exists, we insert fi

′ to the root node

of the tree. Otherwise, we orderly rescan the access trees in

ST to find a tree X which is covered by att(Fi
′). If the tree X

exists, we continue to search the trees to find a tree Y which

is covered by attribute set att(Fi
′) \ att(X ). If the tree Y also

exists, we continue to search the trees to find a tree which is

covered by attribute set att(Fi
′)\att(X )\att(Y ).We iterate the

above process until all the existing access trees are scanned.

If all the attributes of the found trees together form att(Fi
′),

a larger access tree with root node r is constructed in which

36222 VOLUME 7, 2019
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Algorithm 1 BuildingAccessStructure

Input: Document collection F = F1,F2, · · · ,FN with

attribute sets {att(F1), att(F2), · · · , att(FN )}

Output: A set of integrated access trees ST

1: Sort the files inF in ascending order based on the number

of their attributes and obtain F ′ = {F1
′,F2

′, · · · ,FN
′}

with identifiers {f1
′, f2

′, · · · , fN
′};

2: ST = {}, C = {};

3: for i = 1 : N do

4: S = att(F ′
i );

5: Scan the access trees in ST in order;

6: if S matches an scanned access tree X , i.e., S(X ) = 0

then

7: Insert the identifier of F ′
i into the root node of X ;

8: break;

9: end if

10: Rescan the access trees in ST in order;

11: for a scanned access tree Y in ST do

12: if S covers Y , i.e., S(Y ) = 1 then

13: C = C ∪ Y , S = S \ att(Y );

14: end if

15: end for

16: if S is empty then

17: Build a larger access tree LT with root node r and

all the access trees in C are the child nodes of r ;

18: Insert f ′
i to r ;

19: Insert LT to ST and delete all the trees in C from

ST ;

20: else

21: Build a larger access tree LT with root node r and

all the access trees in C are the child nodes of r ; In

addition, all the left attributes in S are also inserted

to the root node r as leaves;

22: Insert f ′
i to r ;

23: Insert LT to ST and delete all the trees in C from

ST ;

24: end if

25: end for

all the found trees act as child nodes of r and the document

identifier fi
′ is inserted to r . However, if all the attributes

of the found trees together form a proper subset att(Fi
′)′

of att(Fi
′), all the attributes in att(Fi

′) \ att(Fi
′)′ are also

inserted to the root node r as leaves. As an example, there

are two integrated access trees as presented in Fig. 5(a), then

when a document with attribute set {A1,A2,A3,A4,A5,A6}

arrives, the updated access tree is shown in Fig. 5(b). It can

be observed that, though the number of documents increases,

the number of the integrated trees decreases. This is of great

meaning the process of encrypting the document collection.

At last, if att(Fi
′) neither matches nor covers an existing

access trees, we just set the access tree of Fi
′ as an integrated

access tree and insert the access tree of Fi
′ is inserted into ST .

The above process is iterated until all the document identifiers

are inserted into the integrated access trees. All the integrated

access trees in ST compose the access structure of the whole

document collection.

At last, we discuss how to set the numerical identifiers for

the nodes in the access trees. A possible approach to construct

the identifiers is presented as follows:

1) If x is a leaf node and associated with attribute Ai, then

its numerical identifier is set as i.

2) If x is a non-leaf node and associated with a set of

attributes {Ai,Aj, · · · ,

Ak},1 6 i < j < · · · < k ≤ M , then its numerical

identifier is set as ij · · · k .

IV. DOCUMENT COLLECTION HIERARCHICAL

ENCRYPTION

In this section, we present the detailed process of encrypt-

ing a document collection F = {F1,F2, · · · ,FN } by CP-

ABHE. First, each document in F is assigned with a set of

attributes which are selected fromA and the access structure,

ST , of F is constructed based on Algorithm 1 presented in

Section III. Then, for each document Fi in F , a content key

ck i is randomly selected and we symmetrically encrypt Fi
based on ck i, i.e., Ci = Eck i (Fi), i = 1, 2, · · ·N , where Ci

is the ciphertext of Fi. We denote all the content keys as

ck = {ck1, ck2, · · · , ckN } and then all the content keys of

the documents in an individual integrated access tree can be

encrypted together. Now, we discuss how to hierarchically

encrypt the content keys as follows.

Setup. The setup algorithm chooses a bilinear group G0

of prime order p with g as a generator, a bilinear map e :

G0 × G0 → G1 and two random numbers α, β ∈ Zp. The
public key is published as:

PK = (G0, g, h = gβ , e(g, g)α),

and the master secret key is set as:

MSK = (β, gα).

