
A Practical Decision Procedure for Arithmetic
with Function Symbols

ROBERT E. SHOSTAK

SRI Internanonal, Menlo Park, Cahforma

ABSTRACT A practical procedure is presented for an extension of quantifier-free Presburger arithmetic that
permits arbitrary unmterpreted predicate and function symbols This theory includes many of the formulas one
tends to encounter in program venficatlon and is powerful enough to encode the semantics of array operators as
well as MAX, MIN, and ABSVALUE An implementation of the procedure has proved to be of great value in
a program verlficauon system developed at SRI for the United States Air Force

KEY WORDS AND PHRASES theorem-proving, Presburger anthmeUc, program verification

CR CATEGORIES 3 64, 3 66, 5 21

1. Introduction

The procedure described here operates over an extension o f the class o f unquant i f ied
Presburger formulas. Briefly, Presburger formulas are those that can be budt up f rom
integers, integer variables, addmon, l the usual ari thmetical relations (<, _<, > , _>, =), and
the first-order logical connectwes. The formula (Vx) (3y)3x + y = 2 D x < y, for example,
falls within the class. The subclass o f unquanuf ied Presburger formulas consists o f those
Presburger formulas having no quanttfiers.

The extension o f unquant i f ied Presburger we shall be deal ing with introduces, for each
n _> 0, an unl imited number o f n-ary funct ion symbols (mterpreted as functions f rom Z n
to Z) and n-ary predicate symbols (interpreted as relations over Zn).

The formula

x <f~f l) + 1 /kJ~y) _< x ~ (P(x, y) ~ P (f (y) , y)),

for example, is a m e m b e r o f the extended class. One can easily check that this part icular
formula is valid, that is, that it evaluates to true for all integers x, y, z, no mat ter what
monadic integer funcuon is assigned t o f and dyadic integer relat ion to P.

Funct ion symbols may appear in any term context and may have arbi t rary terms as
arguments, including expressions containing funct ion symbols. For example, the formula
g(x + 2 f (y)) = 4 is a member o f the class.

The extended theory includes a surprisingly large propor t ion o f the formulas encountered
m program verification. It is part icularly well suited to programs that mampula te arrays
and other data structures that can be modeled as uninterpreted functions. The semantics

Permission to copy without fee all or part of thts material is granted provtded that the copies are not made or
distributed for dtrect commerctal advantage, the ACM copyright nottce and the title of the pubhcatlon and its
date appear, and notice is given that copying us by permission of the Assoctatnon for Computing Machinery To
copy otherwise, or to repubhsh, requires a fee and/or specific permission
This work was supported in part by RADC Contract F30602-76-C-0204 and AFOSR Contract F44620-73-C-
0068
Author's address Computer Science Laboratory, SRI International, 333 Ravenswood Ave, Menlo Park, CA
94025
© 1979 ACM 0004-5411/79/0400-0351 $00 75

Arbitrary multiplication is not permitted It ts convenient, however, to use multtphcatton by constants as an
abbrevtaUon for repeated addition, x + x + x lS thus written 3x

Journal of the Assooatlon for Computing Machinery, Vol 26, No 2, Aprd 1979, pp 351-360

3 5 2 ROBERT E. SHOSTAK

of the McCarthy [11] A C C E S S and CHANGE array prtmitives are easily encoded wRhin
the theory; for example, the formula

M = ACCESS(CHANGE(A, L V) , J + 2)

can be mechanically translated to an equivalent formula

J + 2 = I D M = V
A J + 2 ~ I D M = A [J + 2],

where A is now an interpreted funcUon symbol.
A number of other constructs, including MAX, MIN, and A B S V A L U E , can be dealt

with m a similar manner. For instance, the valid formula

x = y + 2 D M A X (x , y) = x

containing the interpreted function symbol M A X translates to

[x >_ y D g A X (x , y) = x A y >_ x D g A X (x , y) =y]

D

[x = y + 2 D MAX(x, y) = x],

where M A X is now unlnterpreted.
The discussion that follows is presented in six sections. Section 2 provides historical

perspective and cites related work. Section 3 describes a decision method for the unextended
class that forms the basis of the extended procedure. Sections 4-6 establish the decidability
of the extended class and introduce a basic version of the procedure. Section 7 presents an
extremely efficient refinement of the basic procedure.

