
A Practical Congestion Attack on Tor Using Long Paths

Nathan S. Evans
Colorado Research Institute

for Security and Privacy

University of Denver

Email: nevans6@du.edu

Roger Dingledine
The Tor Project

Email: arma@mit.edu

Christian Grothoff
Colorado Research Institute

for Security and Privacy

University of Denver

Email: christian@grothoff.org

Abstract

In 2005, Murdoch and Danezis demonstrated the first

practical congestion attack against a deployed anonymity

network. They could identify which relays were on a

target Tor user’s path by building paths one at a time

through every Tor relay and introducing congestion.

However, the original attack was performed on only 13

Tor relays on the nascent and lightly loaded Tor network.

We show that the attack from their paper is no longer

practical on today’s 1500-relay heavily loaded Tor net-

work. The attack doesn’t scale because a) the attacker

needs a tremendous amount of bandwidth to measure

enough relays during the attack window, and b) there are

too many false positives now that many other users are

adding congestion at the same time as the attacks.

We then strengthen the original congestion attack by

combining it with a novel bandwidth amplification at-

tack based on a flaw in the Tor design that lets us build

long circuits that loop back on themselves. We show that

this new combination attack is practical and effective by

demonstrating a working attack on today’s deployed Tor

network. By coming up with a model to better under-

stand Tor’s routing behavior under congestion, we fur-

ther provide a statistical analysis characterizing how ef-

fective our attack is in each case.

1 Introduction

This paper presents an attack which exploits a weakness

in Tor’s circuit construction protocol to implement an im-

proved variant of Murdoch and Danezis’s congestion at-

tack [26, 27]. Tor [12] is an anonymizing peer-to-peer

network that provides users with the ability to establish

low-latency TCP tunnels, called circuits, through a net-

work of relays provided by the peers in the network. In

2005, Murdoch and Danezis were able to determine the

path that messages take through the Tor network by caus-

ing congestion in the network and then observing the

changes in the traffic patterns.

While Murdoch and Danezis’s work popularized the

idea proposed in [1] of an adversary perturbing traffic

patterns of a low-latency network to deanonymize its

users, the original attack no longer works on the mod-

ern Tor network. In a network with thousands of relays,

too many relays share similar latency characteristics and

the amount of congestion that was detectable in 2005 is

no longer significant; thus, the traffic of a single normal

user does not leave an easily distinguishable signature in

the significantly larger volume of data routed by today’s

Tor network.

We address the original attack’s weaknesses by com-

bining JavaScript injection with a selective and asymmet-

ric denial-of-service (DoS) attack to obtain specific infor-

mation about the path selected by the victim. As a result,

we are able to identify the entire path for a user of today’s

Tor network. Because our attack magnifies the conges-

tion effects of the original attack, it requires little band-

width on the part of the attacker. We also provide an im-

proved method for evaluating the statistical significance

of the obtained data, based on Tor’s message scheduling

algorithm. As a result, we are not only able to determine

which relays make up the circuit with high probability,

we can also quantify the extent to which the attack suc-

ceeds. This paper presents the attack and experimental

results obtained from the actual Tor network.

We propose some non-trivial modifications to the cur-

rent Tor protocol and implementation which would raise

the cost of the attack. However, we emphasize that a full

defense against our attack is still not known.

Just as Murdoch and Danezis’s work applied to other

systems such as MorphMix [24] or Tarzan [36], our im-

proved attack and suggested partial defense can also be

generalized to other networks using onion routing. Also,

in contrast to previously proposed solutions to conges-

tion attacks [18,22–24,28,30,35,36], our proposed modi-

fications do not impact the performance of the anonymiz-

ing network.



2 Related Work

Chaum’s mixes [3] are a common method for achiev-

ing anonymity. Multiple encrypted messages are sent

to a mix from different sources and each is forwarded

by the mix to its respective destination. Combinations

of artificial delays, changes in message order, message

batching, uniform message formats (after encryption),

and chaining of multiple mixes are used to further mask

the correspondence between input and output flows in

various variations of the design [5,7,8,17,21,25,32,33].

Onion routing [16] is essentially the process of using

an initiator-selected chain of low-latency mixes for the

transmission of encrypted streams of messages in such a

way that each mix only knows the previous and the next

mix in the chain, thus providing initiator-anonymity even

if some of the mixes are controlled by the adversary.

2.1 Tor

Tor [12] is a distributed anonymizing network that uses

onion routing to provide anonymity for its users. Most

Tor users access the Tor network via a local proxy pro-

gram such as Privoxy [20] to tunnel the HTTP requests

of their browser through the Tor network. The goal is to

make it difficult for web servers to ascertain the IP ad-

dress of the browsing user. Tor provides anonymity by

utilizing a large number of distributed volunteer-run re-

lays (or routers). The Tor client software retrieves a list

of participating relays, randomly chooses some number

of them, and creates a circuit (a chain of relays) through

the network. The circuit setup involves establishing a

session key with each router in the circuit, so that data

sent can be encrypted in multiple layers that are peeled

off as the data travels through the network. The client

encrypts the data once for each relay, and then sends it to

the first relay in the circuit; each relay successively peels

off one encryption layer and forwards the traffic to the

next link in the chain until it reaches the final node, the

exit router of the circuit, which sends the traffic out to the

destination on the Internet.

Data that passes through the Tor network is packaged

into fixed-sized cells, which are queued upon receipt for

processing and forwarding. For each circuit that a Tor

router is a part of, the router maintains a separate queue

and processes these queues in a round-robin fashion. If

a queue for a circuit is empty it is skipped. Other than

using this fairness scheme, Tor does not intentionally in-

troduce any latency when forwarding cells.

The Tor threat model differs from the usual model for

anonymity schemes [12]. The traditional threat model

is that of a global passive adversary: one that can ob-

serve all traffic on the network between any two links.

In contrast, Tor assumes a non-global adversary which

can only observe some subset of the connections and

can control only a subset of Tor nodes. Well-known at-

tack strategies such as blending attacks [34] require more

powerful attackers than those permitted by Tor’s attacker

model. Tor’s model is still valuable, as the resulting

design achieves a level of anonymity that is sufficient

for many users while providing reasonable performance.