Encrypt(PK, ck,ST ). We first need generate a secret

number skx is for each node x in the trees. In each tree,

these secret numbers for the nodes are chosen in a bottom-up

manner, starting from the leaves to the root node. Specifically,

we randomly select a secret number si ∈ Zp for each attribute
Ai in A and si is assigned to all the leaves with attribute Ai
in all the trees in ST . In other words, the secret number skx
of the leaf node x associated with attribute Ai is si. Then for

the internal node x with a set of child nodes Sx , the secret

number skx is computed as skx =
∑

z∈Sx
skz1i,S ′

x
(index(x))

where i = index(z), S ′
x = {index(z), z ∈ Sx}, index(x) is

the numerical identifier of node x. By treating each child

node z in Sx as a data point with coordinate (index(z), skz),

the Lagrange interpolation algorithm could be employed to

construct a |Sx | − 1 order polynomial which crosses all the

data points in Sx , where |Sx | is the number of nodes in Sx .

In this way, the secret number of node x can be calculated by

plugging index(x) into the polynomial. In theory, each child

node maintains a share of the secret number of the parent
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node. To recover the secret number of a node, the data users

need to collect all the necessary shares which are hidden in

their secret keys. By iterating the above process, each node in

the integrated access structure can be assigned with a secret

number.

Then, we encrypt the content keys by the assigned secret

numbers. Assume that the file identifiers {fm, · · · , fn} in a

node x can be returned by function file(x) and then we encrypt

all the related content keys {ckm, · · · , ckn} based on the

same secret number skx . Let Y be the set of the leaves in

an integrated tree T . All the content keys related with T

are encrypted together and the ciphertext is constructed as

follows:

CTT = (T , ∀x ∈ T , fi ∈ file(x) : C̃i = ck ie(g, g)
α·skx

,

Cx
∗ = gskx , ∀y ∈ Y : Cy = hsky ,C ′

y = H (att(y))sky ).

For convenience, we call the ciphertext of all the content keys

in an access tree T as the ciphertext of T . By constructing the

ciphertext for each integrated access tree in ST , we can get the

ciphertext CT of the whole document collection as follows:

CT = {∪(CTT ), ∀T ∈ ST }.

We further assume that file(T ) returns all the document

identifiers in access tree T and denote the number of nodes,

that contain document identifiers in T , as |T |. It can be

observed that the ciphertext of T contains |file(T )| + |T | +

2 ∗ |Y | elements in G0 and G1, where |∗| returns the number

of elements in ∗. When encrypting a set of access trees,

some redundant data can be deleted. Note that, Cy and C ′
y

are only related with sky and the further sky is only related

with the attribute of leaf node y. As discussed previously, all

the leaf nodes with the same attribute share the same secret

number. Then, we can infer that the leaves, y1, y2, · · · , yd ,

of different access trees, T1, T2, · · · , Td , may share a same

attribute Ai and hence, Cy1 = Cy2 = · · · = Cyd = hsi ,

Cy1
′ = Cy2

′ = · · · = Cyd
′ = HAi

si . Therefore, when

publishing the ciphertext of all the documents, only 2 ∗ |A|

records of Cy and C
′
y need to be published. Then, the total

number of elements in CT can be theoretically calculated as

N + (
∑

T ∈ST
|T |)+2∗|A|. Considering that (

∑

T∈ST
|T |) is

naturally smaller than N and |A| ≪ N , we can infer that the

number of total elements in the ciphertext is always smaller

than 2 ∗ N .

In the KP-ABE scheme [11], the number of elements in the

ciphertext is always 2 ∗ N and it has the close performance

with CP-ABHE. However, in CP-ABE and FH-CP-ABE,

each access tree is treated as a whole and the secret numbers

of the leaf nodes in different access trees are totally inde-

pendent with each other. Therefore, in these two schemes,

the ciphertext of ST is the collection of all the individual

access trees’ ciphertexts and its size is much larger than that

of CT in our scheme.

KeyGen(MSK,S). The key generation algorithm takes a

set of attributes S as input and output a secret key for a data

user who owns all the attributes in S.Wefirst choose a random

number r ∈ Zp, and then choose a random number rj ∈ Zp
for each attribute Aj ∈ S. Then the secret keys are computed

as follows:

SK = (D = gα · hr , ∀Aj ∈ S : Dj = gr · H (Aj)
rj ,D′

j = hrj ).

It can be observed that, for different data users, the param-

eter r and rj are different. Therefore, different data users

cannot collude with each other to decrypt a ciphertext which

cannot be decrypted by any data user alone. However, for

one data user, the secret key can be treated as a set of

fragments, i.e., D, Dj, D
′
j, and the fragments can be flexibly

combined to construct the secret keys for different access

trees. Namely, the secret key of a data user in CP-ABHE

is not designed for a specific access tree. The data users’

secret keys in CP-ABE and FH-CP-ABE also have similar

properties. This can be explained by the fact that all these

three schemes embed the access structure of the documents

into the ciphertext rather than the data users’ secret keys.

