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ABSTRACT

We present an algorithm enabling computation of the anisotropic redshift-space galaxy three-

point correlation function (3PCF) scaling as N2, with N the number of galaxies. Our previous

work showed how to compute the isotropic 3PCF with this scaling by expanding the radially

binned density field around each galaxy in the survey into spherical harmonics and combining

these coefficients to form multipole moments. The N2 scaling occurred because this approach

never explicitly required the relative angle between a galaxy pair about the primary galaxy.

Here, we generalize this work, demonstrating that in the presence of azimuthally symmetric

anisotropy produced by redshift-space distortions (RSD), the 3PCF can be described by two

triangle side lengths, two independent total angular momenta, and a spin. This basis for the

anisotropic 3PCF allows its computation with negligible additional work over the isotropic

3PCF. We also present the covariance matrix of the anisotropic 3PCF measured in this basis.

Our algorithm tracks the full 5D redshift-space 3PCF, uses an accurate line of sight to each

triplet, is exact in angle, and easily handles edge correction. It will enable use of the anisotropic

large-scale 3PCF as a probe of RSD in current and upcoming large-scale redshift surveys.

Key words: cosmology: observations – distance scale – large-scale structure of Universe.

1 IN T RO D U C T I O N

Measuring the clustering of galaxies is a standard cosmological

probe, revealing the Universe’s contents and laws while simultane-

ously illuminating the process of galaxy formation. This clustering

is often quantified via correlation functions, which measure the ex-

cess above random of e.g. pairs (two-point correlation function,

2PCF) or triplets (three-point correlation function, 3PCF) of galax-

ies (Peebles 1980). The Universe is homogeneous and isotropic

on large scales, so in principle the correlation functions should

be direction independent (isotropic). However, in practice spec-

troscopic surveys differ in their method for measuring objects’

line-of-sight positions as opposed to the two transverse coordi-

nates, so the correlation functions become direction dependent

(anisotropic).

In particular, an object’s angular position is directly observable.

In contrast, an object’s line-of-sight position is inferred from its

redshift by presuming that the redshift is due solely to the ob-

ject’s recession as it comoves with the background expansion of

the Universe. But large-scale structure grows by convergence of

⋆ E-mail: zslepian@gmail.com, zslepian@lbl.gov (ZS); deisenstein@

cfa.harvard.edu (DJE)

†Einstein Fellow

matter on to overdense regions, generating peculiar velocities rel-

ative to the background expansion and rendering this assumption

inaccurate. Furthermore, on smaller scales, virial motions of galax-

ies inside clusters generate additional peculiar velocities. The re-

sulting patterns in the observed clustering, which on small scales

(�20 Mpc) are parallel to the line of sight (‘fingers of God’;

Jackson 1972) and on larger scales are transverse (‘Kaiser pan-

cakes’; Kaiser 1987), are termed redshift-space distortions (RSD;

Hamilton 1998, for a review).

Despite rendering cosmological parameter inference from galaxy

clustering more difficult, RSD contain additional information on the

laws of physics and the Universe’s contents. In particular, they scale

as f = d ln D/d ln a ≈ �γ
m, with D the linear growth rate, a the

scale factor, �m the matter density observed at a particular redshift,

and γ = 0.56 in General Relativity (GR), but with other values for

alternative theories of gravity (Linder 2005). If GR is assumed, then

RSD probe the matter density, and if the matter density is assumed,

RSD test GR (e.g. Raccanelli et al. 2013).

RSD generate dependence of the observed clustering on angle

with respect to the line of sight or lines of sight to a given N-tuplet

of galaxies. In the simplest treatment of RSD, which uses linear

perturbation theory and assumes a single line of sight to the entire

survey (‘flat sky’), RSD produce a quadrupole and hexadecapole

(ℓ = 2 and 4) in this angle’s cosine in the 2PCF or its Fourier

analogue the power spectrum (Kaiser 1987; Hamilton 1993).
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The 2PCF and power spectrum multipoles have been used

with considerable success to additionally constrain the parameters

already probed by the isotropic (ℓ = 0) 2PCF as well as to measure

f (e.g. Ross et al. 2017; Beutler et al. 2017). Further, the multipoles

can be integrated over and summed to produce clustering wedges

in angle to the line of sight, offering an alternative route to pa-

rameter constraints (Kazin, Sánchez & Blanton 2012; Grieb et al.

2017; Hand et al. 2017). Models for RSD that go beyond linear per-

turbation theory have also been developed (Taruya, Nishimichi &

Saito 2010; Wang, Reid & White 2014; Jeong et al. 2015; Bianchi,

Percival & Bel 2016; Vlah, Castorina & White 2016; see White

et al. 2015 for comparison of recent models). Considerable work

has also been done on wide-angle effects (e.g. Raccanelli et al. 2016;

Samushia, Branchini & Percival 2015; Slepian & Eisenstein 2015a;

Pápai & Szapudi 2008; Reimberg, Bernardeau & Pitrou 2016).

The situation for the 3PCF, measuring excess triplets of galaxies

above random, is more complicated. The RSD now depend on the

angles of two triangle sides to the line of sight (the angle of the third

will be fixed by these two). Including the three parameters required

to describe the triangle itself, there are now five free parameters even

in the simplest flat-sky case (Scoccimarro, Couchman & Frieman

1999). In principle, the anisotropic 3PCF contains rich additional

information on galaxy biasing and the growth rate, but in practice,

it is difficult to measure. Further, it is challenging to report and

visualize, as it depends on five parameters.

The isotropic 3PCF already is computationally expensive, scaling

as N3 in the simplest approach, with N the number of galaxies. To

reduce this computational cost, different acceleration schemes have

been proposed based on kd-trees and introducing approximations in

how the clustering is measured (Zhang & Pen 2005; Gardner et al.

2007; March 2013).

Our own recent work presented a 3PCF algorithm exploiting

properties of the multipole basis that we believe is transformatively

fast for large-scale 3PCF work, scaling as N2 rather than N3 (Slepian

& Eisenstein 2015c). The algorithm further accelerates to become

order Nglog Ng, with Ng the number of grid points if Fourier trans-

forms (FTs) are used (Slepian & Eisenstein 2016b). We showed that

the multipole framework also allows accurate modelling of the co-

variance on large scales. We applied this framework to the Baryon

Oscillation Spectroscopic Survey (BOSS) Data Release (DR) 12

Constant Mass (CMASS) sample of ∼800 000 luminous red galax-

ies to detect the baryon acoustic oscillations (BAO, Slepian et al.

2017; Slepian et al. 2016a; for pedagogical presentation of the BAO

physics, see Slepian & Eisenstein 2016c; Eisenstein, Seo & White

2007) as well as to constrain novel forms of biasing (Slepian et al.

2016a,b). Additional work explored the theoretical predictions for

the isotropically averaged 3PCF in the multipole basis (Slepian &

Eisenstein 2016a) and provided the models fit in these observational

works.

In this paper, we extend our 3PCF algorithm to track the line-of-

sight dependence of the 3PCF. We show that a simple promotion of

the Legendre coefficients relevant for the isotropic 3PCF to mixed

spherical harmonic coefficients depending on two total angular mo-

menta l and l
′
and one spin m fully captures anisotropic clustering.

These coefficients can be easily obtained using the same proce-

dure previously developed for the isotropic 3PCF, which centred

on obtaining spherical harmonic expansions of the density field on

spherical shells around every galaxy in the survey. Further, adding

a simple rotation of coordinates so that the position vector of the

central galaxy serves as the line of sight to the triplet allows use

of a varying line of sight, which tracks the anisotropic clustering

more accurately than assuming a single line of sight to the entire

survey. Additionally, as shown in Slepian & Eisenstein (2016b), the

spherical harmonic coefficients can be obtained in Nglog Ng time

using FTs, and so if the density field is gridded, the anisotropic

3PCF algorithm of this paper can be accelerated even further.

In addition to the speed of measurement it enables, the basis

advanced in this paper has two other important advantages. First, the

parametrization of the 3PCF it involves, as coefficients depending

on angular momenta l, l
′
, spin m and triangle side lengths r1, r2,

can be easily sliced for analysis and visualization. One might fix

the angular momenta and spin and show a colour plot versus r1 and

r2, generalizing what was done in Slepian & Eisenstein (2015c),

Slepian & Eisenstein (2015b), and Slepian & Eisenstein (2016a)

to look at the scale-dependent structure. Alternatively, one could

examine the angular structure by fixing r1, r2, and l and showing

the dependence on l
′
and m.

Second, our parametrization permits straightforward handling of

the covariance matrix of the anisotropic 3PCF. We extend the work

of Slepian & Eisenstein (2015c) to compute the anisotropic covari-

ance matrix assuming a boundary-free survey whose density pertur-

bations follow a Gaussian random field (GRF) with an anisotropic

power spectrum given by the Kaiser formula for RSD. We leave the

survey volume and the number density as free parameters to be fit

from mock catalogues. This calculation supplies an important ad-

vance: having a smooth covariance matrix means it can be inverted,

a known difficulty for covariance matrices estimated from large

numbers of mock catalogues (Percival et al. 2014). In particular,

the inverse of the covariance depends on the smallest eigenvalue

and to accurately obtain this one requires many mock catalogues

per dimension of the covariance matrix. Since the dimension can be

large, one often requires the 3PCF for thousands of mocks, adding

significant time to any analysis.

In contrast, given our template with only two free parameters, one

does not require many mocks to fit for them and obtain a smoothly

invertible covariance. The basis we propose permits straightforward

computation of this template covariance. In particular, expanding in

angular momentum eigenstates (which the spherical harmonics are)

means that the angular integrals to bring the covariance from Fourier

space (where the GRF calculation is easiest) to configuration space

(where the measurement is done) simplify greatly. These integrals,

formally 12D, can be reduced to 1D and 2D integrals of the power

spectrum, enabling fast evaluation on a grid rather than using more

complicated higher dimensional integration techniques.

The paper is laid out as follows. Section 2 presents the basis we

will use for our algorithm and shows how it emerges from imposing

symmetry about the line of sight (taken to be the z axis) on the

most general representation for the two vectors defining a given

triangle. Section 3 outlines the algorithm, showing that only a slight

generalization of Slepian & Eisenstein (2015c) is needed to obtain

the anisotropic 3PCF and that the speed remains O(N2). Section 4

describes how a varying line of sight that follows each galaxy triplet

can be incorporated. Section 5 discusses edge correction in the

algorithm’s basis. In Section 6, we compute the covariance of the

anisotropic 3PCF in the limited but useful approximation described

above. Section 7 concludes and is followed by two brief appendices,

one with identities used in the work’s main body (Appendix A) and

a second showing the impossibility of using a triple Legendre series

for the anisotropic 3PCF (Appendix B).

2 BA SIS

Consider a triplet of galaxies at positions x, x + r1, and x + r2. An

estimate of the full 3PCF about x including any possible dependence

MNRAS 478, 1468–1483 (2018)
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1470 Z. Slepian and D. J. Eisenstein

Figure 1. Here, we schematically show the approach of this paper. The

3PCF is parametrized by two vectors r1 and r2, which encode the triangle’s

side lengths and its orientation with respect to the line of sight, shown in

dashed black. The azimuthal symmetry about the line of sight is the reason

only a single spin m enters the basis. The basis is shown in the red-boxed

equation: we expand the anisotropic 3PCF in radial coefficients ζm
ll′ times

spherical harmonics in r̂1 and r̂2. We seek to measure the radial coefficients

and can then plot them at fixed l, l
′
, and m versus r1 and r2 to reveal the

spatial structure. Alternatively, we might also plot the coefficients at fixed

r1, r2, and l versus l
′

and m to show the angular structure. The features are

BAO, and the plot is adopted from Slepian & Eisenstein (2016a) just to

suggest how these plots might look.

on the triangle configuration as well as on its orientation is

ζ̂ (r1, r2; x) =
4π

√
(2l + 1)(2l′ + 1)

×
∑

lm

∑

l′m′

ζ̂mm′
ll′ (r1, r2; x)Ylm(r̂1)Y ∗

l′m′ (r̂2). (1)

The Ylm are spherical harmonics and the pre-factor is a normalization

to recover the 3PCF’s expansion into Legendre polynomials in the

isotropic limit as in Slepian & Eisenstein (2015c).