2. Related Work

The class of closed Presburger formulas was first shown to be decidable by Presburger [14]
in 1929. The best-known decision procedure for it (described by Kreisel and Krevine [9],
among others) is based on a method of elimination of variables. In its raw form, the
algorithm is prone to combinatorial explosion, and is therefore not practical for nontrivlal
problems. More effioent versions of the method of elimination have since been given by
Cooper [4]. Cooper's most recent procedure [5] is the most effioent known algorithm for
full Presburger. Oppen [13] has shown that Cooper's algorithm is probably the best one

can do in the worst case (deterministic time complexity on the order of 2 22" in the length
of the formula).

More recent work has focused on the subclass of Presburger without quantifiers. The
decision complexity of this subclass is no worse than exponential, making it substantially
easier to decide (in theory, at least) than full Presburger. A number of theorem-provers for
this class (Bledsoe [3], Shostak [16]) have been successfully implemented and used for
program verificaUon.

Oppen 2 has noted that the extension of the unquantified subclass dealt with in this paper
is also no worse than exponential deterministic time complexity. It is, perhaps, surprising
that the incorporation of predicate and function symbols does not give away deodability
altogether. Downey [6] has proved that the addition of even a single predicate symbol to
the language of full Presburger produces a reduction class.

An Implementation of our procedure (coded in INTERLISP for the DEC PDP-10) has
been used for the past two years in conjunction with a system for verifying JOVIAL
programs (Elspas et al. [7]). We have found that most formulas of a few lines are handled
in seconds, and that larger formulas are generally decided much more qmckly than by
humans.

z Private communicat ion

A Practical Decision Procedure for Arithmetic with Function Symbols 353

A number of other theorem-provers dealing with similar theories are currently under
development. The systems of Suzuki [17] and of Nelson and Oppen [12] are among these.

3. The Unextended Class

The new procedure can best be explained in relation to the author's adaptation [15] of
Bledsoe's [3] method for handling the unextended unquantified class. This method is
camed out in two stages. In the first stage the formula F to be decided is reduced to a set
of integer linear programming problems (ILP's) with the property that F is vahd if and
only if none of the problems has a solution. In the second stage the ILP's are tested one by
one for solvability. I f one is found to have an integer solution, the solution provides a
model for ~ F and therefore a counterexample for F.

Let us now consider these steps in greater detail.
The reducUon to a set of ILP's consists of expanding the negaUon of F into a disjunctive

normal form:

~F--- G1V G2 V ... V Gp,

where each G, is a conjunction of linear inequalities of the form A _< B. Dunng the
expansion, terms of the form A = B are replaced by (A -< B A B -< A). Similarly, A _> B is
replaced by B _< A; A < B is replaced by A + 1 _< B; ~(A -< B) is replaced by B + l -< A;
and so on. The conjunctions G~, G2 Gp in the expanded form make up the set of ILP's.
Suppose, for example, that

F E [(x < 3 y + 2) A x = l] D x = y .

Then

SO

and

~F-= ~[x < 3 y + 2 A x = I D x = y]
-= x < 3 y + 2 A x f f i 1 A ~ (x = y)
-= x_<3y+ l a x _ < l a x > _ I A (x + l - < y V y + l - < x)

(x-< 3y + 1 A x - < 1A 1 - < x A x + 1 -<y)
V (x - < 3 y + l a x - < I A 1-< x A y + l - < x)

G ~ m x ~ + l A x ~ l A l ~ x A x + i - < y

G 2 - = x _ < 3 y + 1 A x _ < 1A l _ < x A y + l_<x

~ F is satisfiable if and only if etther G1 or G2 has a solution in integers, and so F is valid
if and only if neither G1 nor G2 has such solutions. The G,'s are now tested for feasibility
using an integer programming algorithm.

Continuing the above example, it ts easy to see that the ILP G~ has the integer solution
x = 1, y = 0. These values provide a model for ~ F and hence a counterexample to F.
(Counterexamples are also provided by G2, which is integer feasible as well.)