However, in KP-ABE, the access structure is embedded in

the secret keys and each secret key is designed for a specific

access tree. In other words, the fragments of a secret key are

meaningless unless they are employed as a whole to decrypt

a specific access tree. Therefore, our mechanism can greatly

simplify the data users’ secret keys compared with KP-ABE

scheme.

Decrypt(CTT ,SK). We employ a recursive algorithm

DecryptNode (CTT , SK , x) to decrypt the content keys

encrypted by node x in the tree T step by step. This algorithm

takes as input a ciphertext CTT , a private key SK which is

associated with a set of attributes S, and a node x from T .

If node x is a leaf node with attribute Ai and Ai ∈ S, then the

algorithm is defined as follows:

DecryptNode(CTT , SK , x) =
e(Di,Cx)

e(D′
i,C

′
x)

=
e(gr · H (Ai)

ri , hskx )

e(hri ,H (Ai)
skx )

=
e(gr , hskx )e(H (Ai)

ri , hskx )

e(hri ,H (Ai)
skx )

= e(g, g)γβ·skx .

However, ifAi /∈ S, we defineDecryptNode(CTT , SK , x)= ⊥.

When x is an internal node, the algorithm is operated

recursively. First, each node z ∈ Sx calls the function

DecryptNode(CTT , SK , z) and stores the output of the algo-

rithm as Fz. Here, Sx denotes the set of x’s child nodes. If at

least one Fz = ⊥, the function DecryptNode(CTT , SK , x)

returns ⊥. Otherwise, we denote i = index(z), S ′
x =

{index(z), z ∈ Sx} and compute Fx as follows:

Fx =
∏

z∈Sx

F
1i,S′

x
(index(x))

z

=
∏

z∈Sx

(e(g, g)rβ·skz )
1i,S′

x
(index(x))

= e(g, g)
rβ·

∑

z∈Sx
skz·1i,S′

x
(index(x))

= e(g, g)rβ·skx
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If a data user has an attribute set S which matches att(x),

the data user can calculate A = Fx = e(g, g)rβ·skx by iterating

the above process. Then each content key ck i encrypted by

node x with skx can be decrypted as follows:

C̃i/(e(Cx
∗,D)/A)= C̃i/(e(g

skx , gαhr )/e(g, g)rβ·skx )=ck i.

At last, all the documents encrypted by ck i can be

decrypted by the data user as:

Fi = Dck i (Ci), ∀fi ∈ file(T ).

Otherwise, the data user cannot decrypt the encrypted

documents.

V. SECURITY ANALYSIS

In this section, we mainly focus our attention on analyzing

the security of CP-ABHE and other security problems in the

document retrieval system are out of scope in this paper.

Specifically, the documents are encrypted based on symmet-

ric encryption schemes and they are assumed to be secure

if the content keys are secure. Then, we mainly restrict our

attention to the security of the content keys in CP-ABHE.

Methodologically, we prove the security of CP-ABHE under

the Selective-Set Security Game based on the Decisional

BDH assumption provided in Section II-B.

Theorem 5.1: No polynomial adversary can win the

Selective-Set Security Game of CP-ABHE with a non-

negligible advantage if the Decisional BDH assumption

holds.

Proof:Wefirst assume that there is a polynomial adversary

Adv that can break through the CP-ABHE scheme with an

advantage ǫ. Under the above assumption, we can design a

simulator B that can play the Decisional BDH game with an

advantage ǫ/2.

First, the challenger randomly chooses two multiplicative

groups, G0,G1, of prime order p. Let g be a generator of G0

and let e be a bilinear map e : G0 × G0 → G1. Four random

numbers, a, b, c, t , are chosen from Zp. Then the challenger

flips a coin v and if v = 0, the challenger generates a BDH

tuple (ga, gb, gc, e(g, g)abc); otherwise, if v = 1, it constructs

a random 4-tuple (ga, gb, gc, e(g, g)t ). At last, all the chosen

elements and the generated tuple are sent to the simulator.

Simulator B plays the game as follows:

Init: The simulator B runs adversary Adv and let Adv

submits a set of attributes S on which Adv is challenged.

Setup: The simulator sets α = ab+a′ where a′ is a random

number in Zp. Then, the simulator computes e(g, g)α =

e(g, g)abe(g, g)a
′
. It further sets h = gβ = gb = B and sends

PK = (G0, g,B, e(g, g)abe(g, g)a
′
) to Adv.

Query Phase 1: The adversary Adv can query the secret

keys SK of any access structure A∗ with a set of attributes S ′

as long as S * S ′. To respond the query of Adv, simulator B

first selects a random number r ′ ∈ Zp and sets r = r ′ − a.