Since RSD are due to the difference between how the line of sight

and transverse positions are computed from a survey, they must be

symmetric under rotations about the line of sight n̂. Here, we take

n̂ = x̂, i.e. that there is a single line of sight to the entire triangle,

given by the line of sight to the galaxy at the vertex where the trian-

gle’s opening angle is defined. This geometry is shown in Fig. 1, and

we further discuss this choice for the line of sight in Section 4. We

work in a coordinate system where the z-axis is along x̂. Averaging

over rotations around n̂ = x̂ = ẑ, the azimuthally averaged 3PCF,

denoted with subscript ‘azi’, is

ζ̂azi(r1, r2; x) =
∫ 2π

0

dφ ζ̂ (r1, r2; x)

=
4π

√
(2l + 1)(2l′ + 1)

∑

lm

∑

l′m′

ζ̂mm′
ll′ (r1, r2; x)

×
∫ 2π

0

dφ Ylm(Rz(φ)r̂1)Y ∗
l′m′ (Rz(φ)r̂2), (2)

where Rz(φ) represents a rotation by an angle φ about ẑ. The spher-

ical harmonics are defined

Ylm(θ, φ) =

√

2l + 1

4π

(l − m)!

(l + m)!
P m

l (cos θ )eimφ, (3)

so the only φ dependence is in the exponential.

We can set the initial azimuthal angle φ1 of r̂1 to zero, and the

initial angle of r̂2 we denote φ2. Applying the rotation Rz(φ) then

simply adds an angle φ to each azimuthal angle, so the azimuthal

average of the spherical harmonics in equation (2) scales as

∫ 2π

0

dφ Ylm(Rz(φ)r̂1)Y ∗
l′m′ (Rz(φ)r̂2)

∝
∫ 2π

0

dφ eimφe−im′(φ2+φ)

∝
∫ 2π

0

dφ ei(m−m′)φ = δK
mm′ , (4)

where in the second line, we took the exponential in φ2 outside the

integral and then dropped it. δK
mm′ is a Kronecker delta, unity if the

subscripted arguments are equal and zero otherwise.

Inserting this result in equation (1), we see that only spherical

harmonic combinations where m = m
′

can enter the azimuthally

averaged 3PCF. We note that l need not equal l
′
, in contrast to the

isotropic case where averaging the spherical harmonics over full

3Drotations forces l = l
′

as well (Slepian & Eisenstein 2015c).

Thus, the azimuthally averaged 3PCF estimate is fully described as

ζ̂azi(r1, r2; x) =
4π

√
(2l + 1)(2l′ + 1)

×
∑

ll′

∑

m

ζ̂m
ll′ (r1, r2; x)Ylm(r̂1)Y ∗

l′m(r̂2); (5)

moving forward, we discuss only the azimuthally averaged 3PCF

and so we suppress the subscript ‘azi.’ Integrating over d3x yields

the full 3PCF ζ as the translation average of the estimate about a

particular galaxy at x given by equation (5).

We now discuss an additional symmetry relevant for this basis.

We need only compute the coefficients ζm
ll′ for m ≥ 0 as those for

m < 0 are the complex conjugate of the m > 0 coefficients. There

are several ways to understand this point.

First, mathematically, we have

ζm
ll′ (r1, r2; x) =

∫

d�1d�2 ζ̂ (r1, r2)Y ∗
lm(r̂1)Yl′m(r̂2) (6)

and

ζ−m

ll′ (r1, r2; x) =
∫

d�1d�2 ζ̂ (r1, r2)Y ∗
l−m(r̂1)Yl′−m(r̂2) (7)

Using the identity that Y ∗
lm(r̂) = (−1)mYl−m(r̂), equation (7) be-

comes

ζ−m

ll′ (r1, r2; x) = (−1)2m

∫

d�1d�2 ζ̂ (r1, r2)Ylm(r̂1)Y ∗
l′m(r̂2)

=
(

ζm
ll′ (r1, r2; x)

)∗
(8)

where the second equality follows by noting that (−1)2m = 1, con-

jugating equation (6), and recalling that ζ (r1, r2; x) is real.

Physically, the redundancy of the −m coefficients occurs because

flipping m → −m is equivalent to flipping the azimuthal angle

φ → −φ, modulo a factor of (−1)m.1 Considering φ to be defined as

the angle swept out as one moves from the x-axis towards the y-axis

in the xy-plane, this transformation is equivalent to flipping y → −y,

while keeping the x- and z-axes fixed.2 This flip corresponds to

1Flipping m also affects the associated Legendre polynomial in equation (3)

because P −m
l (cos θ ) = (−1)m [(l − m)!/(l + m)!] P m

l (cos θ ), but the facto-

rial piece here cancels the factorials in the spherical harmonic’s definition

after m → −m is taken there. Consequently, flipping m in the associated

Legendre polynomial only contributes an overall factor of (−1)m to the

flipped-m spherical harmonic.
2This interpretation is easily manifested by writing the spherical harmonics

in the Cartesian basis, where they are proportional to powers of (x + iy)/r

MNRAS 478, 1468–1483 (2018)
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Practical computation of the anisotropic 3PCF 1471

reversing the handedness of the coordinate system, as it now satisfies

a left-hand rule (x̂ × ŷ = −ẑ) rather than a right-hand rule. We

see then that the redundancy of the −m coefficients reflects the

physical symmetry that the galaxy distribution about any point x is

insensitive to the handedness of the coordinate system one chooses

around that point.

As a result of this symmetry, in the sum over m of equation (5),

the negative and positive m can always be paired to give a real

result that is 2 Reζm
ll′ . Consequently, in what follows, we will have

this in mind that the final results reported from our approach to the

anisotropic 3PCF will be real and symmetrized (denoted by a bar)

over positive and negative spins as

ζ̄m
ll′ ≡ ζm

ll′ + ζ−m

ll′ (1 − δK
m0) = (2 − δK

m0) Re ζm
ll′ (9)

where we take m ≥ 0 above. However, throughout the paper, we will

often find it convenient to perform analytic calculations in terms of

the unsymmetrized ζm
ll′ and symmetrize at the final step.

We now discuss the behaviour of ζll′ under parity. ζm
ll′ behaves

as (−1)l+l′ under this transformation. For indistinguishable points,

such as galaxies from a single population or survey, the anisotropic

3PCF must be symmetric under parity, meaning l + l
′
must be even.

l + l
′

need not be even for e.g. a 3PCF formed from taking two

points from one galaxy population and a third from a different pop-

ulation at higher redshift, as this choice would introduce a preferred

orientation.

Finally, in the isotropic limit, l
′ = l and the coefficient ζm

ll′ be-

comes m-independent, i.e. ζm
ll′ → ζl . We can then sum the spherical

harmonics in equation (5) over spins using the spherical harmonic

addition theorem (Arfken, Weber & Harris 2013, equation 16.57)

to recover that ζ (r1, r2; r̂1 · r̂2; x) =
∑

l ζl(r1, r2; x)Ll(r̂1 · r̂2) as in

Slepian & Eisenstein (2015c), with Ll a Legendre polynomial of

order l.

3 A L G O R I T H M

We now show how the anisotropic 3PCF coefficients in the spherical

harmonic basis may be obtained in O(N2) time with N the number

of galaxies. Here, we focus on the 3PCF of an arbitrary density field

given by δ; in Section 5, we will discuss applying this approach to

the anisotropic analogue of the Szapudi & Szalay (1998) estimator

for the isotropic 3PCF.

We again begin with a ‘primary’ galaxy at x and denote the

positions of two ‘secondary’ galaxies as x + r1 and x + r2. This

configuration forms a triangle; we bin its side lengths into radial

bins denoted r1 and r2. We denote the radially binned density field

δ̄(ri; r̂i; x) =
∫

r2dr 
(r; ri)δ(x + r), (10)

where 
 is a binning function that ensures r is in the bin denoted

by ri.

We now desire an estimate of the anisotropic binned 3PCF coef-

ficients about x. We have

ζ̂m
ll′ (r1, r2; x) = δ(x)

∫

d�1d�2 δ̄(r1; r̂1; x)

× δ̄(r2; r̂2; x)Ylm(r̂1)Y ∗
l′m(r̂2) (11)

for m > 0 and (x − iy)/r for m < 0; this of course just comes from applying

Euler’s formula to exp [imφ] and identifying cos φ = x/r and sin φ = y/r.

It is immediate that this double integral factorizes; defining spherical

harmonic coefficients of the binned density as

alm(ri; x) =
∫

d�Y ∗
lm(r̂)δ̄(ri; r̂i; x) (12)

we may write

ζ̂m
ll′ (r1, r2; x) = δ(x)alm(r1; x)a∗

l′m(r2; x). (13)

Symmetrizing and using that ζ̂−m

ll′ = (ζ̂m
ll′ )

∗, we find that

ˆ̄ζm
ll′ (r1, r2; x) = δ(x)

[

alm(r1; x)a∗
l′m(r2; x)

+ a∗
lm(r1; x)al′m(r2; x)

]

, (14)

which is manifestly symmetric under flipping the conjugate signs,

and so our choice to place the conjugate on alm(r1) in equation (13)

for the ζ̂m
ll′ used to construct ˆ̄ζm

ll′ did not matter.

Importantly, computing the alm about a given primary galaxy at

x on a given radial bin scales as the number of galaxies in that bin.

In total if we compute correlations out to a radius Rmax, obtaining

the alm on all bins scales as nVmax with n the survey number density

and Vmax the volume of a sphere with radius Rmax. The alm must be

obtained around every galaxy, so the total work scales as N(nVmax).

In detail, around each primary, at each l we have l + 1 distinct

alm, as we require only the m ≥ 0 spherical harmonic coefficients

due to the symmery that ζ̂−m

ll′ = (ζ̂m
ll′ )

∗ as discussed in Section 2. The

total number of coefficients up to lmax is then (lmax + 2)(lmax + 1)/2.

Each of these must be computed on each bin, so the total number of

coefficients to store is Nbins(lmax + 2)(lmax + 1)/2. We note that the

total work of obtaining these scales as (nVmax)(lmax + 2)(lmax + 1)/2,

as the first factor accounts for all of the bins out to Rmax.

We now briefly compute the number of combinations of these

coefficients that must be formed around each primary. While form-

ing these combinations is a negligible fraction of the total work (we

find ∼2 per cent for the implementation discussed in Section 7),

for completeness we discuss the combinatoric computation as it

involves several steps. We consider l ≥ l
′
without loss of generality

and focus on l > l
′

first. At each l, we have l allowed values of l
′
,

and at each l
′
, we have l

′ + 1 values of m. We must now sum this

over l
′
up to l and then l from 0 to lmax. We find

Ncombs, l>l′ = N2
bins

lmax
∑

l=0

l−1
∑

l′=0

(l′ + 1)

=
N2

bins

2
lmax(lmax + 1)2, (15)

noting that we include N2
bins rather than (Nbins + 1)Nbins/2 because

there is no switch symmetry of the bins as l �= l
′
.