Unlike the aforementioned strategies, the adversary used

in this paper operates within the limits set by Tor’s at-

tacker model. Specifically, our adversary is simply able

to run a Tor exit node and access the Tor network with

resources similar to those of a normal Tor user.

2.2 Attacks on Tor and other Mixes

Many different attacks on low-latency mix networks and

other anonymization schemes exist, and a fair number of

these are specifically aimed at the Tor network. These

attacks can be broadly grouped into three categories:

path selection attacks, passive attacks, and active attacks.

Path selection attacks attempt to invalidate the assump-

tion that selecting relays at random will usually result in

a safe circuit. Passive attacks are those where the adver-

sary in large part simply observes the network in order to

reduce the anonymity of users. Active attacks are those

where the adversary uses its resources to modify the be-

havior of the network; we’ll focus here on a class of ac-

tive attacks known as congestion or interference attacks.

2.2.1 Path Selection Attacks

Path selection is crucial for the security of Tor users; in

order to retain anonymity, the initiator needs to choose a

path such that the first and last relay in the circuit won’t

collude. By selecting relays at random during circuit cre-

ation, it could be assumed that the probability of find-

ing at least one non-malicious relay would increase with

longer paths. However, this reasoning ignores the pos-

sibility that malicious Tor routers might choose only to

facilitate connections with other adversary-controlled re-

lays and discard all other connections [2]; thus the initia-

tor either constructs a fully malicious circuit upon ran-

domly selecting a malicious node, or fails that circuit and

tries again. This type of attack suggests that longer cir-

cuits do not guarantee stronger anonymity.

A variant of this attack called “packet spinning” [30]

attempts to force users to select malicious routers by

causing legitimate routers to time out. Here the at-

tacker builds circular paths throughout the Tor network

and transmits large amounts of data through those paths

in order to keep legitimate relays busy. The attacker

then runs another set of (malicious) servers which would

eventually be selected by users because of the attacker-

generated load on all legitimate mixes. The attack is suc-

cessful if, as a result, the initiator chooses only malicious

servers for its circuit, making deanonymization trivial.
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2.2.2 Passive Attacks

Several passive attacks on mix systems were proposed

by Back et al. [1]. The first of these attacks is a “packet

counting” attack, where a global passive adversary sim-

ply monitors the initiator’s output to discover the number

of packets sent to the first mix, then observes the first mix

to watch for the same number of packets going to some

other destination. In this way, a global passive adversary

could correlate traffic to a specific user. As described

by Levine et al. [23], the main method of defeating such

attacks is to pad the links between mixes with cover traf-

fic. This defense is costly and may not solve the problem

when faced with an active attacker with significant re-

sources; an adversary with enough bandwidth can deal

with cover traffic by using up as much of the allotted

traffic between two nodes as possible with adversary-

generated traffic [4]. As a result, no remaining band-

width is available for legitimate cover traffic and the ad-

versary can still deduce the amount of legitimate traffic

that is being processed by the mix. This attack (as well

as others described in this context) requires the adversary

to have significant bandwidth. It should be noted that in

contrast, the adversary described by our attack requires

only the resources of an average mix operator.

Low-latency anonymity systems are also vulnerable

to more active timing analysis variations. The attack

presented in [23] is based on an adversary’s ability to

track specific data through the network by making mi-

nor timing modifications to it. The attack assumes that

the adversary controls the first and last nodes in the path

through the network, with the goal of discovering which

destination the initiator is communicating with. The au-

thors discuss both correlating traffic “as is” as well as al-

tering the traffic pattern at the first node in order to make

correlation easier at the last node. For this second corre-

lation attack, they describe a packet dropping technique

which creates holes in the traffic; these holes then per-

colate through the network to the last router in the path.

The analysis showed that without cover traffic (as em-

ployed in Tarzan [14, 15]) or defensive dropping [23],

it is relatively easy to correlate communications through

mix networks. Even with “normal” cover traffic where

all packets between nodes look the same, Shmatikov and

Wang show that the traffic analysis attacks are still vi-

able [35]. Their proposed solution is to add cover traffic

that mimics traffic flows from the initiator’s application.

A major limitation of all of the attacks described so

far is that while they work well for small networks, they

do not scale and may fail to produce reliable results for

larger anonymizing networks. For example, Back’s ac-

tive latency measuring attack [1] describes measuring

the latencies of circuits and then trying to determine the

nodes that were being utilized from the latency of a spe-

cific circuit. As the number of nodes grows, this attack

becomes more difficult (due to an increased number of

possible circuits), especially as more and more circuits

have similar latencies.

2.2.3 Congestion Attacks

A more powerful relative of the described timing attacks

is the clogging or congestion attack. In a clogging attack,

the adversary not only monitors the connection between

two nodes but also creates paths through other nodes and

tries to use all of their available capacity [1]; if one of the

nodes in the target path is clogged by the attacker, the ob-

served speed of the victim’s connection should change.

In 2005, Murdoch and Danezis described an attack on

Tor [27] in which they could reveal all of the routers in-

volved in a Tor circuit. They achieved this result using a

combination of a circuit clogging attack and timing anal-

ysis. By measuring the load of each node in the network

and then subsequently congesting nodes, they were able

to discover which nodes were participating in a particu-

lar circuit. This result is significant, as it reduces Tor’s

security during a successful attack to that of a collection

of one hop proxies. This particular attack worked well on

the fledgling Tor network with approximately fifty nodes;

the authors experienced a high success rate and no false

positives. However, their clogging attack no longer pro-

duces a signal that stands out on the current Tor network

with thousands of nodes. Because today’s Tor network

is more heavily used, circuits are created and destroyed

more frequently, so the addition of a single clogging cir-

cuit has less impact. Also, the increased traffic transmit-

ted through the routers leads to false positives or false

negatives due to normal network fluctuations. We pro-

vide details about our attempt to reproduce Murdoch and

Danezis’s work in Section 6.

McLachlan and Hopper [24] propose a similar cir-

cuit clogging attack against MorphMix [33], disproving

claims made in [36] that MorphMix is invulnerable to

such an attack. Because all MorphMix users are required

to also be mix servers, McLachlan and Hopper achieve

a stronger result than Murdoch and Danezis: they can

identify not only the circuit, but the user as well.

Hopper et al. [19] build on the original clogging attack

idea to construct a network latency attack to guess the lo-

cation of Tor users. Their attack is two-phase: first use a

congestion attack to identify the relays in the circuit, and

then build a parallel circuit through those relays to esti-

mate the latency between the victim and the first relay.