Then it calculates D = gα · hr = Br
′
· g

a′

and, for each

attribute Aj ∈ S ′, the simulator randomly chooses a number

rj ∈ Zp and calculates Dj = g(r
′−a)H (Aj)

rj =
gr

′

A
H (Aj)

rj ,

Dj
′ = Brj . At last, B sends SK = (Br

′
· ga

′
, ∀Aj ∈ S ′ :

gr
′

A
H (Aj)

rj ,Brj ) to the adversary.

Challenge: For convenience sake, we assume that only

one content key of a file is encrypted by CP-ABHE and

the ciphertext is simplified as CTT = (T ,Cx
∗, C̃i, ∀y ∈

S ′ : Cy = Bsky ,C ′
y = H (att(y))sky ). In the challenge

process, the adversary Adv first sends two messages M0 and

M1 with equal lengths to B. Then, simulator B flips a coin

µ ∈ {0, 1} to randomly choose a message from M0 and M1,

and the chosen message is encrypted as follows. Simulator B

calculates Cx
∗ = gskx = gc = C . If v = 0, C̃i is calculated

as C̃i = Mµe(g, g)
αc = e(g, g)abce(g, g)a

′c; otherwise, C̃i is

calculated as C̃i = Mµe(g, g)
t which is a random element of

G1 fromAdv’s view. Moreover,Cy andC
′
y are also calculated

by B. At last, the ciphertext of the chosen message is sent

to Adv.

Query phase 2: The query phase 1 is repeated.

Guess: In this process, the adversary Adv needs to make

a guess µ′ of µ based on all the obtained information and

the result is sent to the simulator B. Then, simulator makes a

guess v′ of v based on the guess result of Adv. Specifically,

ifµ′ = µ, the simulator B outputs v′ = 0 to indicates that it is

given a BDH tuple by the challenger; otherwise, it will output

v′ = 1 to indicate that it is given a random 4-tuple. Then,

we can theoretically calculate the advantage of simulator B

in playing the Decisional BDH game.

If µ = 0, the adversaryAdv sees an encryption ofMµ and

in this case Pr(µ′ = µ|v = 0) = 1/2 + ǫ by the initial

hypothesis. Since the simulator outputs v′ = 0 when µ′ = µ,

we can infer that Pr(v′ = v|v = 0) = 1/2 + ǫ.

If µ = 1, the adversary Adv gains on information about

µ and hence Pr(µ′ 6= µ|v = 1) = 1/2. Since the

simulator outputs v′ = 1 when µ′ 6= µ, we can get

Pr(v′ = v|v = 0) = 1/2.

As a consequence, the advantage ofB in playing theDBDH

game can be calculated as follows:

1

2
Pr(v′ = v|v = 0) +

1

2
Pr(v′ = v|µ = 1) −

1

2

=
1

2
(
1

2
+ ǫ) +

1

2
×

1

2
−

1

2
=

ǫ

2

Considering that the Decisional BDH assumption holds,

we can infer that ǫ is a negligible advantage. In other words,

the adversary cannot win the Selective-Set Security Game of

CP-ABHE with a non-negligible advantage. Consequently,

our scheme is secure.

VI. EFFECTIVENESS OF INTEGRATED ACCESS TREES

A. GENERATION OF ATTRIBUTE SETS

As discussed in Section IV, the access structure, ST , of the

document collection greatly affects the efficiency of CP-

ABHE. In this section, we analyze the properties of ST
in detail. First, we design an attribute dispatcher to assign

attributes to the documents. We assume that the attribute

dictionaryA is composed of 26 letters, i.e.,A = A,B, · · · ,Z .

In simulation, the attributes in A are divided into 4 categories,
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i.e., C1 = {A,B, · · · ,G}, C2 = {H , I , · · · ,N }, C3 =

{O,P, · · · ,T }, C4 = {U ,V , · · · ,Z }. The attributes in the

same category are assumed to be more related with each

other and we employ a parameter pr to reflect this. In this

paper, parameter pr ranges from 0.25 to 1. This is reason-

able considering that the attributes are naturally divided into

clusters in real document collections and it is likely that the

related attributes are assigned to a document together. For

example, if a document is related with attribute ‘‘computer’’,

it is natural to infer that the document is more likely to be

related with attribute ‘‘network’’ than other attributes such as

‘‘economic’’ and ‘‘finance’’.

The process of generating the attribute sets for the docu-

ments is presented in Algorithm 2. Without loss of generality,

we assume that each document has at least 1 attribute and

at most 5 attributes. In the initial, we randomly choose the

number of a document’s attributes from {1, 2, · · · , 5} and

then the first attributeAn is uniformly randomly selected from

A. For the documents with more than 1 attribute, the next

attribute is chosen by employing a random number pr
′. If the

randomly generated pr
′ is smaller than pr , the next attribute is

selected in the same category of the first attribute. Otherwise,

the next attribute is randomly selected fromA\An. We iterate

the above process until each document is assigned with an

attribute set.