For the l = l
′
piece, we have just one allowed l

′
at each l, but still

l + 1 allowed spins m, but there is now a switch symmetry between

the bins, so we compute

Ncombs,l=l′ =
(Nbins + 1)Nbins

2

lmax
∑

l=0

(l + 1)

=
(Nbins + 1)Nbins

4
(lmax + 1)2. (16)

The full number of harmonic coefficient combinations required is

then the sum of equations (15) and (16).
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1472 Z. Slepian and D. J. Eisenstein

4 D E T E R M I NAT I O N O F TH E L I N E O F SI G H T

4.1 A generalized Yamamoto estimator

In this work, we take the line of sight to a given triangle of galaxies to

be the position vector x of the galaxy at which the triangle’s opening

angle is defined. This galaxy is the ‘primary,’ and serves both to

define the origin of coordinates and the z-axis for computing the

spherical harmonic expansion of the radially binnned ‘secondary’

galaxies around it.

Defining the line of sight as the position vector of one triplet

member is the natural generalization of the Yamamoto et al. (2006)

estimator for the anisotropic 2PCF or power spectrum (further dis-

cussed in this latter context in Bianchi et al. 2015; Scoccimarro

2015; Slepian & Eisenstein 2016b). As shown in Slepian & Eisen-

stein (2015a) for the anisotropic 2PCF, wide-angle effects enter this

estimator only at O(θ2), where θ is the opening angle of the triangle

formed by the observer and the galaxy pair.

Further, the Yamamoto estimator differs from using the angle

bisector of this triangle or the mid-point of the pair separation only

at O(θ2). The cancellation of the O(θ ) effect occurs because it has

odd parity. Thus, when the effect is summed over the two options

for the line of the sight to a galaxy pair (the position vectors of the

first and the second pair members), it cancels (Slepian & Eisenstein

2015a).

These arguments rely on expanding the anisotropic 2PCF in Leg-

endre polynomials tracking the cosine of the angle between the pair

separation and the line of sight. We suspect that in the current work

cancellation of the O(θ ) error will also occur. In any case, using a

rotating line of sight for the anisotropic 3PCF is undoubtedly more

accurate than the flat-sky approximation. Finally, for completeness,

we note that there has been one other work using a rotating line of

sight for three-point clustering: Scoccimarro (2015) presents a rotat-

ing line-of-sight estimator for multipole moments of the bispectrum

averaged over rotations about one of the wave vectors.

4.2 Computing using the rotating line of sight

There are two options for computing the 3PCF using the moving

line of sight outlined above. Which option is preferable is likely

use-case dependent, so we present both.

The simpler approach is to rotate the coordinates of all the secon-

daries about a given primary into the frame where the primary lies

on the z-axis. We term this ‘pre-rotation.’ The computational cost

here about a given primary is the number of secondaries, nVmax,

and the rotation must be performed around each of the N primaries,

so the total cost is N (nVmax) = O(N2), the same scaling for this

approach as for the overall 3PCF algorithm. The algorithm flow

here is shown in Fig. 2. We note that while the scaling is formally

O(N2), the rotations are still a small amount of work relative to the

multipole computation, as we further detail below.

We now outline how the pre-rotation computation proceeds. We

rotate the primary and all secondaries to a system where the pri-

mary is along the z-axis, which is the line of sight. We define a triad

of unit vectors, with one being the line of sight and the other two

orthogonal to it, and then dot them into the separation vectors be-

tween the secondaries and the primary. This yields the secondaries’

new coordinates in our desired system. This procedure requires just

one matrix by vector multiply (nine multiply adds), as compared to

the 286 multiply adds required to then obtain the multipole contri-

butions for a given secondary (with ℓmax= 10). Thus, pre-rotation

Figure 2. Here, we show the algorithm flow around a given primary at a

point x for the pre-rotation approach. First, we gather all galaxies within

Rmax and bin them into spherical shells (also called radial bins). Then we

rotate so that the primary lies along the z-axis. Finally, on each spherical shell

we expand the angular dependence of the density into spherical harmonics

with coefficients alm(ri ; x), with ri designating the radial bin.

only adds 3 per cent more work for a given secondary. Further, it is

independent of the number of multipoles and number of radial bins.

We now discuss a second approach to rotation. We observe that

rotations will not mix radial bins; a secondary in a given radial

bin will be in the same bin post-rotation. Further, lmax sets the

fineness with which the angular structure of the secondaries on a

given spherical shell is probed; much as in the cosmic microwave

background an angular momentum l probes angular separations

as �θ ∼ 180◦/l. Rotations do not change the underlying angular

structure of the secondaries on a shell, meaning that they should not

mix information from different l, and in particular that measuring a

given lmax in any basis offers the same lmax after rotation. However,

the information in the spins m will mix. Rotating about the z-axis

means a given frequency m (recall Ylm ∝ exp [imφ]) in the original

system will map to a new frequency m
′
in the new, primed system.

This mapping occurs because the new plane in which φ
′
is measured

will be at some angle to the original plane in which φ was measured,

and therefore a sinusoid with frequency m in the original plane will

have a new frequency when it is measured in projection. Indeed, in

the limiting case of a rotation by 90◦, a displacement by �φ in the

old system would map to a displacement by �φ
′ = 0 in the new

system, entirely changing the spin structure of the expansion.

These points suggest that we can reconstruct the spherical har-

monic coefficients in our rotated basis from a sum over spins of

those measured in any other basis, in particular whatever ‘global’

basis in which all x, y, and z galaxy positions in a survey might

be specified. In this section only, we adopt the notation superscript

‘G’ to denote the spherical harmonic coefficients measured in this

‘global’ basis, and superscript ‘L’ to denote those in the local basis

rotated about a primary at x so that x is along the z-axis.

To derive the relation between the ‘global’ and ‘local’ coeffi-

cients, consider the density field δ on a shell denoted by r about a

primary at x:

δ(r; r̂; x) =
∑

LM

aG
LM (r; x)YLM (r̂). (17)

Under the desired rotation R, the density becomes

δ(r; Rr̂; x) =
∑

LM

aG
LM (r; x)YLM (Rr̂)

=
∑

LM

aG
LM (r; x)

∑

M ′

DL
MM ′ (x)YLM ′ (r̂) (18)
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Practical computation of the anisotropic 3PCF 1473

Figure 3. Here, we show the algorithm flow when rotation about a given

primary is done after the spherical harmonic expansion rather than prior

to it, and hence in the space of spherical harmonic coefficients alm rather

than spatial coordinates. We term this ‘post-rotation.’ The ‘Gather and bin’

step is unchanged from Fig. 2, but we now expand the density’s angular

dependence into spherical harmonics on each bin in the second step rather

than the third. We then take the alm coefficients on a given bin (three are

schematically indicated here in the different colours, with colour denoting

the coefficient’s amplitude), reweight them as in equation (20, new colours

mean new amplitudes), and sum to obtain the new, rotated alm.

where in the second line, we expanded the rotated spherical har-

monic as a sum over unrotated spherical harmonics; DL
MM ′ is a

Wigner D-matrix [e.g. Arfken et al. 2013, equation (16.52) or Var-

shalov, Moskalev & Kersonskii 2013, chapter 4].

Noting that the expansion of the rotated density field in the ‘local’

basis where we desire the coefficients is

δ(r; Rr̂; x) =
∑

lm

aL
lm(r; x)Ylm(r̂), (19)

setting the expansions (18) and (19) equal, and invoking orthogo-

nality, we find

aL
lm(r; x) =

∑

M

aG
lM (r; x)Dl

Mm(x). (20)

With the relation (20), we can measure the spherical harmonic co-

efficients in any desired global basis and after finding them around

all primaries, recombine locally on each bin about each primary

weighted by the Wigner D-matrices. Since the rotations occur af-

ter the spherical harmonic coefficients are computed, we term this

approach ‘post-rotation.’

The scaling of this post-rotation approach differs from that of

the pre-rotation approach outlined earlier, as we now show. We

need only obtain m ≥ 0 spherical harmonic coefficients as noted in

Section 3, and for the same reason on the right-hand side we need

only alM with M ≥ 0. Further, the D-matrices for M < 0 can be

related to those for M> 0, and using symmetry properties of the

D-matrix, we can also ensure that m ≤ M. Thus the entire right-

hand side of equation (20) can be cast in terms of M ≥ 0 spherical

harmonic coefficients and D-matrices and using only D-matrices

with m ≤ M. At each l, we then have (l + 1)(l + 2)/2 D-matrix

elements to compute, leading to 286 matrix elements for lmax = 10.

The algorithm flow for this ‘post-rotation’ approach is shown in

Fig. 3.

A cross-check on this result is that all of the spherical harmonics

up to lmax = 10 can be computed using 286 combinations of powers

of x/r, y/r, and z/r where x, y, and z are the relative coordinates

of a secondary galaxy in the frame where the primary is at the

origin (see Slepian & Eisenstein 2015c). The behaviour of these 286

fundamental power combinations under rotation must completely

determine the rotated spherical harmonic expansion, confirming

that we should need 286 matrix elements to perform the rotation.

The computational cost of evaluating the Wigner D-matrices is

small for the modest l we require. Direct evaluation is one option;

for instance Varshalov et al. (2013) give easily implemented ex-

pressions in terms of Gauss’s hypergeometric function 2F1. There

also exist more efficient methods for their computation, such as

the use of recursion relations or pseudo-spectral projection (primar-

ily important going to high l, Varshalov et al. 2013; Gimbutas &

Greengard 2009; Gumerov & Duraiswami 2014; Feng et al. 2015).

We have written Dl
Mm(x) as a function of the primary location x.

In detail, following the conventions of Varshalov et al. (2013), the

D-matrix as a function of the Euler angles α = 0, β = −θ (x), and

γ = −φ(x) is

DJ
MM ′ (α, β, γ ) = e−iMαdJ

MM ′ (β)e−iM ′γ , (21)

where dJ
MM ′ is a little-d matrix (see Varshalov et al. 2013).

In contrast to pre-rotation, for post-rotation, the total computa-

tional cost is independent of the number of secondaries about a given

primary, but depends on the number of multipoles and number of

radial bins, scaling as l3
maxNbins.

4.3 Using Fourier transforms for the harmonic coefficients

As shown in Slepian & Eisenstein (2016b), the spherical harmonic

coefficients about a given primary galaxy are simply a convolution

integral, and so fast Fourier transforms (FFTs) can be used to obtain

the coefficients about all primaries in the survey at once scaling as

Nglog Ng, with Ng the number of grid points, if the galaxy density

field is gridded. While the fineness of grid required will be somewhat

application-dependent, there are likely contexts (such as analysis of

a large number of mocks for verifying the pipeline or covariance

matrix) where a possible loss in precision will be offset by the

increase in speed FFTs afford.

Importantly, the post-rotation approach outlined in Section 4.2 is

essential for enabling use of FTs to obtain the spherical harmon-

ics. The pre-rotation approach relies on sitting on a given primary

galaxy and rotating using its coordinates, which is not possible in an

FFT-based approach. However, once the spherical harmonic coef-

ficients are known about each primary galaxy for any given choice

of coordinates, as shown in Section 4.2, they can be rotated on a

primary-by-primary basis with little additional computation. Thus,

the coefficients can be obtained in some arbitrary global frame by

FTs and then post-processed to give the desired identification of the

local z-axis with the line of sight to each primary galaxy.

5 ED G E C O R R E C T I O N

We now discuss edge correction in the spherical harmonic basis.