A key contribution from their work is a more mathemat-

ical approach that quantifies the amount of information

leaked in bits over time. We also note that without a

working congestion attack, the practicality of their over-

all approach is limited.
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Client

Tor Node 3 - Our Exit Node

Server

Tor Node 1 - Unknown Node Malicious Client

Tor Node 2 - Known High BW Tor Node 1

High BW Tor Node 2 Malicious Server

Figure 1: Attack setup. This figure illustrates the normal circuit constructed by the victim to the malicious Tor exit

node and the “long” circuit constructed by the attacker to congest the entry (or guard) node used by the victim. The

normal thin line from the client node to the server represents the victim circuit through the Tor network. The unwitting

client has chosen the exit server controlled by the adversary, which allows the JavaScript injection. The double thick

lines represent the long circular route created by the malicious client through the first Tor router chosen by the client.

The dotted line shows the path that the JavaScript pings travel.

3 Our Attack

Three features of Tor’s design are crucial for our attack.

First of all, Tor routers do not introduce any artificial de-

lays when routing requests. As a result, it is easy for

an adversary to observe changes in request latency. Sec-

ond, the addresses of all Tor routers are publicly known

and easily obtained from the directory servers. Tor de-

velopers are working on extensions to Tor (called bridge

nodes [10,11]) that would invalidate this assumption, but

this service was not widely used at the time of this writ-

ing. Finally, the latest Tor server implementation that

was available at the time we concluded our original at-

tacks (Tor version 0.2.0.29-rc) did not restrict users from

establishing paths of arbitrary length, meaning that there

was no restriction in place to limit constructing long

paths through Tor servers.1 We used a modified client

version (based on 0.2.0.22-rc) which used a small fixed

path length (specifically three) but modified it to use a

variable path length specified by our attacker.

Fig. 1 illustrates the three main steps of our attack.

First, the adversary needs to ensure that the initiator re-

peatedly performs requests at known intervals. Second,

the adversary observes the pattern in arrival times of

these requests. Finally, the adversary changes the pat-

tern by selectively performing a novel clogging attack on

1Tor version 0.2.1.3-alpha and later servers restrict path lengths to
a maximum of eight because of this work.

Tor routers to determine the entry node. We will now

describe each of these steps in more detail.

3.1 JavaScript Injection

Our attack assumes that the adversary controls an exit

node which is used by the victim to access an HTTP

server. The attacker uses the Tor exit node to inject a

small piece of JavaScript code (shown in Fig. 2) into

an HTML response. It should be noted that most Tor

users do not disable JavaScript and that the popular Tor

Button plugin [31] and Privoxy [20] also do not disable

JavaScript code; doing so would prevent Tor users from

accessing too many web pages. The JavaScript code

causes the browser to perform an HTTP request every

second, and in response to each request, the adversary

uses the exit node to return an empty response, which is

thrown away by the browser. Since the JavaScript code

may not be able to issue requests precisely every second,

it also transmits the local system time (in milliseconds)

as part of the request. This allows the adversary to de-

termine the time difference between requests performed

by the browser with sufficient precision. (Clock skew

on the systems of the adversary and the victim is usu-

ally insignificant for the duration of the attack.) While

JavaScript is not the only conceivable way for an attacker

to cause a browser to transmit data at regular intervals

(alternatives include HTTP headers like refresh [13]
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<script language="javascript">

var count,timer,xmlhttp = 0;

function runonce() {

xmlhttp = new XMLHttpRequest(); }

function start() {

xmlhttp.abort();

xmlhttp = new XMLHttpRequest();

count++;

if (timer) clearTimeout(timer);

timer = setTimeout("start()", 1000);

myDate = new Date();

xmlhttp.open("GET",

"/reportIn.html?num=" + count +

"&time=" + myDate.getTime(),true);

xmlhttp.send("");

}

</script>

Figure 2: JavaScript code injected by the adversary’s exit

node. Note that other techniques such as HTML refresh,

could also be used to cause the browser to perform peri-

odic requests.

and HTML images [19]), JavaScript provides an easy

and generally rather dependable method to generate such

a signal.

The adversary then captures the arrival times of the

periodic requests performed by the browser. Since the

requests are small, an idle Tor network would result in

the differences in arrival times being roughly the same

as the departure time differences — these are known be-

cause they were added by the JavaScript as parameters to

the requests. Our experiments suggest that this is often

true for the real network, as most routers are not seri-

ously congested most of the time. This is most likely

in part due to TCP’s congestion control and Tor’s built-

in load balancing features. Specifically, the variance in

latency between the periodic HTTP requests without an

active congestion attack is typically in the range of 0–5 s.

However, the current Tor network is usually not en-

tirely idle and making the assumption that the victim’s

circuit is idle is thus not acceptable. Observing conges-

tion on a circuit is not enough to establish that the node

under the congestion attack by the adversary is part of the

circuit; the circuit may be congested for other reasons.

Hence, the adversary needs to also establish a baseline

for the congestion of the circuit without an active con-

gestion attack. Establishing measurements for the base-

line is done before and after causing congestion in or-

der to ensure that observed changes during the attack are

caused by the congestion attack and not due to unrelated

changes in network characteristics.

The attacker can repeatedly perform interleaved mea-

surements of both the baseline congestion of the circuit

and the congestion of the circuit while attacking a node

presumed to be on the circuit. The attacker can continue

the measurements until either the victim stops using the

circuit or until the mathematical analysis yields a node

with a substantially higher deviation from the baseline

under congestion compared to all other nodes. Before we

can describe details of the mathematical analysis, how-

ever, we have to discuss how congestion is expected to

impact the latency measurements.

3.2 Impact of Congestion on Arrival Times

In order to understand how the congestion attack is ex-

pected to impact latency measurements, we first need to

take a closer look at how Tor schedules data for rout-

ing. Tor makes routing decisions on the level of fixed-

size cells, each containing 512 bytes of data. Each Tor

node routes cells by going round-robin through the list

of all circuits, transmitting one packet from each circuit

with pending data (see Fig. 3). Usually the number of

(active) circuits is small, resulting in little to no delay. If

the number of busy circuits is large, messages may start

to experience significant delays as the Tor router iterates

over the list (see Fig. 4).