Algorithm 2 AttributeDispatcher

Input: A = C1,C2,C3,C4,F, pr (0.25 ≤ pr ≤ 1)

Output: The attribute set of each document

1: for each document Fi ∈ F do

2: A 6= ∅;

3: Randomly select a number m from {1, 2, 3, 4, 5};

4: Randomly select an attribute An from A and we

assume that An ∈ Ck , k = 1, 2, 3, 4;

5: Insert An to A;

6: for i = 2 : m do

7: Randomly generate a number p′
r (0 ≤ p′

r ≤ 1) and

if p′
r ≤ pr , randomly select an attribute Aq from

Ck \ An; otherwise, uniformly randomly select an

attribute Aq from A \ An;

8: Insert Aq to A;

9: end for

10: The attributes in A comprise the attribute set of docu-

ment Fi;

11: end for

B. NUMBER OF INTEGRATED ACCESS TREES

Considering that each integrated access tree is encrypted

as a whole, the number of trees in ST strongly affects the

encryption efficiency of CP-ABHE. Based on the assigned

attribute sets generated in Section VI-A, we analyze the

number of integrated access trees in ST . In KP-ABE and

CP-ABE schemes, we assume that the documents with the

same attribute set are encrypted together by a same secret key.

FIGURE 6. Number of access trees in KP-ABE/CP-ABE schemes.
(b) Number of integrated access trees in CP-ABHE scheme.

As shown in Fig. 6(a), the number of access trees in KP-

ABE/CP-ABE schemes is naturally smaller than that of files.

This is reasonable considering that some documents may

share a same access tree.With the increasing of the number of

files, the number of access trees also increases monotonously

though the increasing speed decreases. This can be explained

by the fact that with the increasing of the number of

access trees, it is increasingly possible that the access tree

of a new document is the same with an existing access

tree.

The value of pr also affects the number of access trees.

When the attributes of a document are totally randomly

selected from A, i.e., pr = 0.25, the attribute sets of the

documents are greatly varied. As a consequence, the number

of access trees is the largest. With the increasing of pr , more

and more documents share the same access trees and the

total number of access trees decreases. For 1000 files, when

pr = 0.25, the number of access trees is about 760 and

when pr = 1.0, the number of access trees decreases to

about 280.

The number of integrated access trees in CP-ABHE is

presented in 6(b). Similar to KP-ABE and CP-ABE, the num-

ber of integrated access trees in our scheme also gradually

increases with the increasing of the number of files and

the increasing speed decreases. In addition, the number of

integrated access trees decreases with the increasing of pr .
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FIGURE 7. (a) Number of nodes in the access trees in KP-ABE/CP-ABE
schemes. (b) Number of nodes in the integrated access trees in CP-ABHE
scheme.

For 1000 files, when pr = 0.25, the number of the integrated

access trees is about 420 and when pr = 1.0, the number of

trees decreases to about 110. By comparing 6(a) and 6(b),

we can find that the number of integrated access trees is

much smaller than that of access trees in KP-ABE and CP-

ABE schemes. Therefore, the simulation result illustrates that

Algorithm 1 proposed in Section III performs very well in

terms of decreasing the number of access trees.

C. NUMBER OF NODES IN THE TREES

As presented in Section IV, each node in the tree needs to

be assigned a secret number. Each tree contains a root node,

several intermediate nodes and a set of leaf nodes. Roughly

speaking, the total number of nodes in the trees approximately

linearly increases with the number of access trees and there-

fore it should have similar relations with the number of files

and the value of pr . As shown in Fig. 7, the number of nodes in

KP-ABE and CP-ABE schemes ranges from 1200 to 3200 for

different pr . The number of nodes in the integrated access

trees ranges from 700 to 2500. It can be observed that the

number of nodes in the integrated trees is always smaller than

that of the original access trees. In the process of encrypting

the documents, all the schemes need to construct a secret

number for each node in the trees. As a consequence, CP-

ABHE consumes much fewer computation resources com-

pared with that of KP-ABE and CP-ABE schemes.

FIGURE 8. (a) Time cost of constructing the integrated access trees.
(b) Average time cost of inserting a file identifier to the integrated access
trees.

D. TIME COST OF TREE CONSTRUCTION

The total time cost of constructing the integrated access trees

is presented in Fig. 8(a). Apparently, the time cost increases

with the increase of the number of files. For a small pr ,

the total time cost increases fast. This can be explained by

the fact that when pr is small, the attribute sets of the files

are very different and a large number of access trees need

to be scanned before a new file identifier is inserted into the

integrated access trees. On the contrary, when pr is large,

quite a number of files share the same integrated access trees

and they can be inserted to the trees faster. In the worst case,

i.e., pr = 0.25, the time consumption of constructing the

integrated access trees for 1000 documents is about 16 sec-

onds. When pr = 1, only about 4 seconds are consumed to

construct the access structure of the document collection. The

average time cost of inserting a file identifier to the trees is

presented in Fig. 8(b).