The estimator for the full 3PCF is (Szapudi & Szalay 1998)

ζ̂ =
NNN

RRR
, (22)

where N ≡ D − R is the data minus random count with D indicating

data and R indicating random. The interpretation of this estimator

as an optimal weighting in the shot-noise limit and how it should be

used to obtain the 3PCF is further discussed in Slepian & Eisenstein

(2015c).
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1474 Z. Slepian and D. J. Eisenstein

5.1 Edge correction in the spherical harmonic basis

Here, we show how to implement edge correction using our algo-

rithm. We will begin with all spins, including negative ones, and

then show how to cast the edge correction in terms of solely positive

semi-definite spins so that we may work with the symmetrized 3PCF

coefficients ˆ̄ζm
ll′ . We multiply each side of the estimator (22) by RRR

and then expand the result into spherical harmonics, obtaining
∑

jj ′s

N s
jj ′Yjs(r̂1)Y ∗

j ′s(r̂2) =
∑

ll′m

∑

kk′p

ζ̂m
ll′R

p

kk′Ylm(r̂1)

×Ykp(r̂1)Y ∗
l′m(r̂2)Y ∗

k′p(r̂2), (23)

where the N s
jj ′ are the double spherical harmonic coefficients of N,

R
p

kk′ those for R, and ζ̂m
ll′ those for ζ̂ . Integrating both sides against

Y ∗
js(r̂1)Yj ′s(r̂2) and invoking orthogonality, we find

N s
jj ′ =

∑

ll′m

∑

kk′p

ζ̂m
ll′R

p

kk′G
mp−s

lkj G
−m−ps

l′k′j ′ (24)

where G is the Gaunt integral, i.e. the integral of three spherical

harmonics with the indicated total angular momenta (subscripts)

and spins (superscripts); we write it in terms of 3j-symbols in Ap-

pendix A. We note that if k = 0 = k
′
, then l = j and l

′ = j
′
: if

the randoms have no angular structure, then the coefficients N s
jj ′

are the desired coefficients ζ̂ of the 3PCF up to normalization. In

this case, the edge correction was simply a division by the average

background count to convert the galaxy density field into an over-

density field. We further observe that k + k
′

and j + j
′

must have

the same parity, because the Gaunt integrals enforce that l + k + j

and l
′ + k

′ + j
′

are even, and l + l
′

is even, so k + k
′ + j + j

′
is

even as well. This rule somewhat reduces the number of random

coefficients R required to obtain a given 3PCF coefficient from

the measured difference field N = N − R. Unlike the 3PCF coeffi-

cients, the random coefficients need not be symmetric under parity

because the survey geometry may not be. Hence, the difference field

coefficients need not be either.

We now show how equation (24) can be recast in terms of the

symmetrized quantities our algorithm tracks. We first rewrite each

coefficient separated into its real and imaginary parts, giving

N
s,R

jj ′ + iN
s,I

jj ′ =
∑

ll′m

∑

kk′p

[

ζ̂
m,R
ll′ + iζ̂

m,I
ll′

] [

R
p,R

kk′ + iR
p,I

kk′

]

×G
mp−s

lkj G
−m−ps

l′k′j ′ (25)

where superscript R denotes the real part and superscript I the

imaginary part. Inverting equation (9), we may replace the real part

of each coefficient in equation (25) in terms of the symmetrized

coefficient, yielding

1

2 − δK
s0

N̄
|s|
jj ′ + iN

s,I
jj ′ =

∑

ll′m

∑

kk′p

[

1

2 − δK
m0

ˆ̄ζ
|m|
ll′ + iζ̂

m,I
ll′

]

×

[

1

2 − δK
p0

R̄
|p|
kk′ + iR

p,I

kk′

]

G
mp−s

lkj G
−m−ps

l′k′j ′ ;

(26)

the absolute value signs on the spins are necessary because their

range includes negative values here but the symmetrized coefficients

are defined only for positive or zero spins.

We seek ˆ̄ζ
|m|
ll′ and would like to estimate it solely in terms of N̄

|s|
jj ′

and R̄
|p|
kk′ . We see that if we set the imaginary part of the randoms’

unsymmetrized coefficient to zero (indeed, we do not wish to track

it in our algorithm), this ensures the real part of the right-hand

side of equation (26) involves only our desired ˆ̄ζ
|m|
ll′ . In contrast,

the imaginary part remaining on the right-hand side will involve

ζ̂
m,I

ll′ R̄
|p|
kk′ and thus has no information about ˆ̄ζ

|m|
ll′ . We may now take

the real part of the whole equation, yielding

1

2 − δK
s0

N̄
|s|
jj ′ =

∑

ll′m

∑

kk′p

1

2 − δK
m0

ˆ̄ζ
|m|
ll′

×
1

2 − δK
p0

R̄
|p|
kk′G

mp−s

lkj G
−m−ps

l′k′j ′ ; (27)

Following Slepian & Eisenstein (2015c), we now divide both

sides of equation (27) through by R̄0
00 and separate off the kk

′
p

= 000 term on the right-hand side, finding

N̄
|s|
jj ′

(2 − δK
s0)R̄0

00

=
1

2 − δK
s0

ˆ̄ζ
|s|
jj ′ +

∑

ll′m

1

2 − δK
m0

ˆ̄ζ
|m|
ll′

×
∑

kk′p �=000

1

2 − δK
p0

f̄
|p|
kk′ G

mp−s

lkj G
−m−ps

l′k′j ′ (28)

where f̄
|p|
kk′ ≡ R̄

|p|
kk′/R̄

0
00.

In the isotropic case, l
′ = l and ζ̄

|s|
jj ′ and ζ̄

|m|
ll′ become spin-

independent. Thus, in this limit, we can sum over all spins to

estimate the isotropic 3PCF ζ l of Slepian & Eisenstein (2015c).

The only factors inside the sums over m and s on the right-hand side

then are 3j-symbols, and invoking the orthogonality identity (Olver

et al. 2010, 34.3.16), we find that k = k
′
. We then sum the resultant

f
p

kk over p weighted by the Gaunt integrals. This sum can be iden-

tified with the edge-correction factors f ′
l of Slepian & Eisenstein

(2015c), showing that only isotropic edge-correction factors enter

an estimate of the isotropic 3PCF.

We now define an edge correction matrix M with elements

M
jj ′s
ll′m =

∑

kk′ �=00

f̄
|p|
kk′ G

mp−s

lkj G
−m−ps

l′k′j ′ , p = s − m, (29)

using that the Gaunt symbol forces m + p − s = 0 to set p. In terms

of this matrix, the edge-correction equation (28) becomes

N̄

R̄0
00

= (I + M) ˆ̄ζ (30)

where N̄ is a vector of N̄
|s|
jj ′ , the double spherical harmonic mo-

ments of the counts, ˆ̄ζ is a vector of the double spherical harmonic

moments ˆ̄ζ
|m|
ll′ , and I is the identity matrix. Given the coefficients

f̄
|p|
kk′ , which encode the impact of the survey geometry on the ran-

doms, and R̄0
00, the overall normalization of the random triple count,

this equation can be solved by matrix inversion for the desired ˆ̄ζ .

We note that there are two approximations involved in solving

the edge correction equation here. First, to obtain a given matrix

element, one formally requires all values of the random coefficients

R to perform the sum in equation (29). However, in practice, as

the next subsection will illustrate, these values fall so quickly with

rising k and k
′

that we expect the full matrix element is very well

approximated by truncating at some k and k
′

of order the maximal

l and l
′
to which an anisotropic 3PCF measurement is desired.

Second, the edge correction matrix is formally infinite in dimen-

sion, as at fixed l and l,
′
all j and j

′
can enter the correction. Thus, one

should also measure an infinite set of coefficients N̄
|s|
jj ′ of the D − R

field. However, again, in practice, truncating this set at roughly the

maximal l or l
′

desired for the 3PCF measurement should be suf-

ficiently accurate to correct for the survey geometry. This point is
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Practical computation of the anisotropic 3PCF 1475

detailed further in Slepian & Eisenstein (2015c) for the isotropic

3PCF, and the same outcome is expected for the anisotropic 3PCF.

Summarizing, the rapid fall-off of the edge correction factors

means that truncating the sums required for each matrix element

is a good approximation, and the expected near-diagonality of the

matrix means that the truncation of the matrix itself will not greatly

affect the inverse.

5.2 A toy model for the edge correction factors

Here, we investigate a toy model of the survey geometry to gain

intuition for the values of the edge correction factors. We consider

a planar survey boundary perpendicular to the line of sight (i.e. the

z-axis). For a given primary galaxy, the sphere around the primary

over which we compute the 3PCF will impinge upon the survey

boundary if the primary is less than Rmax away from it. These

galaxies will be only a small fraction of the total for realistic survey

geometries, so the edge-correction factors we estimate from this

model will be diluted by the bulk of the survey where a primary’s

sphere is fully contained, and we quantify this dilution at the end of

the section.

For now we focus on primaries whose surrounding sphere does

impinge on the survey boundary. We take it that a given primary

is a distance z away from the survey boundary. This model was

explored in Slepian & Eisenstein (2015c), but only the isotropic edge

correction factors fl = 4π/(2l + 1)
∑

m f m
ll were computed there,

as they were the only factors relevant for correcting the isotropic

3PCF. Here, we seek the more general

f 0
kk′ ≡

R0
kk′

R0
00

=
〈

ak0a
∗
k′0

〉

a2
00

(31)

and angle brackets represent azimuthal averaging. We note that the

azimuthal symmetry of our toy model means the only non-zero edge

correction factors are those with zero spin.

For a secondary galaxy Rmax distant from the primary, there will

be a critical angle μc = z/Rmax for which it is outside the survey for

larger μ. As shown in Slepian & Eisenstein (2015c, equation 35),

the spherical harmonic coefficients are then

al0 =
√

π

2l + 1
[Ll+1(μc) − Ll−1(μc)] (32)

for l ≥ 1. We note that there is no dependence on the triangle side

length because these coefficients represent a random density field.

We also note that since the only relevant coefficients for this toy

model are at spin zero, the symmetrization discussed in Section 2

does not affect our results here.

To obtain f 0
kk′ , we now form the product of the spherical harmonic

coefficients, equation (31) demands and average over μc, as

〈

ak0a
∗
k′0

〉

=
π

√
(2k + 1)(2k′ + 1)

×
∫ 1

0

dμc [Lk+1(μc)Lk′+1(μc) − Lk−1(μc)Lk′+1(μc)

−Lk+1(μc)Lk′−1(μc) + Lk−1(μc)Lk′−1(μc)] . (33)

We may perform this integral by using the linearization formula for

Legendre polynomials given in Appendix A to convert the products

of Legendres into sums over a single Legendre and then integrating

using the recursion relation also given in Appendix A. We find

〈

ak0a
∗
k′0

〉

=
π

√
(2k + 1)(2k′ + 1)

∑

J

[(

k + 1 k′ + 1 J

0 0 0

)2

−
(

k − 1 k′ + 1 J

0 0 0

)2

−
(

k + 1 k′ − 1 J

0 0 0

)2

+
(

k − 1 k′ − 1 J

0 0 0

)2 ]

[LJ−1(0) − LJ+1(0)] .

(34)

To simplify, we observed that LJ (1) = 1 for all J and so the terms

from the upper bound of the integral (33) vanish.3 We note that

J must be odd or the difference of Legendres in the last line of

equation (34) vanishes, as Ln(0) = 0 for n odd by parity.