Since the HTTP requests transmitted by the injected

JavaScript code are small (∼250 bytes, depending on

count and time), more than one request can fit into a sin-

gle Tor cell. As a result multiple of these requests will

be transmitted at the same time if there is congestion at

a router. A possible improvement to our attack would be

to use a lower level API to send the packets, as the XML-

HttpRequest object inserts unnecessary headers into the

request/response objects.

We will now characterize the network’s behavior un-

der congestion with respect to request arrival times. As-

suming that the browser transmits requests at a perfectly

steady rate of one request per second, a congested router

introducing a delay of (at most) n seconds would cause

groups of n HTTP requests to arrive with delays of ap-

proximately 0, 1, . . . , n−1 seconds respectively: the first

cell is delayed by n−1 seconds, the cell arriving a second

later by n − 2 seconds, and the n-th cell arrives just be-

fore the round-robin scheduler processes the circuit and

sends all n requests in one batch. This characterization

is of course a slight idealization in that it assumes that

n is small enough to allow all of the HTTP requests to

be grouped into one Tor cell and that there are no other

significant fluctuations. Furthermore, it assumes that the

amount of congestion caused by the attacker is perfectly

steady for the duration of the time measurements, which

may not be the case. However, even without these ide-

alizations it is easy to see that the resulting latency his-

tograms would still become “flat” (just not as perfectly
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Figure 3: This example illustrates a Tor router which currently is handling three circuits at two points in time (t = 3

and t = 4). Circuits (A, B and C) have queues; cells are processed one at a time in a round-robin fashion. As the

number of circuits increases, the time to iterate over the queues increases. The left figure shows the circuit queues

and output queue before selection of cell C1 for output and the right figure shows the queues after queueing C1 for

output. The thicker bottom box of queue C (left) and queue B (right) shows the current position of the round-robin

queue iterator. At time t = 1 the last cell from queue A was processed leaving the queue A empty. As a result, queue

A is skipped after processing queue C.
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Figure 4: This example illustrates a Tor router under congestion attack handling 15 circuit queues. Note that if a

circuit includes a node multiple times, the node assigns the circuit multiple circuit queues. In this example, not all of

the circuit queues are busy — this may be because the circuits are not in use or because other routers on the circuit

are congested. As in Fig. 3, the left and right figures show the state of the mix before and after queueing a cell, in this

case F0.
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regular in terms of arrival patterns) assuming the load

caused by the attacker is sufficiently high.

Since we ideally expect delays in message arrival

times for a congested circuit to follow a roughly flat dis-

tribution between zero and n, it makes sense to compute

a histogram of the delays in message arrival times. If

the congestion attack is targeting a node on the circuit,

we would expect to see a roughly equal number of mes-

sages in each interval of the histogram. We will call the

shape of the resulting histogram horizontal. If the circuit

is not congested, we expect to see most messages arrive

without significant delay which would place them in the

bucket for the lowest latency. We will call the shape of

the resulting histogram vertical. So for example, in Fig. 6

the control data are vertical, whereas the attack data are

more horizontal.

Note that the clock difference between the victim’s

system and the adversary as well as the minimal network

delay are easily eliminated by normalizing the observed

time differences. As a result, the latency histograms

should use the increases in latency over the smallest ob-

served latency, not absolute latencies.

3.3 Statistical Evaluation

In order to numerically capture congestion at nodes we

first measure the node’s baseline latency, that is latency

without an active congestion attack (at least as far as we

know). We then use the observed latencies to create n

bins of latency intervals such that each bin contains the

same number of data points. Using the χ2-test we could

then determine if the latency pattern at the respective

peer has changed “significantly”. However, this simplis-

tic test is insufficient. Due to the high level of normal

user activity, nodes frequently do change their behavior

in terms of latencies, either by becoming congested or

by congestion easing due to clients switching to other

circuits. For the attacker, congestion easing (the latency

histogram getting more vertical) is exactly the opposite

of the desired effect. Hence the ordinary χ2 test should

not be applied without modification. What the attacker is

looking for is the histogram becoming more horizontal,

which for the distribution of the bins means that there are

fewer values in the low-latency bins and more values in

the high-latency bins. For the medium-latency bins no

significant change is expected (and any change there is

most likely noise).

Hence we modify our computation of the χ2 value

such that we only include changes in the anticipated di-

rection: for the bins corresponding to the lowest third of

the latencies, the square of the difference between ex-

pected and observed number of events is only counted in

the summation if the number of observed events is lower

than expected. For the bins corresponding to the high-

est third of the latencies, the square of the difference be-

tween expected and observed number of events is only

counted if the number of observed events is higher than

expected. Since changes to the bins in the middle third

are most likely noise, those bins are not included in the

χ2 calculation at all (except as a single additional degree

of freedom).

Using this method, a single iteration of measuring the

baseline and then determining that there was a significant

increase in latency (evidenced by a large χ2-value), only

signifies that congestion at the guard for the victim cir-

cuit was correlated (in time) with the congestion caused

by the attacker. Naturally, correlation does not imply

causality; in fact, for short (30–60 s) attack runs it fre-

quently happens that the observed χ2-value is higher for

some false-positive node than when attacking the correct

guard node. However, such accidental correlations virtu-

ally never survive iterated measurements of the latency

baseline and χ2-values under attack.

3.4 Congestion Attack

Now we focus on how the attacker controlling the exit

node of the circuit will cause significant congestion at

nodes that are suspected to be part of the circuit. In gen-

eral, we will assume that all Tor routers are suspects and

that in the simplest case, the attacker will iterate over all

known Tor routers with the goal of finding which of these

routers is the entry point of the circuit.

For each router X , the attacker constructs a long cir-

cuit that repeatedly includes X on the path. Since Tor re-

lays will tear down a circuit that tries to extend to the pre-

vious node, we have to use two (or more) other (prefer-

ably high-bandwidth) Tor routers before looping back to

X . Note that the attacker could choose two different (in-

voluntary) helper nodes in each loop involving X . Since

X does not know that the circuit has looped back to X ,

Tor will treat the long attack circuit as many different

circuits when it comes to packet scheduling (Fig. 4).