It should be noted that the completeness of the procedure depends on the completeness
of the method used to test for mteger feasibility. At present, there are no known complete
integer programming methods that are also efficient. In practice, however, this point is of
little concern. We have implemented both the SUP-INF method [3, 16] and Gomory's
method [8], both of which are reasonably fast, and have never, m two years of experimen-
tation, come across natural examples in which the incompleteness of these methods was
manifested, a

4. Decldabihty of the Extended Class

The decision mechamsm for the extended class elaborates upon a method for reducing an

3 Gomory's method ~s mcomplete m the sense that ~t ,s not guaranteed to termmate

354 ROBERT E. SHOSTAK

arbitrary formula F m this class to an equival id formula f m the unextended class The
reduct ion ~s carried out m two steps, the first e l iminat ing uninterpre ted predicate symbols
and the second el iminat ing uninterpreted funct ion symbols:

(1) For each unmterpreted n-ary predicate symbol P occurring m F, letfp be a new n-ary function symbol
Obtain F' from F by replacing each atomic formula P(t~, t~, , t ,) by the formulafp(tb t2. , tn) = 0

(2) For each pair f l t~. t.~, , in), r u b u.,, , un) of distinct terms or subterms of terms in F' with the same
outermost unmterpreted funcuon symbol f, construct the following axiom

tl = ul A t~ = u~ A . . . A tn f un Djq t l , tz, , tn) = f l u l , u2, , u ,)

Let F" be the formula given by

A i A A 2 A . . . A A r D F ' ,

where the A, 's are the axioms so constructed Next, for each term t occurring in F" that has an umnterpreted
outermost function symbol, let xt be a new integer variable Obtain/e from F " by replacing each such term
t with xt (In the case where one such term is nested within another, the larger term is replaced)

Consider, as an example, the valid formula F given below:

l(P(z) ~ z = 1) A g (y) - - z + 4] ~ [f (g (y)) • f (3 + 2z)V ~P (I)] .

Using step (1) to el iminate the uninterpreted funct ion symbol P, we obta in the formula F '
gwen by

l(f~(z) = 0 D z = 1) A g(y) = z + 41 D I f (g (Y)) = f (3 + 2z) Vfp (l) # 0l.

Applying step (2), we observe that F ' contains two pairs o f distract terms with the same
outermost function sy mb o l - - t h e pairffi(z),fp(1) and the p a l r f l g (y)) , f (3 + 2z) The formula
F " is therefore gwen by

[z = 1 3f~(z) = f~ (l) l A [g(Y) = 3 + 2z 3 f (g (y)) = f (3 + 2z)]
D

[(fp(z) = 0 3 z = 1) A g(y) = z + 4] 3 [f (g (y)) = f i 3 + 2 z) V f ~ (1) # 0].

Lett ing fp(z), fp(l) , g (y) , f i g (y)) , and f i3 + 2z) be replaced by xl, x2, xa, x4, and xs,
respectively, we obta in F:

[z = 1 D x l = x 2 l A [x a = 3 + 2 z D x 4 = x s]
D

[(x 1 = 0 D z f f i l) A x a f f i z + 4 1 D [x 4 - - x ~ V x z ~ 0] .

This latter formula is conta ined within the unextended class, and can therefore be decided
by using the method described in Section 3.

The reduct ion just described is qmte similar to Acke rmann ' s [1] method for ehmina t ing
funct ion symbols from universal ly quant i f ied equahty formulas in predicate calculus with
funct ion symbols and identity. The correctness of the reduct ion can be proved straightfor-
wardly; given a model for ~ F , one can construct a model for ~ f , and conversely. The
details are easdy gleaned from Ackermann ' s proof, and so are omitted here.

Al though the reduct ion confirms the decidabil i ty of the extended class, it does not of
itself provide a very good computa t ional method. Recall that in step (2) o f the reduction,
an axiom is constructed for each pair of terms (including nested terms) with the same
outermost uninterpre ted funct ion symbol. The n u m b e r of such axioms is thus proport ional
(m the worst case) to the square of the length of the given formula. Moreover, each axiom
at least triples the n u m b e r of ILP's that must be solved m deciding the reduced form-
ula/~.