We pause to observe that in the limit where k
′ ≃ k and k → ∞, J

is constrained to be small (J ≤ |k − k
′ |). We can then use the square

of the 3j-symbol’s asymptotic, which is ≃ d2/(2k + 1), where d is

a Wigner matrix and |d2| ≤ 1. Combining this with the pre-factor

∝ 1/(2k + 1), we see that the limit of the isotropic edge correction

factors scales as 1/(2k + 1)2, going to zero as k grows. This roughly

recovers the limiting behaviour of equation (38) for the isotropic

edge correction factor in Slepian & Eisenstein (2015c).

From explicit computation in Slepian & Eisenstein (2015c),

we have that R0
00 = (a00)2 = (7π)/3, so we may form the ratio

f 0
kk′ of equation (31).4 We compute a number of values to

show that the edge correction factors are indeed small: f 0
10 =

−9.28 per cent, f 0
11 = 17.14 per cent, f 0

20 = −6.39 per cent, f 0
12 =

6.92 per cent, f 0
30 = −2.36 per cent, f 0

31 = −1.87 per cent, f 0
22 =

4.08 per cent, f 0
41 = −2.90 per cent, f 0

32 = 0.66 per cent, f 0
50 =

0.37 per cent, f 0
42 = −0.91 per cent, andf 0

33 = 1.90 per cent. The

factors where k = k
′

correspond to the fk of Slepian & Eisenstein

(2015c), and we recover the same values here as in that work. We

point out that the edge correction factors in this toy model do not

satisfy the constraint that k + k
′

is even; our survey boundary is a

plane perpendicular to the z-axis and so the random clustering is

not invariant under parity.

In a Sloan Digital Sky Survey (SDSS) Baryon Oscillation Spec-

troscopic Survey (BOSS)-like geometry, only 20 per cent of galaxies

lie within Rmax = 200 Mpc of a survey boundary, so these factors

should be further scaled down by roughly a factor of 5. On the

other hand, the true survey geometry is more complicated than our

simple planar toy model, so the edge correction factors estimated

above should be taken only as a rough guide.

Finally, we note that the calculation of this section could also be

applied to estimate the edge-correction factors’ values for an angu-

lar survey boundary. For this situation, the boundary has rotated 90◦

from the planar redshift boundary explored above, or equivalently,

we can consider that the z-axis of coordinates has rotated by this

amount. Thus, we can compute the harmonic coefficients of this an-

gular boundary by rotating all of the redshift-boundary coefficients

prior to squaring and taking their expectation value over μc. This

rotation can be accomplished using Wigner D-matrices. Since the

D-matrices are rotations, and thus unitary, we expect that an angular

boundary would not lead to significantly different amplitudes of the

3This sum of four 3j-symbols can be further simplified using recursions

8.6.4.21 and 8.6.4.23 in Varshalov et al. (2013) to a pre-factor times a single

3j-symbol if desired.
4We use the first line of equation (35) of Slepian & Eisenstein (2015c) with

l = 0 and then average over μc.
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1476 Z. Slepian and D. J. Eisenstein

edge correction factors from those in the redshift-boundary case;

thus our overall claim that these factors should be small still holds.

6 C OVA R I A N C E O F T H E A N I S OT RO P I C 3 P C F

6.1 Adapting the real-space calculation to redshift space

Here, we adapt the isotropic 3PCF covariance calculation of Slepian

& Eisenstein (2015c) for the anisotropic case. We use a tilde to de-

note a Fourier-space quantity, use a negative exponential for inverse

FTs, and always use d3k/(2π)3 when going from Fourier space to

configuration space. Adapting Slepian & Eisenstein (2015c, equa-

tion 45) by replacing the real-space density perturbation δ by its

redshift-space analogue δs, we see that in equation (47) of that

work, the Fourier-space density perturbations δ̃ can be replaced by

their redshift-space analogues δ̃s(k).

Following Slepian & Eisenstein (2015c), we use Wick’s Theorem

to contract the six Fourier-space density fields implied by the 3PCF

covariance. We then adapt equation (49) of that work by replacing

the isotropic power spectra with their multipole analogues,

P (k; μ) =
∑

lk

Plk (k)Llk (μ) (35)

We emphasize that this expansion for the anisotropic power spec-

trum is fully general, though in the flat-sky (‘Kaiser’) approximation

and under linear theory, the series reduces further to have terms only

at l = 0, 2, and 4, as we will discuss further in Section 6.5. Following

through to the analogues of Slepian & Eisenstein (2015c, equations

50 and 51), we find

Cov ≡
〈

ζ̂ (r1, r2)ζ̂ (r ′
1, r ′

2)
〉

=
1

V

∫

d3q d3 p d3k

(2π)9

×
∑

lqlplk

Plq (q)Plp (p)Plk (k)Llq (μq )Llp (μp)Llk (μk)

× (2π)3δ
[3]
D (q + p + k)e−i[q·r1+ p·r2]

×
{

e−i[q·r ′
1
+ p·r ′

2] + e−i[ p·r ′
1
+q·r ′

2] + e−i[k·r ′
1
+ p·r ′

2]

+ e−i[ p·r ′
1
+k·r ′

2] + e−i[k·r ′
1
+q·r ′

2] + e−i[q·r ′
1
+k·r ′

2]
}

. (36)

6.2 Projection on to our basis

We now show how to obtain the covariance of our symmetrized

harmonic coefficients for the 3PCF from the full covariance. We will

begin by projecting the covariance on to the full spherical harmonic

basis including negative spins and at the end of the calculation show

how to obtain the covariance of the symmetrized coefficients from

these results.

The covariance projected on to our full spherical harmonic basis

is

Covl1l2m,l′
1
l′
2
m′ (r1, r2; r ′

1, r
′
2)

=
√

(2l1 + 1)(2l2 + 1)(2l′1 + 1)(2l′2 + 1)

(4π)2

×
∫

d�r1
d�r2

d�r′
1
d�r′

2
Y ∗

l1m(r̂1)Yl2m(r̂2)

× Y ∗
l′
1
m′ (r̂

′
1)Yl′

2
m′ (r̂ ′

2)Cov(r1, r2; r ′
1, r ′

2). (37)

The pre-factor comes from two copies of the inverse of the pre-

factor in equation (1), as we wish to extract the covariance of the

coefficients ζm
ll′ . Noticing that the only dependence on real-space

variables in the full covariance is in the exponentials, we require

the projection integrals

∫

d�r e−ik·rY ∗
lm(r̂) = (4π)(−i)ljl(kr)Y ∗

lm(k̂) (38)

and
∫

d�r e−ik·rYlm(r̂) = (4π)(−i)ljl(kr)Ylm(k̂) (39)

where we used the plane wave expansion (Arfken et al. 2013 equa-

tion 16.61) to expand the exponential into spherical Bessel functions

and spherical harmonics and then invoked orthogonality.

The projection of all of the exponentials in equation (36) is then

El1l2m,l′
1
l′
2
m′ ≡

√

(2l1 + 1)(2l2 + 1)(2l′1 + 1)(2l′2 + 1)

× (−i)l1+l2+l′
1
+l′

2Jl1l2 (qr1; pr2)Y ∗
l1m(q̂)Yl2m(p̂)

×{Jl′
1
l′
2
(qr ′

1; pr ′
2)Y ∗

l′
1
m′ (q̂)Yl′

2
m′ (p̂)

+Jl′
1
l′
2
(pr ′

1; qr ′
2)Y ∗

l′
1
m′ (p̂)Yl′

2
m′ (q̂)

+Jl′
1
l′
2
(kr ′

1; pr ′
2)Y ∗

l′
1
m′ (k̂)Yl′

2
m′ (p̂)

+Jl′
1
l′
2
(pr ′

1; kr ′
2)Y ∗

l′
1
m′ (p̂)Yl′

2
m′ (k̂)

+Jl′
1
l′
2
(kr ′

1; qr ′
2)Y ∗

l′
1
m′ (k̂)Yl′

2
m′ (q̂)

+Jl′
1
l′
2
(qr ′

1; kr ′
2)Y ∗

l′
1
m′ (q̂)Yl′

2
m′ (k̂)}, (40)

where we have used equation (38) and simplified. We have defined

Jl1l2 (qr1; pr2) ≡ jl1 (qr1)jl2 (pr2). (41)

The symmetry structure of these terms can be easily checked: within

the curly brackets, the first and second terms are equal under q↔p,

the third and fourth under k↔p, and the fifth and sixth under k↔q.

Returning to equation (36) and using Slepian & Eisenstein

(2015c, equation 58) to expand the Dirac delta function into an

integral over plane waves and thence into spherical harmonics and

spherical Bessel functions, and the spherical harmonic addition

theorem to expand the Legendre polynomials (Arfken et al. 2013

equation 16.57), the projected covariance is

Covl1l2m,l′
1
l′
2
m′ (r1, r2; r ′

1, r
′
2)

=
1

V

∫

d3q d3 p d3k

(2π)9

∑

lq lp lk

Plq (q)Plp (p)Plk (k)

×
(4π)3

(2lq + 1)(2lp + 1)(2lk + 1)

×

√

(2lq + 1)(2lp + 1)(2lk + 1)

(4π)3

× Ylq 0(q̂)Ylp0(p̂)Ylk0(k̂)

× (4π)3
∑

J1J2J3

∑

S1S2S3

DJ1J2J3
CJ1J2J3

RJ1J2J3
(q, p, k)

×
(

J1 J2 J3

S1 S2 S3

)

Y ∗
J1S1

(q̂)Y ∗
J2S2

(p̂)Y ∗
J3S3

(k̂)

× El1l2m,l′
1
l′
2
m′ . (42)
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Practical computation of the anisotropic 3PCF 1477

The first factor in the third line stems from the spherical harmonic

addition theorem applied to the three Legendre polynomials enter-

ing the power spectrum multipoles. The second factor comes from

the spin-zero values of the spherical harmonics of the line of sight

(taken to be the z-axis); these are the only spherical harmonics

entering the power spectrum multipole decomposition. The fourth

line comes from the spherical harmonic expansion of the power

spectrum’s multipole moments, and the fifth and sixth lines come

from the Dirac delta function’s expansion into spherical harmonics,

with

DJ1J2J3
≡ iJ1+J2+J3

CJ1J2J3
≡

√

(2J1 + 1)(2J2 + 1)(2J3 + 1)

4π

RJ1J2J3
(q, p, k) ≡

∫

r2drjJ1
(qr)jJ2

(pr)jJ3
(kr). (43)

For each Fourier-space unit vector in equation (42), there is

one spherical harmonic contributed by the expansion of the Leg-

endre polynomial from the power spectrum multipoles, another

from the Dirac delta function, and either zero, one, or two from

Eproj,l1l2m,l′
1
l′
2
m′ . Thus, when we perform the integrations over angles

d�qd�pd�k, we will have integrals of two, three, or four spherical

harmonics.