Once the circuit is sufficiently long (we typically

found 24 hops to be effective, but in general this depends

on the amount of congestion established during the base-

line measurements), the attacker uses the circuit to trans-

mit data. Note that a circuit of length m would allow

an attacker with p bandwidth to consume m · p band-

width on the Tor network, with X routing as much as
m·p

3
bandwidth. Since X now has to iterate over an ad-

ditional m

3
circuits, this allows the attacker to introduce

large delays at this specific router. The main limitation

for the attacker here is time. The larger the desired delay

d and the smaller the available attacker bandwidth p the

longer it will take to construct an attack circuit of suffi-

cient length m: the number of times that the victim node

is part of the attack circuit is proportional to the length of

7
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Figure 5: These figures show the results of perturbation of circuits in Tor and the resulting effects on latency. The

x-axes show sample numbers (one per second), and the (left) y-axes are latency variance observed on the circuits in

seconds. The attack on the first router of each circuit starts at time 600; the third line shows the amount of data (scaled)

that transferred through the attack circuit (scaled to the right y-axes). These are individual trials; each shows a single

control run and a single attack run.

the circuit m. In other words, the relationship between p,

m and the delay d is d ∼ p · m.

If the router X is independent of the victim circuit, the

measured delays should not change significantly when

the attack is running. If X is the entry node, the attacker

should observe a delay pattern that matches the power of

the attack – resulting in a horizontal latency variance his-

togram as described in Section 3.2. The attacker can vary

the strength of the attack (or just switch the long attack

circuit between idle and busy a few times) to confirm that

the victim’s circuit latency changes correlate with the at-

tack. It should be noted that the attacker should be care-

ful to not make the congestion attack too powerful, espe-

cially for low-bandwidth targets. In our experiments we

sometimes knocked out routers (for a while) by giving

them far too much traffic. As a result, instead of receiv-

ing requests from the JavaScript code with increasing la-

tencies, the attacker suddenly no longer receives requests

at all, which gives no useful data for the statistical evalu-

ation.

3.5 Optimizations

The adversary can establish many long circuits to be used

for attacks before trying to deanonymize a particular vic-

tim. Since idle circuits would not have any impact on

measuring the baseline (or the impact of using another at-

tack circuit), this technique allows an adversary to elim-

inate the time needed to establish circuits. As users can

only be expected to run their browser for a few minutes,

eliminating this delay may be important in practice; even

users that may use their browser for hours are likely to

change between pages (which might cause Tor to change

exit nodes) or disable Tor.

In order to further speed up the process, an adver-

sary can try to perform a binary search for X by ini-

tially running attacks on half of the routers in the Tor

network. With pre-built attack circuits adding an almost

unbounded multiplier to the adversary’s resources, it is

conceivable that a sophisticated attacker could probe a

network of size s in log
2
s rounds of attacks.
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Figure 6: These figures show the results of four independent runs of our congestion attack. In the histograms the

x-axis groups ranges of latency variance values together and the y-axis represents the number of readings received

in that range. The hash marked bars represent the unperturbed measurements on a circuit and the plain bars show

measurements from the same circuit during the attack. The effect of the attack is a shift to higher latency values. The

first and second lines are linear least squares fit approximations for the baseline and congestion runs, respectively.

These data show the difference between a single control/attack run and are not averages of many runs.

In practice, pre-building a single circuit that would

cause congestion for half the network is not feasible;

the Tor network is not stable enough to sustain circuits

that are thousands of hops long. Furthermore, the differ-

ences in available bandwidth between the routers compli-

cates the path selection process. In practice, an adversary

would most likely pre-build many circuits of moderate

size, forgoing some theoretical bandwidth and attack du-

ration reductions for circuits that are more reliable. Fur-

thermore, the adversary may be able to exclude certain

Tor routers from the set of candidates for the first hop

based on the overall round-trip latency of the victim’s

circuit. The Tor network allows the adversary to mea-

sure the latency between any two Tor routers [19, 27]; if

the overall latency of the victim’s circuit is smaller than

the latency between the known second router on the path

and another router Y , then Y is most likely not a candi-

date for the entry point.

Finally, the adversary needs to take into considera-

tion that by default, a Tor user switches circuits ev-

ery 10 minutes. This further limits the window of op-

portunity for the attacker. However, depending on the

browser, the adversary may be able to cause the browser

to pipeline HTTP requests which would not allow Tor to

switch circuits (since the HTTP session would not end).

Tor’s circuit switching also has advantages for the ad-

versary: every 10 minutes there is a new chance that the

adversary-controlled exit node is chosen by a particular

victim. Since users only use a small number of nodes for

the first node on a circuit (these nodes are called guard

nodes [29]), the adversary has a reasonable chance over

time to determine these guard nodes. Compromising one

of the guard nodes would then allow full deanonymiza-

tion of the target user.

9
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Figure 7: This figure shows the development of χ2 values (using the modified χ2 calculation as described in Sec-

tion 3.3) for the various candidates over a prolonged period of performing a congestion attack on the various nodes.

The χ2 values are computed against a five-minute baseline obtained just prior to the congestion attack. The χ2 value

of the correct entry node quickly rises to the top whereas the χ2 values for all of the other candidates are typically

lower after about a minute of gathering latency information under congestion. This illustrates that a few minutes are

typically sufficient to obtain a meaningful χ2 value.

4 Experimental Results

The results for this paper were obtained by attacking Tor

routers on the real, deployed Tor network (initial mea-

surements were done during the Spring and Summer of

2008; additional data was gathered in Spring 2009 with

an insignificantly modified attacker setup; the modifica-

tions were needed because our original attack client was

too outdated to work with the majority of Tor routers at

the time). In order to confirm the accuracy of our experi-

ments and avoid ethical problems, we did not attempt to

deanonymize real users. Instead, we established our own

client circuits through the Tor network to our malicious

exit node and then confirmed that our statistical analysis

was able to determine the entry node used by our own

client. Both the entry nodes and the second nodes on the

circuits were normal nodes in the Tor network outside of

our control.