Suppose, for example, that the axiom x = y D f (x) = f l y) is generated m step (2). It is
easy to check that the expansion into disjunctive normal form described in Section 3
produces three disjuncts (corresponding to the cases in which x < y, x > y, a n d f (x) =

A Practical Decision Procedure f o r Arithmetic with Function Symbols 355

f (y)) for each disjunct that would have been produced in the absence of the axtom.
As an illustration of the kind of combinatorial explosion that can result, consider the

formula F given by

x _< g(x) A x _> g(x) D x = g(g(g(g(x)))) .

An axiom must be generated for every pair of terms among g(x), g(g(x)), g(g(g(x))) , and
g(g(g(g(x)))) . There are six such axioms, each one tripling the number of disjuncts
appearing in the disjunctive normal form expansion of the corresponding reduced formula
F. Deciding P therefore entails the solution of 36 (= 729) ILP's.

In the event that the function symbol associated with a given axiom has more than one
argument place, the combinatorial effect is even more pronounced; one can easily check
that two more cases are developed by each addmonal argument position.

5. Bastc Procedure f o r the Extended Class

The procedure given m this section greatly reduces the combinatorial explosion produced
by the reduction process. The improvement is founded on two observations: (1) in most
cases, only a small part of the information contained in the generated axioms is of relevance
to the validity of the reduced formula; (2) it is frequently possible to determine which
information is relevant in advance of its application.

The example formula F ~ x _< g(x) A g(x) _< x D x = g(g(g(g(x)))) of Section 4 serves
well as an illustration of the basic idea. Suppose we pretend, for a moment, that F is a
member of the unextended class, that is, that the terms g(x) and g(g(g(g(x)))) are simply
integer variables that happen to have fancy names. If we then apply the procedure of
Section 3, the expansion into disjunctive form produces the following two ILP's:

{x _< g(x), g(x) _~ x, x _< g(g(g(g(x)))) - 1)

and

(x <_ g(x), g(x) _< x, g(g(g(g(x)))) <_ x - 1}.

Let us focus on the first of these. If this ILP is solved, the following solution (among
others) is obtained:

x = 0, g(x) = 0, g(g(g(g(x)))) = I.

At this point, the procedure of Section 3 terminates, offering the discovered solution as a
counterexample to the formula F.

If we return to the view of F as a formula in the extended theory, however, it can be
seen that the above solution is not a legitimate model for ~F. In particular, the substltutivity
axioms of equality forbid that x and g(x) be given the same value while g(g(g(g(x)))) is
gwen a different value. (Note, incidentally, that this violation occurs in all solutions of the
ILP's In question.) The violated substltUtlvity property is neatly expressed by the following
formula.

x = g(x) ~ g(x) = g(g(g(g(x)))) .

If we now assert this formula as a hypothesis of F, the following formula F* is obtained:

[x = g(x) D g(x) = g(g(g(g(x))))]
D

x_<g(x) A x _ > g (x) ~ x = g(g(g(g(x)))) .

If the new formula F* is viewed as a member of the unextended class and given to the
procedure of Section 3, the resulting ILP's are found not to have any integer solutions. The
original formula F must, therefore, be valid as a member of the unextended class and
hence as a member of the extended class.

356 ROBERT E. SHOSTAK

Note that, in the case of our example, this approach reqmres the solution of only seven
ILP's (one to provide the illegitimate counterexample and six to decide the augmented
formula F*), as opposed to the 729 required by the reduction method. Part of the
improvement is attributable to the omission of unneeded axioms generated in the reduction
method. More importantly, the three axioms from that method that are relevant,

x = g(x) ~ g(x) = g(g(x)) ,
g(x) = g (g (x)) ~ g (g (x)) = g (g(g(x))) ,

and

g(g(x)) ffi g(g(g(x))) D g(g(g(x))) = g(g(g(g(x)))) ,

are replaced by a single formula:

x = g(x) D x = g(g(g(g(x)))) .