In particular, the first two terms in the curly brackets in equation

(40) will lead to four spherical harmonics in p̂ and q̂ and two in

k̂; the final four terms in the curly brackets will give four in p̂

and three in q̂ or vice versa and always three in k̂. We thus work

in terms of the Gaunt integral G of three spherical harmonics (all

unconjugated) and a generalized Gaunt integral H of four spherical

harmonics (again all unconjugated). Explicit expressions for G and

H are given in Appendix A. Performing the angular integrals, the

covariance becomes

Covl1l2m,l′
1
l′
2
m′ (r1, r2; r ′

1, r
′
2) = (−i)l1+l2+l′

1
+l′

2

×
1

V

∫

k2dk p2dp q2dq

(2π2)3

∑

lq lp lk

Plq (q)Plp (p)Plk (k)

× (4π)3/2

√

(2l1 + 1)(2l2 + 1)(2l′1 + 1)(2l′2 + 1)

(2lq + 1)(2lp + 1)(2lk + 1)

×
∑

J1J2J3

∑

S1S2S3

DJ1J2J3
CJ1J2J3

RJ1J2J3
(q, p, k)

×
(

J1 J2 J3

0 0 0

)(

J1 J2 J3

S1 S2 S3

)

Jl1l2 (qr1, pr2)

× (−1)m+m′
{

δK
J3lk

δK
S30

[

Jl′
1
l′
2
(q, p)H

0−S1−m−m′

lqJ1l1l′
1

H
0S1mm′

lpJ2l2l′
2

+Jl′
1
l′
2
(p, q)H

0−S1−mm′

lqJ1l1l′
2

H
0S1m−m′

lpJ2l2l′
1

]

+Jl′
1
l′
2
(k, p)G

0−S1−m
lqJ1l1

H
0−S2mm′

lpJ2l2l′
1
G

0−S3−m′

lkJ3l′
1

+Jl′
1
l′
2
(p, k)G

0−S1−m
lqJ1l1

H
0−S2m−m′

lpJ2l2l′
1

G
0−S3m′

lkJ3l′
2

+Jl′
1
l′
2
(k, q)H

0−S1−mm′

lqJ1l1l′
2

G
0−S2m
lpJ2l2

G
0−S3−m′

lkJ3l′
1

+Jl′
1
l′
2
(q, k)H

0−S1−m−m′

lqJ1l1l′
1

G
0−S2m
lpJ2l2

G
0−S3m′

lkJ3l′
2

}

(44)

We emphasize that we never do arithmetic in the indices of G or

H, so a minus sign on an index should always be interpreted to

mean the negative of the indicated variable. Relative to equations

(40) and (42), we used the identity that Y ∗
lm = (−1)mYl−m to ensure

all spherical harmonics were unconjugated prior to integration, and

we then used that S1 + S2 + S3 = 0 to simplify (required by

the 3j-symbol). In the first and second terms, this condition means

that S1 + S2 = 0 because the Kronecker delta sets S3 = 0. For

Gaunt integrals, the spins must sum to zero, and for H, the first two

spins must have sum equal and opposite to the sum of the last two

spins.5 These rules set S1, S2, and S3 in equation (44). In fact, they

overconstrain it, and so ensuring both rules can be satisfied for each

term acts as a consistency check.

We now show that this expression requires only finite sums over

angular momenta. The Gaunt integrals G require that the total mo-

menta form a closed triangle (‘closure condition’), and the spins

in turn are bounded by the total momenta. Similarly, the gener-

alized Gaunt integrals H require that the total momenta form a

closed quadrilateral, and the spins are again bounded by the total

momenta. Of the momenta, only the Ji are free, and these appear at

most once in each G or H; thus the other, constrained sides along

with the closure condition will bound the Ji, so that all the sums

over momenta are finite. In particular, in the Kaiser limit for the

anisotropic power spectrum, lq, lp, and lk take on values 0, 2, and

4. The other momenta, l1, l2, l
′
1, and l′2, are fixed by the covariance

matrix element desired.

6.3 Reduction to integrals of the power spectrum’s multipole

moments

While equation (44) appears involved, it is actually a considerable

simplification of the covariance as regards calculation. Recalling

that the J are simply products of spherical Bessel functions with

arguments given by the Fourier-space magnitude noted (p, q, or k)

times a configuration space side length, we will show that equa-

tion (44) enables computation of the covariance with 1D and 2D

integral transforms. In particular, all of the wave-vector magnitude

dependence in the projected covariance can be written in terms of

f-tensors

f l
nm(r; ri) =

∫

k2dk

2π2
Pl(k)jn(kr)jm(kri)

f l
nmj (r; ri, r

′
j ) =

∫

k2dk

2π2
Pl(k)jn(kr)jm(kri)jj (kr ′

j ). (45)

Given that the subscripted variables will be binned into of order

Nbins= 10 bins and the spherical Bessel functions of these arguments

replaced with their bin-averaged analogues, these tensors need be

computed only on a fine grid in r, not in the ri or the r ′
i . Recall that r

is a dummy variable to be integrated over to enforce the Dirac delta

function constraint.

We now show how these f-tensors emerge. Focusing solely on

the dependence on the Fourier-space wave-vectors’ magnitudes,

5This will always be true for two pairs of spins but the fact that here the

pairing is first two and last two is specific to how we chose to couple spherical

harmonics when evaluating H.
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1478 Z. Slepian and D. J. Eisenstein

the first term in equation (44) scales as

∫

k2dk

2π2
Plk (k)jlk (kr)

∫

q2dq

2π2
Plq (q)jJ1

(qr)jl1 (qr1)jl′
1
(qr ′

1)

×
∫

p2dp

2π2
Plp (p)jJ2

(pr)jl2 (pr2)jl′
2
(pr ′

2), (46)

and the first factor further simplifies to

∫

k2dk

2π2
Plk (k)jlk (kr) = ξlk (r), (47)

where ξlk (r) is the lthk multipole moment of the anisotropic 2PCF.

The second term in equation (44) has the same form as the first term

but with r ′
1 ↔ r ′

2.

Again focusing solely on the dependence on wave-vector magni-

tudes, the third term in equation (44) scales as

∫

q2dq

2π2
Plq (q)jJ1

(qr)jl1 (qr1)

×
∫

k2dk

2π2
Plk (k)jJ3

(kr)jl′
1
(kr ′

1)

×
∫

p2dp

2π2
Plp (p)jJ2

(pr)jL2
(pr1)jl′

2
(pr ′

2). (48)

The fourth term is given by equation (48) with r ′
1 ↔ r ′

2.

Finally, the wave-vector magnitude dependence of the fifth term

in equation (44) scales as

∫

p2dp

2π2
Plp (p)jJ2

(pr)jl2 (pr2)

∫

k2dk

2π2
Plk (k)jJ3

(kr)jl′
1
(kr ′

1)

×
∫

q2dq

2π2
Plq (q)jJ1

(qr)jl1 (qr1)jl′
2
(qr ′

2), (49)

with the sixth term given by switching r ′
1 ↔ r ′

2 above.

6.4 Elimination of the delta function’s spins

We observe that the f-tensors depend only on the total angular

momenta, not the spins. Moreover, as noted earlier, the integrals

G and H determine S1, S2, and S3 in equation (44), so we may

eliminate the sum over S1, S2, and S3. We would expect one can

resum without these spins because they enter only the Dirac delta

function and it is in total spin-independent. Thus, new weights wi,

i = 1–6 for each term can be defined that depend only on the total

angular momenta and the free spins m and m
′
. All weights have the

same argument: wi = wi(lq lplk; l1l2; l′1l
′
2; mm′); below we suppress

it for brevity. The weights are

w1 = H
0−S1−m−m′

lqJ1l1l′
1

H
0S1mm′

lpJ2l2l′
2
, S1 = −m − m′

w2 = H
0−S1−mm′

lqJ1l1l′
2

H
0S1m−m′

lpJ2l2l′
1

, S1 = m′ − m

w3 = G0m−m
lqJ1l1

H
0−S2mm′

lpJ2l2l′
1
G0m′−m′

lkJ3l′
1

, S2 = m + m′

w4 = G0m−m
lqJ1l1

H
0−S2m−m′

lpJ2l2l′
1

G0−m′m′

lkJ3l′
2

, S2 = m − m′

w5 = H
0−S1−mm′

lqJ1l1l′
2

G0−mm
lpJ2l2

G0m′−m′

lkJ3l′
1

, S1 = m′ − m

w6 = H
0−S1−m−m′

lqJ1l1l′
1

G0−mm
lpJ2l2

G0−m′m′

lkJ3l′
2

, S1 = −m − m′. (50)

We have explicitly replaced the spins Si that can be written simply as

±m or ±m
′
, but indicated above at right, the values of spins written

as sums or differences of m and m
′
to avoid ambiguous superscripts.

Written using these weights (with arguments suppressed), the

covariance becomes

Covl1l2m,l′
1
l′
2
m′ (r1, r2; r ′

1, r
′
2) =

(4π)3/2

V
(−1)m+m′

(−i)l1+l2+l′
1
+l′

2

×
∫

r2dr
∑

lq lp lk

1
√

(2lq + 1)(2lp + 1)(2lk + 1)

×
∑

J1J2J3

DJ1J2J3
CJ1J2J3

(

J1 J2 J3

0 0 0

)

×
{

ξlk (r)

[

w1f
lq

J1l1l′
1
(r; r1, r

′
1)f

lp

J2l2l′
2
(r; r2, r

′
2)

+w2f
lq

J1l1l′
2
(r; r1, r

′
2)f

lp

J2l2l′
1
(r; r2, r

′
1)

]

+
(

J1 J2 J3

S1 S2 S3

)

×
{

f
lq
J1l1

(r; r1)

[

w3f
lp

J2l2l′
2
(r; r2, r

′
2)f

lk
J3l′

1
(r; r ′

1)δK
S1−m,S3−m′

+w4f
lp

J2l2l′
1
(r; r2, r

′
1)f

lk
J3l′

2
(r; r ′

2)δK
S1−m,S3m′

]

+ f
lp
J2l2

(r; r2)

[

w5f
lq

J1l1l′
2
(r; r1, r

′
2)f

lk
J3l′

1
(r; r ′

1)δK
S2m,S3−m′

+w6f
lq

J1l1l′
1
(r; r1, r

′
1)f

lk
J3l′

2
(r; r ′

2)δK
S2m,S3m′

]}}

. (51)

In the terms proportional to w3 through w6, we fix two of the spins

using the Kronecker deltas, and the third is given in equation (50)

to avoid showing arithmetic in the index of a Kronecker delta. We

emphasize that equation (51) is fully general because the power

spectrum can always be expanded in a Legendre series.

We close by emphasizing that equation (51), though it appears

complicated, substantially reduces the computational burden of ob-

taining the covariance matrix. The weights are simply an enumer-

able set of constant coefficients, and the main work is computing the

f -tensors. However, these are simply 2D and 3D integral transforms

of the power spectrum, and once a set of them is computed, it can be

combined to form the full covariance as above. Furthermore, since

r1, r2, r ′
1, and r ′

2 are binned, one can replace the spherical Bessel

functions by their bin-averaged values, and the f -tensors need then

only be obtained at the ∼N2
bins combinations of bin centres rather

than on a full grid in any of the ri. A fine grid in r is required, since

r is subsequently integrated over. Thus, in essence the f-tensors are

not even truly 2 D or 3D transforms, but rather 1D cross a small set

of bin centre combinations. Equation (51) therefore represents the

reduction of the 12D integral naively required for the covariance to

a sum over a number of roughly 1D integrals.

6.5 Covariance with the Kaiser formula power spectrum

We now observe that in the Kaiser approximation, where there is

a single line of sight to the entire survey (Kaiser 1987), and using

linear perturbation theory, the redshift-space density rescales the

real-space density as

δ̃s(k) = (1 + βμ2)2δ̃(k), (52)

where β = f/b1, with f = d ln D/ d ln a, the logarithmic derivative

of the linear growth rate D with respect to scale factor a and b1 the

linear bias. μ = k̂ · n̂, where n̂ is the line of sight to the survey. In

this approximation, the k-dependence of all three moments of the

anisotropic 2PCF is the same: it is just the power spectrum. The

MNRAS 478, 1468–1483 (2018)
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Practical computation of the anisotropic 3PCF 1479

multipole moments simply have different constant pre-factors, i.e.

c0 = 1 +
2β

3
+

β2

5

c2 =
4β

3
+

4β2

7

c4 =
8β2

35
, (53)

where c0 is for the monopole, c2 for the quadrupole, and c4 for the

hexadecapole.