The various roles associated with the adversary (exit

node, malicious circuit client, and malicious circuit web-

server) as well as the “deanonymized” victim were dis-

tributed across different machines in order to minimize

interference between the attacking systems and the tar-

geted systems. For the measurements we had the simu-

lated victim running a browser requesting and executing

the malicious JavaScript code, as well as a machine run-

ning the listening server to which the client transmits the

“ping” signal approximately every second (Fig. 1). The

browser always connected to the same unmodified Tor

client via Privoxy [20]. The Tor client used the standard

configuration except that we configured it to use our ma-

licious exit node for its circuits. The other two nodes in

the circuit were chosen at random by Tor. Our malicious

exit node participated as a normal Tor router in the Tor

network for the duration of the study (approximately six

weeks). For our tests we did not actually make the exit

server inject the JavaScript code; while this is a relatively

trivial modification to the Tor code we used a simplified

setup with a webserver serving pages with the JavaScript

code already present.

The congestion part of the attack requires three com-

ponents: a simple HTTP server serving an “infinite”

stream of random data, a simple HTTP client down-

loading this stream of data via Tor, and finally a mod-

ified Tor client that constructs “long” circuits through

those Tor nodes that the attacker would like to congest.

Specifically, the modified Tor client allows the attacker

to choose two (or more) routers with high bandwidth and

a specific target Tor node, and build a long circuit by

repeatedly alternating between the target node and the

other high bandwidth nodes. The circuit is eventually ter-

minated by connecting from some high-bandwidth exit

node to the attacker’s HTTP server which serves the “in-

finite” stream of random data as fast as the network can

process it. As a result, the attacker maximizes the uti-

lization of the Tor circuit. Naturally, an attacker with
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Figure 8: This graph shows three sets of cumulative χ2 computations for three nodes; the actual entry node
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(DigitalBrains). As expected, the χ2 values (at time 120 s) are consistently the highest for the correct node;

false-positives can be ruled out through repeated measurements.

significant bandwidth can elect to build multiple circuits

in parallel or build shorter circuits and still exhaust the

bandwidth resources of the target Tor router.

In order to cause congestion, we simply started the

malicious client Tor process with the three chosen Tor

routers and route length as parameters and then at-

tempted to connect via libcurl [6] to the respective

malicious server process. The amount of data received

was recorded in order to determine bandwidth consumed

during the tests. In order to further increase the load on

the Tor network the experiments presented actually used

two identical attacker setups with a total of six machines

duplicating the three machine setup described in the pre-

vious paragraph. We found path lengths of 24 (making

our attack strength eight times the attacker bandwidth)

sufficient to alter latencies. The overall strength of the

attack was measured by the sum of the number of bytes

routed through the Tor network by both attacker setups.

For each trial, we waited to receive six hundred responses

from the “victim”; since the browser transmitted requests

to Tor at roughly one request per second, a trial typically

took approximately ten minutes.

In addition to measuring the variance in packet ar-

rival time while congesting a particular Tor router, each

trial also included baseline measurements of the “un-

congested” network to discover the normal variance in

packet arrival time for a particular circuit. As discussed

earlier, these baseline measurements are crucial for deter-

mining the significance of the effect that the congestion

attack has had on the target circuit.

Fig. 5 illustrates how running the attack on the first hop

of a circuit changes the latency of the received HTTP re-

quests generated by the JavaScript code. The figure uses

the same style chosen by Murdoch and Danezis [27],

except that an additional line was added to indicate the

strength of the attack (as measured by the amount of traf-

fic provided by the adversary). For comparison, the first

half of each of the figures shows the node latency vari-

ance when it is not under active congestion attack (or at

least not by us).

While the plots in Fig. 5 visualize the impact of the

congestion attack in a simple manner, histograms show-

ing the variance in latency are more suitable to demon-

strate the significance of the statistical difference in the

traffic patterns. Fig. 6 shows the artificial delay experi-

enced by requests traveling through the Tor network as

observed by the adversary. Since Tor is a low-latency

anonymization service, the requests group around a low

value for a circuit that is not under attack. As expected,

if the entry node is under attack, the delay distribution

changes from a steep vertical peak to a mostly horizontal

distribution. Fig. 6 also includes the best-fit linear ap-

proximation functions for the latency histograms which

we use to characterize how vertical or how horizontal the

histogram is as described in Section 3.2.

Fig. 7 illustrates how the χ2 values evolve for various

nodes over time. Here, we first characterized the baseline

congestion for the router for five minutes. Then, the con-

gestion attack was initiated (congesting the various guard

nodes). For each attacked node, we used the modified

11
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Figure 9: Plot of the product of χ2 p-values for the top 20 candidate nodes (out of ∼200 and ∼250, respectively)

by run (a run is 300 s baseline vs. 300 s attack) for two entry nodes. The first hop (Privacyhosting (left),

Rattensalat (right)) routers were tested many more times than other routers, because the others quickly fell to low

values. We expect an attacker to perform more measurements for routers that score high to validate the correct entry

node was found. Our measurements demonstrate that the multiplied p-value remains consistently high for the correct

entry node. The y-axis is plotted on a log scale from 0 to 1− 1× 10−10 and 1− 1× 10−20, respectively. We speculate

that the lower maximum value for Privacyhosting is due to its higher bandwidth (900 kB/s vs. 231 kB/s).

χ2 summation (from Section 3.3) to determine how con-

gested the victim’s circuit had become at that time. We

computed (cumulative) χ2 values after 30 s, 60 s, 90 s

and so forth. For the χ2 calculations, we used 60 bins

for 300 baseline values; in other words, the time inter-

vals for the bins were chosen so that each bin contained

five data points during the five minutes of baseline mea-

surement. The 20 bins in the middle were not included

in the summation, resulting in 40 degrees of freedom.

As expected, given only 30 s of attack data some “inno-

cent” nodes have higher χ2 values compared to the entry

node (false-positives). However, given more samples the

χ2 values for those nodes typically drop sharply whereas

the χ2 value when congesting the entry node increases

or remains high. Of course, false-positive nodes χ2 val-

ues may increase due to network fluctuations over time

as well.

Unlucky baseline measurements and shifts in the base-

line latency of a router over time can be addressed by

iterating between measuring baseline congestion and at-

tack measurements. Fig. 8 shows three iterations of first

determining the current baseline and then computing χ2

values under attack. Again the correct entry node ex-

hibits the largest χ2 values each time after about a minute

of gathering latency data under attack.