E. DISTRIBUTION OF THE DOCUMENTS IN THE TREES

In this section, the number of documents is set as 1000.

We first sort the trees in descent order based on the number

of file identifiers stored in the trees. Then, we divide the

trees into different sets and each set contains 25 trees. At last,

we count the number of file identifiers stored in each set of
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TABLE 1. Comparison of KP-ABE, CP-ABE and CP-ABHE.

FIGURE 9. File distribution in the access trees.

the trees. As shown in Fig. 9, quite a number of file identifiers

are contained in the first 50 integrated access trees and the

proportion ranges from 40% to 75% for different pr . Then

there exists a long tail for the rest of the trees. In addition,

a larger pr leads a shorter tail and when pr = 1.0, almost all

the files are stored in the first 150 integrated access trees. This

is reasonable considering that more and more files share the

same attribute sets when the value of pr increases. Though the

number of the trees are larger than 200 when pr ranges from

0.25 to 0.8 as shown in Fig. 6(a), almost all the document

identifiers are stored in the largest 200 trees. If ignoring a

small number of documents is acceptable for some applica-

tions, the number of the trees greatly decreases and hence the

efficiency of the schemes can be further improved.

VII. EFFICIENCY OF CP-ABHE

A. PERFORMANCE ANALYSIS

We theoretically compare the proposed schemewithKP-ABE

and CP-ABE schemes in terms of encryption/decryption effi-

ciency and storage space. For convenience, some basic def-

initions are presented first. We assume that Gi(i = 0, 1) is

a group or the time cost of a basic operation on the group

such as exponentiation or multiplication. Let Zp be the group
{0, 1, · · · , p− 1} and Ce be the time cost of a bilinear map

operation e. In addition, we define |∗| as the number of

elements in ∗, L∗ as the length of an element in ∗.

We assume that the data owner encrypts the content keys

ck = {ck1, ck2, · · · , ckN } by KP-ABE, CP-ABE and our

scheme, respectively. Let att(Fi) returns the attribute set ofFi,

att(T ) be the attribute set of the access tree T . We denote the

number of nodes which contain at least one document identi-

fiers in T as |T |. The time consumptions of constructing the

TABLE 2. The rank of the three schemes’ performance.

polynomials when generating the secret numbers are ignored.

We further assume that a data user needs to decrypt all the

documents. Under the above assumptions, a theoretical com-

parison between these three schemes is presented in Table 1.

By basic analysis, we can infer that |att(F1)| + · · · +

|att(FN )| ≫ {N ,
∑

T ∈ST
|T | ,

∑

T ∈ST
|att(T )|} ≫ |A| for

a large document collection. Then, we can rank the perfor-

mance of these three schemes in terms of different measure-

ments as shown in Table 2. It can be observed that the CP-

ABHE performs the best in terms of all the measurements.

The KP-ABE scheme performs better than CP-ABE in terms

of encryption/decryption efficiency and the size of CT . How-

ever, a huge disadvantage of theKP-ABE scheme is the secret

key expanding problem. The CP-ABE scheme performs

better than KP-ABE in terms of the size of PK , MSK , and

SK . However, the size of the ciphertext is much larger than

that of KP-ABE scheme. When sending the ciphertext to the

data users, the data transmission amount in CP-ABE is much

larger and it is a challenge for the networks. In addition, CP-

ABE scheme and CP-ABHE scheme are more flexible than

the KP-ABE scheme in real life. In conclusion, theoretical

analysis shows that both KP-ABE and CP-ABE have their

disadvantages and CP-ABHE always performs the best.

B. PERFORMANCE EVALUATION

To further evaluate the performance of these three document

encryption schemes, we implement the CP-ABHE scheme

based on the cpabe toolkit and the Java Pairing-Based Cryp-

tography library (JPBC) [4]. We employ a 160-bit elliptic

curve group based on the supersingular curve y2 = x3 + x

over a 512-bit finite field. In addition, the KP-ABE scheme

in [11] and the CP-ABE scheme in [1] are also implemented.

All the above schemes are simulated on a 2.60 GHZ Intel

Core processor, Windows 7 operating system with a RAM

of 4 GB. The number of documents in the collection ranges

from 100 to 1000. As presented in Section VI, the attribute

dictionary is defined as A = {A,B, · · · ,Z } and each
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FIGURE 10. Encryption time.

document is assigned with an attribute set through Algo-

rithm 2. Similar to [13] and [33], the encryption/decryption

time and the storage cost of ciphertext are employed to

measure the performance of these schemes. In addition,

we also use the secret key storage space to reflect the secret

key expanding problem. Each simulation is executed for

10 times and the average simulation results are presented in

the following.