This approximation permits considerable simplification of the

covariance equation (51). The upper index may be eliminated from

all f-tensors, ξlk becomes a transform of the power spectrum against

jlk (kr) with a pre-factor of clk , and so a factor of clq clpclk is inserted

within the sum over lq, lp, and lk. This step substantially reduces the

number of f-tensors necessary to evaluate.

6.6 Incorporating shot noise

For any discrete sampling of the underlying continuous density

field, a shot-noise term inversely proportional to the survey number

density n will enter the covariance. As discussed in more detail in

Slepian & Eisenstein (2015c), this can be incorporated in the f-tensor

framework simply by mapping P(k) → P(k) + 1/n, where in this

case, the shot-noise term enters only the monopole moment of the

power spectrum with respect to the line of sight. The shot noise can

only enter the monopole because a discrete sampling effect should

have no direction dependence. When the combinations P + 1/n are

multiplied out, some of the terms will involve only 1/n. As also

detailed in Slepian & Eisenstein (2015c), the f-tensors proportional

to these terms can then be evaluated in closed form; this might be

used to accelerate covariance matrix evaluations if desired.

6.7 Reduction to the isotropic covariance

As a check, we reduce the result equation (51) to the isotropic 3PCF

covariance by setting l1 = l2 = l, l′1 = l′2 = l′, and lq = lp = lk = 0,

as well as summing over m and m
′
. In this limit, we find

H
0S1mm′

0J1ll′ =
1

4π

√

(2J1 + 1)(2l + 1)(2l′ + 1)

×
(

J1 l l′

0 0 0

)(

J1 l l′

−S1 −m −m′

)

(54)

where we used Olver et al. (2010, 34.3.1) to evaluate two 3j-symbols

that had zeros in one column (the full form of H is in Appendix A).

Inserting this result (and its analogue of the same form for different

spins) into w1, employing 3j-symbol identities Olver et al. (2010,

34.3.10 and 34.3.18), and summing over m and m
′
, we find

w1 =
(

J1 l l′

0 0 0

)2

. (55)

Applying the same manipulations, we find w2 = w1.

The other weights are slightly more complicated. Thus, we first

present them prior to summing over m and m
′
. For w3, we find

w3 =
(−1)−m′−m

(4π)2

√

(2J2 + 1)(2l + 1)(2l′ + 1)

×
(

J2 l l′

0 0 0

)(

J2 l l′

−S2 m m′

)

; (56)

w4 is the same save for switching m
′ → −m

′
in the above. For w5,

we find

w5 =
(−1)m

′+m

(4π)2

√

(2J1 + 1)(2l + 1)(2l′ + 1)

×
(

J1 l l′

0 0 0

)(

J1 l l′

−S1 −m m′

)

; (57)

w6 is the same save for switching m
′ → −m

′
in the above.

Inserting w3 through w6 into equation (51), we note that the

pre-factors of (−1)±m±m′
in the weights cancel with the overall pre-

factor (−1)m+m′
. We now sum over m and m

′
with the appropriate

replacements for S1, S2, and S3 in the 3j-symbol that is a pre-factor

of these terms. We then invoke orthogonality of the 3j-symbols

summed over spins (Olver et al. 2010, 34.3.18) to find that the sums

of products of spin-dependent symbols yield unity. We identify

J1 or J2 as appropriate with l2 of Slepian & Eisenstein (2015c,

equation 65) for the isotropic covariance (they are simply dummy

momenta coupling l and l
′
). Finally, the pre-factor (−i)l1+l2+l′

1
+l′

2 in

equation (51) becomes (−1)l+l′ , and we multiply our covariance by

(4π )2/[(2l + 1)(2l
′ + 1)], incorporating the pre-factor in equation

(1) for each of the two 3PCFs forming the covariance. Simplifying

what results reduces our anisotropic covariance to the isotropic

covariance of Slepian & Eisenstein (2015c).

6.8 Symmetrization

We now discuss how to cast the covariance matrix of the 3PCF’s

symmetrized harmonic coefficients in terms of the covariance of the

unsymmetrized coefficients.

We desire 〈ζ̄m
l1l2

ζ̄m′

l′
1
l′
2
〉 where here we take it that m ≥ 0 and m

′ ≥
0. Rewriting the symmetrized coefficients in terms of the unsym-

metrized ones using equation (9) and multiplying out, we obtain

〈

ζ̄m
l1l2

ζ̄m′

l′
1
l′
2

〉

=
〈

ζm
l1l2

ζm′

l′
1
l′
2

〉

+
(

1 − δK
m′0

)

〈

ζm
l1l2

ζ−m′

l′
1
l′
2

〉

+
(

1 − δK
m0

)

〈

ζ−m
l1l2

ζm′

l′
1
l′
2

〉

+
(

1 − δK
m0

) (

1 − δK
m′0

)

〈

ζ−m
l1l2

ζ−m′

l′
1
l′
2

〉

. (58)

We notice that the last term is the complex conjugate of the first

term for m and m
′
> 0, and that for m and m

′= 0, it drops out (in

this case the first term is its own complex conjugate). Similarly, the

third term is the complex conjugate of the second term for non-

zero spins. This confirms our expectation that the covariance be

real given that the symmetrized 3PCF coefficients are real. These

observations mean that the complex conjugate pairs can be added

to reduce the symmetrized coefficients’ covariance to

〈

ζ̄m
l1l2

ζ̄m′

l′
1
l′
2

〉

=
[

2 − δK
m′0 − δK

m0 + δK
m0δ

K
m′0

]

Re
〈

ζm
l1l2

ζm′

l′
1
l′
2

〉

+
[

2 − δK
m′0 − δK

m0

]

Re
〈

ζm
l1l2

ζ−m′

l′
1
l′
2

〉

, (59)

where to add the second and third terms of equation (58), we used

that

Re
〈

ζm
l1l2

ζ−m′

l′
1
l′
2

〉

= Re
〈

ζ−m
l1l2

ζm′

l′
1
l′
2

〉

(60)

because the product within the expectation value on the left-hand

side above is the complex conjugate of that on the right-hand side

above.
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1480 Z. Slepian and D. J. Eisenstein

7 C O N C L U S I O N S

We have presented an algorithm for tracking the full 5D anisotropic

3PCF. Assuming the RSD have azimuthal symmetry about the line

of sight, the 3PCF depends on the three ‘internal’ triangle param-

eters r1, r2, and r̂1 · r̂2, and the angles of two of the triangle sides

to the line of sight. Here, we have traded these parameters for an

equivalent 5D representation – two side lengths r1 and r2, two to-

tal angular momenta l and l
′
, and a spin m – and constructed the

mixed spherical harmonic coefficients of the anisotropic 3PCF to

capture its angle and orientation dependences. Our reformulation of

the problem renders the density field integrals for these coefficients

factorizable, fundamentally reducing the scaling of the problem

from an O(N3) triplet count to an O(N2) pair count, with N the

number of galaxies in the survey.

In addition to its speed, the algorithm presented here has three

other significant advantages. First, it allows use of a rotating line

of sight for the 3PCF, more accurate than assuming a single line of

sight to the entire survey. The line of sight to the galaxy triplet is

taken to be the vector to one of the three triplet members; this is the

analogue of the Yamamoto estimator for the anisotropic 2PCF or

power spectrum. Furthermore, we have shown how these rotations

can be done after computation of the spherical harmonic moments,

enabling use of FFTs to evaluate the anisotropic 3PCF. Second, the

spherical harmonic basis permits straightforward edge correction,

an essential step to remove spurious signal generated by the sur-

vey geometry rather than the underlying galaxy clustering. Third,

the basis enables computation of the covariance matrix under the

assumption of a GRF density described by a power spectrum with

multipole moments with respect to the line of sight. In the Kaiser ap-

proximation of a flat sky, single line of sight and linear perturbation

theory, the power spectrum’s multipole moments become particu-

larly simple, further accelerating evaluation of the covariance.

We note that the basis of spherical harmonic moments advocated

here is a compression of the full redshift-space anisotropic 3PCF,

as formally an infinite number of ℓ and ℓ
′
are required to model an

arbitrary function of two directions. However, as shown in Slepian

& Eisenstein (2015b, 2016a), in practice for the isotropic 3PCF, a

finite, small number of multipoles contains the bulk of the infor-

mation, at least on scales sufficiently large to be well modelled by

perturbation theory. Given the structure of the anisotropic bispec-

trum in perturbation theory (e.g. Rampf & Wong 2012), we expect

this conclusion will hold for the anisotropic 3PCF as well. Thus,

we believe that the spherical harmonic basis is a parsimonious yet

effective compression of the full anisotropic 3PCF.

There has been some work on modelling the anisotropic compo-

nent of the bispectrum: Scoccimarro et al. (1999) compute the tree-

level redshift-space bispectrum via Eulerian standard perturbation

theory. Notably, the tree-level Eulerian and Lagrangian predictions

for the redshift-space bispectrum (and hence 3PCF, since it is just the

inverse FT) agree (Rampf & Wong 2012). This latter work presents

the full, unaveraged tree-level bispectrum prediction. In contrast,

Scoccimarro et al. (1999) modelled an average of the 5Dredshift-

space bispectrum over rotations of one wave vector about the other,

reducing it to a 4D function. That work began with the basis of

spherical harmonics for the bispectrum’s orientation dependence

times coefficients depending on the three wave vector magnitudes.

The averaging then reduced this to a basis of Legendre polynomials

in the angle between the unaveraged side and the line of sight times

the same wavevector-magnitude-dependent coefficients.

More recently, Gagrani & Samushia (2017) compared the infor-

mation content of the full redshift-space bispectrum to that of its

4D reduction computed in this way, showing that at the level of the

Fisher matrix most of the information is retained after this aver-

aging. The basis we propose in this work could easily be used for

the bispectrum as well, but it is sufficiently different from the basis

used in Scoccimarro et al. (1999) and Gagrani & Samushia (2017)

that it is not clear how one would average over rotations about one

triangle side if so desired.

We note that two important papers in the development of spher-

ical harmonics and Legendre polynomials for the bispectrum and

3PCF are Verde, Heavens & Matarrese (2000) and Szapudi (2004).

The former proposed expansion of the projected galaxy density

field in spherical harmonics, showed that the isotropic projected

bispectrum can be written as a Legendre series, and noted that this

formalism also covers the full 3D case. However, it did not discuss

the anisotropic 3PCF or bispectrum. The latter proposed expanding

the full 3D 3PCF or bispectrum in Legendre polynomials, but again

did not discuss anisotropy.

Here, we have presented the mathematical formalism for our

anisotropic 3PCF algorithm; in two companion papers, we dis-

cuss in detail an implementation suitable for massive-scale high-

performance computing (Friesen et al. 2017). In particular, we

modified a codebase originally developed in Slepian & Eisenstein

(2015c) to track the anisotropic clustering as discussed here. We op-

timized this code to run on the Cray XC40 system Cori at Lawrence

Berkeley National Laboratory’s National Energy Research Super-

computing Center, which comprises roughly 10k nodes, each with

68 compute cores. Running it on the largest available galaxy sim-

ulation, Outer Rim (Habib et al. 2016), with 2 billion haloes, we

computed the anisotropic 3PCF out to 200 Mpch−1 in 1070 s on

9636 nodes, achieving 5.06 PFLOPS sustained. At peak, the code

achieved 9.8 PFLOPS, roughly 39 per cent of peak performance, but

80 per cent given the instruction mix the algorithm requires.6 This

speed means that any anisotropic 3PCF computation for galaxy

surveys of sizes available in the next decade is practical even on

current computing resources. Indeed, the anisotropic 3PCF out to

Rmax = 200 Mpc for all galaxies in the observable Universe (∼100

billion) is computable in a few days with the algorithm on Cori. The

speed is further important because a full 3PCF analysis requires

computing many random catalogs’ 3PCF for edge correction, and

many mocks’ 3PCF for pipeline testing, model and covariance ma-

trix verification, and fitting the free parameters (volume and shot

noise) of the covariance matrix.