This replacement alone accounts for a ninefold reduction in the number of ILP's that must
be solved in the example problem.

We now give a detailed description of the procedure:

(1)

(2)

(3)

(4)

Using step (1) of the reduction method, all unmterpreted predicate symbols are elunmated from the fo rmula ,
F to be decided
Expresstons revolving + or * that occur as arguments to unmterpreted function symbols are el tmmated
through the mtroducUon of new variables. (For example, the formula x _< y + f (3 z + 5) becomes z / = 3z +
5 D x _<y + f (z ') .) Let F ' be the resulting formula
The negation o f F ' is placed into a disjunctive normal form G1 V G2 V ... V Gv, as described m Secuon 3.
Each G, ~s a conjuncuon of l inear mequahues
The G,'s are tested one by one for sattsfiabdtty by applying steps (a), (b), and (c) below If none is sausfiable,
F ts vahd.
(a) The ILP assocmted wRh G, is solved, usmg eRher of the methods suggested m Section 3
(b) If there is no solutton, G, is unsatlsfiable
(c) Otherwise, the discovered solution is examined for violations of substRutlvlty of equahty (m a way

described momentarily) If there are no wolatlons, G, ts satisfiable, and the discovered soluuon prowdes
a counterexample for F If, on the other hand, a wolatlon ~s found, a formula H that summarizes the
vtolated property of subsUtutwlty is formulated Step (4) is now apphed recurslvely to each of the
conjunctions m the &sjunctwe expansion of H A G, G, ts satisfiable (m the extended theory) ff and
only ff each of these is sausfiable

We have yet to show how to examine a given solution S for violations of substltutivity
and how to generate the associated substitutivity formula. We must also show, of course,
that the procedure (step (4) in particular) terminates. For notational convenience, we
assume in the explanation that follows that all unmterpreted function symbols appearing
in F are monadic; the general case is a straightforward extension.

The technique for detecting violations is founded on the recursive function EQPAIRS
defined below. The definition depends on the following conventions. Let S be the
discovered integer solution for the Gt whose satisfiability is to be determined, and T the set
of terms to which S assigns values. For each term t ~ T, let S(t) designate the value
assigned to t by S. Let U be the set of terms in T together with all of their subterms. (For
example, if S is given by x ffi 0, g(x) = 0, and g(g(g(g(x)))) = 1, then T = {x, g(x),
g(g(g(g(x))))} and U = {x, g(x), g(g(g(g(x)))) , g(g(x)), g(g(g(x)))}.) Finally, for each
term t E U, define the set

j" {t" E TI S(t) = S(t')} if t E T,
E t = [{ t } if t ~ T .

EQPAIRS is defined as follows:

A Practwal Decision Procedure f o r A rtthmetic with Functton Symbols 357

EQPAIRS(tl, t2, alreadytned) =
if (t~, t2) ~ alreadytrwd, then return
else i f t l E Eta, then return { (h , /2)}
else if for some functwn symbol f and terms Ul, u2

(t) f(ul) E Et~ and
(n) f(u2) E Et~ and
(m) EQPAIRS(ul, u2, alreadytrwd U {(tl, t2)}) # ~,

then return P~ O P2 O P3, where

P1 = ifh =f(ul) then ~ else {(tl,f(ul))}
P2 = if t2 =f(u2) then ~ else {(t2,f(u2))}
Ps = EQPAIRS(ub us, alreadytrwd U {(h, t2)})

else return 0

As is evident from the definition, EQPAIRS is a function of three arguments. The first
two (tl and t2) are bound to terms in U, and the third (alreadytried) is bound to a set of
pairs in U x U. The third argument is always bound to the empty set on external calls,
and comes into play on internal calls only as a device to prevent infinite recursion.
EQPAIRS returns a set of pairs in T x T.