1) ENCRYPTION EFFICIENCY

The encryption time of the three schemes with different

number of documents is presented in Fig. 10. To obtain

ck ie(g, g)
αs of a document, CP-ABE needs to execute two

operations on G1. In addition, the scheme needs to execute

2 ∗ att(Fi) + 1 operations on G0 to get hs, Cj and C
′
j . When

a new document arrives, all the encryption process needs to

be re-executed for one time. Therefore, the encryption time

of CP-ABE is the largest in all the three schemes. The KP-

ABE scheme also needs to encrypt each document singly.

However, the KP-ABE scheme needs to execute only att(Fi)

operations inG0 and hence it performs better than CP-ABE in

terms of encryption time. In CP-ABHE, all the ciphertexts of

the documents share the same Cy and C
′
y which can greatly

decrease the computation complexity. As shown in Fig. 10,

CP-ABHE improves the encryption efficiency by about 60%

compared with CP-ABE and it also outperforms KP-ABE

scheme.

2) DECYPTION EFFICIENCY

As shown in Fig. 11, the decryption time of all the three

schemes approximately linearly increases with the expanding

of the document collection. For a constant document collec-

tion, CP-ABHE improves the decryption efficiency by about

50% compared with the CP-ABE scheme and it also out-

performs KP-ABE. To decrypt all the encrypted documents,

the KP-ABE scheme and CP-ABE scheme need to decrypt

the access trees one by one. For each access tree, they first

need to decrypt the leaf nodes and then decrypt the root node

by an iterating process. At last, the content secret key ck i
hidden in the access tree is decrypted. It can be observed that

most time is consumed in the process of decrypting the nodes

in the trees. For different access trees, the secret numbers of in

FIGURE 11. Decryption time.

the leaf nodes are independent with each other. To decrypt a

leaf node, the CP-ABE scheme needs to execute bilinear map

operation two times and a operation in G1. However, in the

KP-ABE scheme, only a bilinear map is needed to decrypt

a leaf node. Considering that the rest decryption process of

KP-ABE and CP-ABE schemes are similar to each other,

we can conclude that the KP-ABE scheme outperforms CP-

ABE scheme in terms of decryption efficiency. CP-ABHE

performs the best in all the three schemes and this can be

explained by the fact that only M (i.e., |A|) leaf nodes need

to be decrypted.

3) CIPHERTEXT STORAGE EFFICIENCY

In this section, we restrict our attention to the ciphertext of the

encrypted content keys. As shown in Fig. 12, the ciphertext in

CP-ABE scheme consumes the most storage space. For each

access tree, the ciphertext includes an element in G1 (i.e.,

ck ie(g, g)
αs) and 2 ∗ |att(Fi)| + 1 elements in G0 (i.e., Cj, C

′
j

and C = hs). For different access trees, their ciphertexts are

totally independent and we cannot save any storage cost by

publishing the ciphertexts together. Though the ciphertexts

of different access trees in the KP-ABE scheme are also

independent with each other, the ciphertext of an access tree

includes only an element inG1 (i.e., ck ie(g, g)
αs) and |att(Fi)|

elements in G0 (i.e., Ej). Therefore, the size of ciphertext in

the KP-ABE scheme is much smaller than that of the cipher-

text in the CP-ABE scheme. CP-ABHE scheme performs the

best in all the three schemes and consumes the least storage

space. In CP-ABHE, the content keys are encrypted together

and the ciphertext of the keys includes N elements in G1

and 2 |A| +
∑

T ∈ST
|T | elements in G0. As discussed in

section VII-A, the ciphertext of CP-ABHE consumes much

smaller storage space compared with that of KP-ABE scheme

and CP-ABE scheme. The simulation result demonstrates the

correctness of our theoretical analysis.

4) SECRET KEY STORAGE EFFICIENCY

The total storage cost of the secret keys is presented in Fig. 13.

In CP-ABE and CP-ABHE schemes, the secret key of a

data user is related with his attribute set only and doesn’t

expand with the increasing of the document collection.
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FIGURE 12. Ciphertext storage space.

FIGURE 13. Secret key storage space.

However, in the KP-ABE scheme, each secret key is gener-

ated for a specific access tree. With the increasing of the doc-

ument collection’s size, the number of access trees increases

and, as a consequence, the size of a data user’s secret key

is extremely large. It can be observed from Fig. 13 that the

storage space of the secret key of a data user is linearly

increasing with the document collection’s size. When the

document collection contains 1000 documents, the size of

the secret key in KP-ABE is about 300 KB which is much

larger than that of the secret keys in CP-ABE and CP-ABHE

schemes.