Regarding speed, we note that several works have presented ac-

celeration schemes for the neighbour-finding piece of the 3PCF

computation. Bernardeau, van Waerbeke & Mellier (2003) use De-

launay triangulation to accelerate neighbour finding in the context of

computing the weak shear 3PCF. March (2013) uses kd-trees for the

neighbour finding, but does not include any further acceleration in

computing the actual 3PCF, leading to an algorithm that still scales

as the number of secondaries squared around a given primary, for

an overall N3 scaling (see his fig. 21). Indeed, our high-performance

computing implementation of the algorithm, presented in the com-

panion paper Friesen et al. (2017), uses kd-trees for the neighbour

finding as well. However, as fig. 4 of Friesen et al. (2017) shows,

6For this implementation, we pre-rotated the galaxies, which while compu-

tationally less efficient is simpler to code than the post-rotation approach

also presented here. We expect incorporating this latter optimization will

only improve runtimes, though we do not expect significant gains because

the pre-rotation is a small part of the total work in the current code, as

discussed in Section 4.2.
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Practical computation of the anisotropic 3PCF 1481

the neighbour finding is a subdominant part of the total time cost

as compared to the spherical harmonic computation (22 per cent

versus 55 per cent). Consequently, the neighbour finding is not the

primary driver of the algorithm’s fundamental scaling. If further ac-

celeration of the algorithm were the paramount consideration, the

FT-based approach that computes the harmonic coefficients scaling

as Nglog Ng, discussed in Section 4.3 would likely be the appropriate

choice.

Regarding the algorithm’s scaling, as (nVmax)N, with Vmax the

spherical volume within a radius of Rmax, n the survey number

density, and N the number of galaxies, we note that this applies in the

limit that one works on large enough scales that the density averaged

within Vmax has returned to nearly its overall average value. This

occurs because on sufficiently large-scale galaxies are essentially

unclustered. In particular, the number of neighbours within a given

sphere about a primary galaxy scales as the volume of the sphere

plus the integral of the 2PCF over the sphere, whereas the number of

neighbours about a randomly chosen point in the survey scales as the

volume of the sphere. The 2PCF integrates to zero over sufficiently

large scales (�150 Mpch−1). Thus, the number of neighbours about

a primary converges to the average number of galaxies within a

randomly placed sphere in the survey, rendering valid our estimate

of the number of neighbours as nVmax.

Future work will be translating the predictions of Rampf & Wong

(2012) into the spherical harmonic basis for direct comparison with

the output of the algorithm. Indeed, for this purpose, one could also

use the predictions of Hashimoto, Rasera & Taruya (2017), which

include additional terms representing further perturbative correc-

tions to the redshift-space bispectrum. What is clear by inspection

is that the isotropic part of the 3PCF can only generate l = l
′

cou-

plings, so any ‘off-diagonal’ couplings l �= l
′
isolate O(f ) contribu-

tions. Thus, in principle, these couplings provide a robust window

on the growth rate. However, in practice, anisotropies in the survey

mask can couple isotropic coefficients of the measured 3PCF to

anisotropic coefficients of the edge-corrected 3PCF, and vice versa.

More detailed analysis with mock catalogues and a realistic sur-

vey geometry will thus need to be conducted to fully quantify this

coupling.

None the less, we believe the algorithm presented here will enable

precise, robust measurement of the growth rate of structure with the

anisotropic 3PCF much as is already done with the anisotropic

2PCF and power spectrum. Thus far, the anisotropic 3PCF has

not been measured. Therefore, the next step for future work is

applying this algorithm to data. Numerous suitable samples exist

already, such as the SDSS DR12 BOSS CMASS sample used in

Slepian et al. (2016a) and Gil-Marı́n et al. (2017) or, if smaller

volume but higher number density were desired, the VIMOS Public

Extragalactic Redshift Survey (VIPERS) (Scodeggio et al. 2016).

Ongoing and future surveys such as eBOSS (Dawson et al. 2016)

and Dark Energy Spectroscopic Instrument (DESI) (Levi et al. 2013)

will provide even larger, richer data sets to which to apply this

algorithm.

Measuring the growth rate of structure via RSD is both an impor-

tant lever on the cosmological parameters and a key test of our theory

of gravity. While the anisotropic 2PCF and power spectrum already

will probe it to extremely high precision with next-generation sur-

veys, any additional sources of information can only strengthen our

understanding of these two fundamental areas.

Further, breaking the degeneracy between σ 8, f , and galaxy bias-

ing is a challenging problem that requires several different observ-

ables to fully address. In addition to its importance for cosmology,

extracting precise bias measurements will shed new light on galaxy

formation.

Importantly, measuring the anisotropic 3PCF requires no addi-

tional data over what is already used for the anisotropic 2PCF;

the challenge is purely computational, not observational. Thus, the

algorithm presented here should enhance the scientific value of

redshift survey data per dollar spent on telescope time.

AC K N OW L E D G E M E N T S

ZS especially thanks Shirley Ho for encouragement on the com-

puting side of this study and Anya Nugent and Martin White for

careful reads of the manuscript. We also thank Douglas Finkbeiner,

Stephen Portillo, Natalie Roe, Roman Scoccimarro, Uroš Seljak,
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APP ENDIX A

In this appendix, we collect some important definitions and proper-

ties of Legendre polynomials and spherical harmonics. A product of

two Legendre polynomials can be linearized into a sum as (Adams

1878)

Lk(μ)Lk′ (μ) =
∑

J

(2J + 1)

(

k k′ J

0 0 0

)2

LJ (μ), (A1)

where the sum’s range is set by |k − k
′ | ≤ J ≤ k + k

′
(the triangularity

condition on the 3j-symbol).

The integral of a Legendre polynomial can be obtained using the

recursion

Ln(μ) =
1

2n + 1

d

dμ
[Ln+1(μ) − Ln−1(μ)] (A2)

to rewrite Ln(μ) as an exact differential.

The Gaunt integral is defined

G
m1m2m3

l1l2l3
≡

∫

d� Yl1m1
(r̂)Yl2m2

(r̂)Yl3m3
(r̂)

= Cl1l2l3

(

l1 l2 l3
0 0 0

)(

l1 l2 l3
m1 m2 m3

)

(A3)

where Cl1l2l3 is defined in equation (43).

The integral of four spherical harmonics can be obtained by first

linearizing two spherical harmonics into a sum over single spherical

harmonics using the Gaunt integral. We begin with

Yl1m1
(r̂)Yl2m2

(r̂) =
∑

LM

cLM (l1, l2; m1, m2)YLM (r̂), (A4)

where the coefficients cLM(l1, l2; m1, m2) are given by integrating

both sides against Y ∗
LM (r̂) and invoking orthogonality, so that

cLM (l1, l2; m1, m2) = (−1)MG
m1m2−M
l1l2L . (A5)

We then have

H
m1m2m3m4

l1l2l3l4
≡

∫

d�Yl1m1(r̂)Yl2m2
(r̂)Yl3m3

(r̂)Yl4m4
(r̂)

=
∑

L

(−1)MG
m1m2−M
l1l2L G

Mm3m4

Ll3l4
(A6)

by inserting equations (A4) and (A5) into the first line above and

then integrating. We note that there is no sum over M because it is set

by the zero-sum rule on the spins enforced by the Gaunt integrals:

m1 + m2 = M. We further note that the sum over L has compact

support because of the triangle rules on total angular momenta:

|l1 − l2| ≤ L ≤ l1 + l2 and the same constraint holds replacing l1

→ l3 and l2 → l4.

APPENDI X B

Having focused this paper on the ζm
ll′ parametrization, we here ex-

plain why an alternative, seemingly attractive parametrization of

the anisotropic 3PCF does not work. Specifically, by analogy with

the anisotropic 2PCF, one might expect that a triple Legendre series

in the angle of each triangle side to the line of sight and the internal

angle enclosed by the triangle would be the correct basis for the

anisotropic 3PCF. However, this approach is not workable, as we

show below.

First, we write out the basis about a particular galaxy at x; the

full anisotropic 3PCF would then be the average over x of these

coefficients. We have

ζ̂ (r1, r2; r̂1 · r̂2; r̂1 · n̂, r̂2 · n̂; x)

=
∑

ll1l2

ζll1l2 (r1, r2; x)Ll(r̂1 · r̂2)Ll1 (r̂1 · n̂)Ll2 (r̂2 · n̂), (B1)

with n̂ the line of sight.

There are two ways to see the flaw in this basis. First, consider

a triangle with zero opening angle, so that r̂1 · r̂2 = 1 . Then, spec-

ifying the orientation of r̂1 with respect to the line of sight fully

specifies that of r̂2: the Legendre polynomials in l1 and l2 are no

longer independent. This lack of independence means that they do

not form a basis.

A more formal way to see this issue is by considering how we

would obtain the coefficients ζll1l2 (r1, r2; x). Placing a particular

galaxy at x and measuring the coefficients around it, we would

attempt to invoke orthogonality by integrating over d�r1
d�r2

. To

do so, we would need to separate the Legendre polynomials on the

right-hand side of equation (B1) as

Ll(r̂1 · r̂2)Ll1 (r̂1 · n̂)Ll2 (r̂2 · n̂)

=
(4π)2

(2l + 1)
√

(2l1 + 1)(2l2 + 1)

×
∑

L1L2

G000
ll1L1

G000
ll2L2

YL10(r̂1)Y ∗
L20(r̂2). (B2)
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We used the spherical harmonic addition theorem to expand each

Legendre polynomial, and then that n̂ = ẑ to eliminate the sums

over m1 and m2, since only the m1 = m2 = 0 modes contribute for

a spherical harmonic evaluated along the z-axis. We then linearized

the resulting products of two spherical harmonics in r̂1 and r̂2 into a

sum over one spherical harmonic in each using equation (A4) from

Appendix A, and substituted the explicit form for the linearization

coefficients as it is particularly simple, since all spins are zero.

Inserting equation (B2) into equation (B1) and integrating both

sides against spherical harmonics over d�r1
d�r2

, we see that
∫

d�r1
d�r2

ζ̂ (r1, r2; x) Y ∗
L1M1

(r̂1)YL2M2
(r̂2)

∝
∑

ll1l2m

G000
ll1L1

G000
ll2L2

ζll1l2 (r1, r2; x). (B3)

We see that we have failed to extract the desired coefficients ζll1l2 ,

but have only succeeded in measuring some weighted sum of them.

If the l, l1, and l2 support of the anisotropic 3PCF were finite, we

could measure a large number of integrals as on the left-hand side

above and solve for each term in the sum. However, it is known that

the multipole expansion of the isotropic 3PCF is formally infinite

(Slepian & Eisenstein 2015b,2016a), so l ranges from zero to infin-

ity and this approach is not possible. We note that this point is not at

odds with our claim in Section 7 that the multipoles are a parsimo-

nious basis for the 3PCF. While the multipole expansion is formally

infinite, as shown in Slepian & Eisenstein (2016a, fig. 8), the higher

multipoles do not have much new information over the lower (their

side-length dependence largely converges to look similar for l � 5),

so the information content remains compact.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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