Given the possibility of false-positives showing up ini-

tially when computing χ2 values, the attacker should

target “all” suspected guard nodes for the first few it-

erations, and then focus his efforts on those nodes that

scored highly. Fig. 9 illustrates this approach. It com-

bines the data from multiple iterations of baseline mea-

surements and χ2 calculations from attack runs. The

attacker determines for each χ2 value the correspond-

ing confidence interval. These values are frequently

large (99.9999% or higher are not uncommon) since Tor

routers do frequently experience significant changes in

congestion. Given these individual confidence values for

each individual iteration, a cumulative score is computed

as the product2 of these values. Fig. 9 shows the Tor

2It is conceivable that multiplying χ
2 values may cause false-
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Router Πp r Peak BW Configured BW

Rattensalat 0.999991 44 231 kB/s 210 kB/s

c64177124055 0.903 3 569 kB/s 512 kB/s

Raccoon 0.891 8 3337 kB/s 4100 kB/s

wie6ud6B 0.890 11 120 kB/s 100 kB/s

SEC 0.870 13 4707 kB/s 5120 kB/s

cThor 0.789 8 553 kB/s 500 kB/s

BlueStar88a 0.734 7 111 kB/s 100 kB/s

bond 0.697 3 407 kB/s 384 kB/s

eponymousraga 0.458 7 118 kB/s 100 kB/s

conf555nick 0.450 5 275 kB/s 200 kB/s

Table 1: This table lists the top ten (out of 251 total) products of confidence intervals (p-values). r is the number of

iterations (and hence the number of factors in Πp) that was performed for the respective router. As expected, the entry

node Rattensalat achieves the highest score.

routers with the highest cumulative scores using this met-

ric from trials on two different entry nodes. Note that

fewer iterations were performed for routers with low cu-

mulative scores; the router with the highest score (after

roughly five iterations) and the most overall iterations is

the correctly identified entry node of the circuit.

Table 1 contrasts the product of χ2 values (as intro-

duced in Section 3.3) obtained while attacking the ac-

tual first hop with the product while attacking other Tor

routers. The data shows that our attack can be used to

distinguish the first hop from other routers when control-

ling the exit router (therefore knowing a priori the middle

router).

Finally, by comparing the highest latency observed

during the baseline measurement with the highest latency

observed under attack, Table 2 provides a simple illus-

tration showing that the congestion attack actually has a

significant effect.

5 Proposed Solutions

An immediate workaround that would address the pre-

sented attack would be disabling of JavaScript by the

end user. However, JavaScript is not the only means by

which an attacker could obtain timing information. For

example, redirects embedded in the HTML header could

also be used (they would, however, be more visible to

the end user). Links to images, frames and other fea-

tures of HTML could also conceivably be used to gener-

ate repeated requests. Disabling all of these features has

the disadvantage that the end user’s browsing experience

would suffer.

negatives should a single near-zero χ
2 value for the correct entry node

be observed. While we have not encountered this problem in practice,
using the mean of χ

2 values would provide a way to avoid this theoret-
ical problem.

A better solution would be to thwart the denial-of-

service attack inherent in the Tor protocol. Attackers

with limited bandwidth would then no longer be able to

significantly impact Tor’s performance. Without the abil-

ity to selectively increase the latency of a particular Tor

router, the resulting timing measurements would most

likely give too many false positives. We have extended

the Tor protocol to limit the length of a path. The details

are described in [9]; we will detail the key points here.

In the modified design, Tor routers now must keep

track of how often each circuit has been extended and

refuse to route messages that would extend the circuit

beyond a given threshold t. This can be done by tagging

messages that may extend the circuit with a special flag

that is not part of the encrypted stream. The easiest way

to do this is to introduce a new Tor cell type that is used

to flag cells that may extend the circuit. Routers then

count the number of messages with the special flag and

refuse to route more than a given small number (at the

moment, eight) of those messages. Routers that receive a

circuit-extension request check that the circuit-extension

message is contained in a cell of the appropriate type.

Note that these additional checks do not change the per-

formance characteristics of the Tor network. An attacker

could still create a long circuit by looping back to an

adversary-controlled node every t hops; however, the ad-

versary would then have to provide bandwidth to route

every t-th packet; as a result, the bandwidth consump-

tion by the attacker is still bounded by the small constant

t instead of the theoretically unbounded path length m.

While this change prevents an attacker from construct-

ing a circuit of arbitrary length, it does not fully prevent

the attacker from constructing a path of arbitrary length.

The remaining problem is that the attacker could estab-

lish a circuit and then from the exit node reconnect to the

Tor network again as a client. We could imagine config-
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Router Attacked Max Latency Difference Avg. Latency Difference Runs

Rattensalat 70352 ms 25822 ms 41

Wiia 46215 ms 470 ms 5

downtownzion 39522 ms 2625 ms 9

dontmesswithme 37648 ms 166 ms 8

wie6ud6B 35058 ms 9628 ms 9

TorSchleim 28630 ms 5765 ms 15

hamakor 25975 ms 6532 ms 8

Vault24 24330 ms 4647 ms 7

Einlauf 22626 ms 2017 ms 8

grsrlfz 22545 ms 10112 ms 2

Table 2: This table shows the top 10 highest latency differences between the maximum observed measurement in attack

runs versus the baseline runs for each router. Unsurprisingly, the difference between the maximum latency observed

during the congestion attack and the baseline measurement is significantly higher when attacking the correct first hop

compared to attacking other routers. Also included for comparision is the average max latency over all iterations (also

higher for the correct first hop), and the number of runs.

uring all Tor relays to refuse incoming connections from

known exit relays, but even this approach does not en-

tirely solve the problem: the attacker can use any ex-

ternal proxies he likes (e.g. open proxies, unlisted Tor

relays, other anonymity networks) to “glue” his circuits

together. Assuming external proxies with sufficient ag-

gregate bandwidth are available for gluing, he can build

a chain of circuits with arbitrary length. Note that the

solution proposed in [30] — limiting circuit construction

to trees — does not address this issue; furthermore, it

increases overheads and implementation complexity far

beyond the change proposed here and (contrary to the

claims in [30]) may also have an impact on anonymity,

since it requires Tor to fundamentally change the way

circuits are constructed. We leave a full solution to this

problem as an open research question.