C. PERFORMANCE COMPARISON

In conclusion, CP-ABHE scheme always performs the best in

terms of encryption/decryption time, the secret key storage

cost and ciphertext storage cost. KP-ABE scheme per-

forms better than the CP-ABE scheme in terms of encryp-

tion/decryption time and cipher-text storage cost. However,

a huge disadvantage of the KP-ABE scheme is the secret

key expanding problem. As we step into the era of mobile

internet, more and more data users tend to access the doc-

uments through mobile devices which are of very limited

resources. In this case, storing a large number of secret keys

is impractical. Though CP-ABE scheme has a larger cost in

terms of encryption/decryption and ciphertext storage, it is

more convenient for the data owners to set the access struc-

tures and the data users need to store a small number of secret

keys.

VIII. RELATED WORK

Attribute-based encryption schemes have been widely

researched in the literatures. The fuzzy identity-based encryp-

tion (Fuzzy IBE) scheme proposed by Sahai and Waters [28]

is widely treated as the origin of attribute-based encryption

(ABE). Sahai and Waters first employ the term ‘‘attribute-

based encryption (ABE)’’ in the field of information secu-

rity. Inspired by Fuzzy IBE, many ABE schemes are

designed including KP-ABE schemes and CP-ABE schemes.

Goyal et al. extend the Fuzzy IBE scheme and propose

the key-policy attribute-based-encryption (KP-ABE) in [11].

Though KP-ABE can provide fine-grained access control,

it restricts its attention to the monotone access structure

only. In [25], Ostrovsky et al. construct a KP-ABE scheme

which allows a user’s private key can be expressed in terms

of any access formula over attributes. Further, they prove

the scheme’s security based on decisional bilinear Diffie-

Hellman assumption. Yang et al. [38] propose a scheme

which performs well in terms of both access structure

expressivity and security. CP-ABE schemes are more flex-

ible and suitable for general applications and many vari-

eties of CP-ABE schemes have been proposed in the lit-

eratures [1], [10], [34]. In CP-ABE schemes, the access

structures are embedded in the ciphertext and each data

user is assigned with a set of attributes. A data user can

decrypt a ciphertext if and only if their be matched with each

other.

Recently, ABE schemes have been widely employed

to securely store and share data in cloud computing.

Pirretti et al. [26] introduce a novel secure information man-

agement architecture based on ABE primitives. A policy sys-

tem which meets the needs of different data users is designed

and used to encrypt distributed file systems. The hierarchi-

cal ABE (HABE) scheme [32] is proposed by combining

a hierarchical IBE scheme and a CP-ABE scheme. HABE

scheme can help the enterprise users to efficiently share confi-

dential data in cloud computing by simultaneously achieving

fine-grained access control, high performance, practicability,

and scalability. Zhu et al. [39] also propose a file sharing

scheme in cloud computing based on ABE and the security

and efficiency of the scheme are evaluated. Li et al. [17]

provide a CP-ABE scheme with efficient data user revocation

for cloud storage. KSF-OABE scheme [18] integrates the

keyword search function into the ABE scheme which can

improve the search efficiency of ciphertexts. Though all the

above proposed schemes can be used in cloud computing,

they are designed for encrypting a single document. They

cannot be directly employed to encrypt a large document

collection, because the encryption/decryption efficiency is

low if we encrypt each file singly. To our knowledge, the most

related work to our scheme is FH-CP-ABE [33] and however,

this scheme can only hierarchically encrypt a set of docu-

ments together whose attribute sets need to nicely comprise

an integrated access structure. This is impractical for a large

document collection considering that the attribute sets of the

documents are random.
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IX. CONCLUSION

In this paper, we design a hierarchical document collection

encryption scheme. We first design an incremental algorithm

to construct the integrated access trees of the documents and

decrease the number of trees. Then, each integrated access

tree is encrypted together and the documents in a tree can be

decrypted at a time. Different to existing schemes, we con-

struct the secret numbers for the nodes of the trees in a

bottom-up manner. In this way, the sizes of ciphertext and

secret keys significantly decrease. At last, a thorough per-

formance evaluation is provided including security analysis,

efficiency analysis, and simulation. Results show that the pro-

posed scheme outperformsKP-ABE andCP-ABE schemes in

terms of encryption/decryption efficiency and storage space.

Our scheme can be further improved in several aspects:

First, the access policy discussed in Section III assumes that

the access trees are composed of only ‘‘AND’’ gates. Extend-

ing the flexibility and versatility of the access policy is one

of the most important research directions. Second, the docu-

ments are encrypted before outsourcing and a promising task

is how to efficiently search the interested documents over

the ciphertexts. At last, we focus our attention on the static

document collection and how to efficiently encrypt/decrypt a

dynamic document collection will be also researched in the

future.
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