Finally, given that strong adversaries may be able to

mount latency altering attacks without Tor’s “help”, Tor

users might consider using a longer path length than

the minimalistic default of three. This would involve

changes to Tor, as currently the only way for a user to

change the default path length would be to edit and re-

compile the code (probably out of scope for a “normal”

user). While the presented attack can be made to work

for longer paths, the number of false positives and the

time required for a successful path discovery increase

significantly with each extra hop. Using a random path

length between four and six would furthermore require

the adversary to confirm that the first hop was actually

found (by determining that none of the other Tor routers

could be a predecessor). Naturally, increasing the path

length from three to six would significantly increase the

latency and bandwidth requirements of the Tor network

and might also hurt with respect to other attacks [2].

6 Low-cost Traffic Analysis Failure

Against Modern Tor

We attempted to reproduce Murdoch and Danezis’s

work [27] on the Tor network of 2008. Murdoch pro-

vided us with their code and statistical analysis frame-

work which performs their congestion attack while mea-

suring the latency of the circuit. Their analysis also deter-

mines the average latency and uses normalized latencies

as the strength of the signal.

The main difference in terms of how data is obtained

between Murdoch and Danezis and the attack presented

in Section 3 is that Murdoch and Danezis use a circuit

constructed by the attacker to measure the latency in-

troduced by the victim circuit whereas our attack uses

a circuit constructed by the victim to measure the latency

introduced by the attacker.

As in this paper, the adversary implemented by Mur-

doch and Danezis repeatedly switches the congestion at-

tack on and off; a high correlation between the presence

of high latency values and the congestion attack being

active is used to determine that a particular router is on

the circuit. If such a correlation is absent for the correct

router, the attack produces false negatives and fails. If a

strong correlation is present between high latency values

and random time periods (without an active attack) then

the attack produces false positives and also fails.

Fig. 10 shows examples of our attempts at the method

used in [27], two with the congestion attack being ac-

tive and two without. Our experiments reproduced Mur-

doch and Danezis’s attack setup where the attacker tries

to measure the congestion caused by the victim’s circuit.

Note that in the graphs on the right, the congestion at-

tack was run against a Tor router unrelated to the circuit
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Figure 10: These graphs show four runs of the method used in [27], two with the congestion attack being active (on

the left) and two without (on the right). The figure plots the observed latency of a router over time. Blue bars are used

to indicate when the congestion attack was active; in the case of the graphs on the right the attack was active on an

unrelated circuit. Red lines are drawn to latency values above average to mark latencies that correlate with the attack,

according to the Murdoch and Danezis style analysis.

and thus inactive for the circuit that was measured. Any

correlation observed in this case implies that Murdoch

and Danezis’s attack produces false positives. The “vi-

sual” look of the graphs is the same whether the attack is

targeted at that relay or not. Specifically, the graphs on

the right suggest a similar correlation pattern even when

the attack was “off” (or targeting unrelated Tor routers).

This is due to the high volume of traffic on today’s Tor

network causing baseline congestion which makes their

analysis too indiscriminate.

Table 3 shows some representative correlation val-

ues that were computed using the statistical analysis

from [27] when performed on the modern Tor net-

work. Note that the correlation values are high regard-

less of whether or not the congestion attack was actu-

ally performed on the respective router. For Murdoch

and Danezis’s analysis to work, high correlation values

should only appear for the attacked router.

The problem with Murdoch and Danezis’s attack and

analysis is not primarily with the statistical method; the

single-circuit attack itself is simply not generating a suf-

ficiently strong signal on the modern network. Fig. 11

plots the baseline latencies of Tor routers as well as the

latencies of routers subjected to Murdoch and Danezis’s

congestion attack in the style we used in Fig. 6. There are

hardly any noticeable differences between routers under

Murdoch and Danezis’s congestion attack and the base-

line. Fig. 12 shows the latency histograms for the same

data; in contrast to the histograms in Fig. 6 there is little

difference between the histograms for the baseline and

the attack.

In conclusion, due to the large amount of traffic on the

modern Tor network, Murdoch and Danezis’s analysis is

unable to differentiate between normal congestion and

congestion caused by the attacker; the small amount of

congestion caused by Murdoch and Danezis is lost in the

noise of the network. As a result, their analysis produces

many false positives and false negatives. While these ex-

periments only represent a limited case-study and while

Murdoch and Danezis’s analysis may still work in some

cases, we never got reasonable results on the modern Tor

network.
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Router Correlation Attacked? Peak BW Configured BW

morphiumpherrex 1.43 Yes 222 kB/s 201 kB/s

chaoscomputerclub23 1.34 No 5414 kB/s 5120 kB/s

humanistischeunion1 1.18 No 5195 kB/s 6000 kB/s

mikezhangwithtor 1.07 No 1848 kB/s 2000 kB/s

hummingbird 1.03 No 710 kB/s 600 kB/s

chaoscomputerclub42 1.00 Yes 1704 kB/s 5120 kB/s

degaussYourself 1.00 No 4013 kB/s 4096 kB/s

ephemera 0.91 Yes 445 kB/s 150 kB/s

fissefjaes 0.99 Yes 382 kB/s 50 kB/s

zymurgy 0.86 Yes 230 kB/s 100 kB/s

charlesbabbage 0.53 Yes 2604 kB/s 1300 kB/s

Table 3: This table shows the correlation values calculated using the Murdoch and Danezis’s attack on the Tor network

in Spring of 2008. False positives and false negatives are both abundant; many naturally congested routers show a

strong correlation suggesting they are part of the circuit when they are not.
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Figure 11: These graphs correspond to Fig. 10, showing the same attack in the style we used in Fig. 5. Note that during

the attack phase the congestion circuit is turned on and off just as illustrated in Fig. 10. For all four routers the latency

measurements are almost identical whether the attack was present or not.
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Figure 12: Once more we show the same data for comparison as shown in Fig. 10, this time in the histogram style we

use in Fig. 6. The overlap between the control run and the attack run is difficult to see due to the similarity of latency

distributions.

7 Conclusion

The possibility of constructing circuits of arbitrary length

was previously seen as a minor problem that could lead

to a DoS attack on Tor. This work shows that the prob-

lem is more serious, in that an adversary could use such

circuits to improve methods for determining the path that

packets take through the Tor network. Furthermore, Tor’s

minimalistic default choice to use circuits of length three

is questionable, given that an adversary controlling an

exit node would only need to recover a tiny amount of

information to learn the entire circuit. We have made

some minimal changes to the Tor protocol that make it

more difficult (but not impossible) for an adversary to

construct long circuits.
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