The usefulness of EQPAIRS turns on the following result, stated here without proof:
THEOREM. I f f o r all h , t~ E T, ezther s(h) = s(tz) or E Q P A I R S (h , tz, ~) = 0 , then S has

no violatwns o f substitutivity, and hence G, ts satisfiable as a member o f the extended theory.
On the other hand, i f f o r some ta, t2, s(tl) ~ s(t2), and E Q PA I R S (ti, tz, 0) = ((ri, sl)
(r~, s~)}, n _> 1, then the formula

H =- [rl = S l A rz = s2 A ... A rn ffi sn D tl = t2]

fol lows f r o m substitutivity but is not satisfied by S.
To check S for violations of substitutiwty, it thus suffices to compute EQPAIRS(t~, t2,

~3) for pairs h, t2 of terms in Tassigned different values by S. A violation exists if and only
if EQPAIRS(t~, t2, ~) # ~3 for some such pair. In such a case the formula H summarizes
the wolation.

Note from the defmltion of EQPAIRS that, if t~, t2 E T, s(t~) ~ s(t2), and EQPAIRS(h ,
t2, ~) # O, then t~ and t2 must be functional terms with the same outermost function
symbol. In checking S for violations of substitutiwty, therefore, one need only compute
EQPAIRS(t l , t2, O) for such pairs.

Note also that EQPAIRS is defined nondeterministically; there may be more than one
choice of f i , u~, and u2 that satisfies (i), (u), and (hi) in the definition. It makes no difference
which choice is made. Similarly, there may be several pairs t~, t2 for which EQPAIRS is
nonempty. It suffices to generate H on the basis of the first such pair encountered.

Let us now return to the earlier example:

F -ffi x _< g(x) A g(x) _< x D x = g(g(g(g(x)))) .

If we apply steps (l), (2), and (3) of the procedure,

Gi ~ x _< g(x) A g(x) _< x A x _< g(g(g(g(x)))) - l

and

G2 -= x _< g(x) A g(x) <_ x A g(g(g(g(x)))) <_ x - !

are obtained as before. Solving G~ once again produces the solution S:

x -- O, g(x) = O, g(g(g(g(x)))) = I.

Since g(x), g(g(g(g(x)))) form the only pair of terms in T with the same outermost
function symbol and with different assigned values, it suffices to compute EQPAIRS for
that pair only:

358 ROBERT E. SHOSTAK

EQPAIRS(g(x), g(g(g(g(x)))), 6)

E,~x, = (x, g(x)}
e ,~z~g~, , = {g(g(g(g(x))))}

Letting g(x) be f(uj), g(g(g(g(x)))) be f(uz), and recursing:
EQPAIRS(x, g(g(g(x))), {(g(x), g(g(g(g(x))))) }):

E~ = {x, g(x)}
E,~g~,~x,) = {g(g(g(x)))}

Lettmg g(x) be f(ul), g(g(g(x))) be f(u2)
EQPAIRS(x, g(g(x)), {(g(x), g(g(g(g(x))))), (x, g(g(g(x)))) })

Ex = {x, g(x)}
E~,,(x), = {g(g(x))}

Letung g(x) be f(u~), g(g(x)) be f(u2)"
EQPAIRS(x, g(x), {(g(x), g(g(g(g(x))))), (x, g(g(g(x)))),

(x, g(g(x))) })"
Ex = {x, g(x)}

= ((x, g(x))}
= {(x, g(x))}

= {(x, g(x))}
= (<x, g(x)>}.

The formula H produced in this case is thus

x = g(x) D g(x) = g(g(g(g(x)))).

The ILP's corresponding to the conjunctions in the disjunctive expansion ofH A Gi are all
found infeasible; hence, Gi is unsatisfiable.

In a similar manner, G2 is found unsatisfiable. The procedure thus halts, reporting that
F is valid.

In this last example, only one level of recursion in step (4) was needed. In rare instances,
more than one is required. Consider, for example, the following theorem:

F = a _< b _<f(a) _< 1 D a + b _< l X/b + f (b) _< 1 V f (f (b)) _<f(a).

Applying steps (1), (2), and (3) of the procedure, one obtains the following single
conjunction G:

a _< b A b _<f(a) Af(a) _< I A 2 _< a + b A 2 _< b +f(b) Af(a) + I _<f(f(b)).

Solving the corresponding ILP produces as one possibility the following solution S:

a - - 1, b = 1, f (a) - - 1, f (b) = 2, f (f (b)) = 2.

The only two pairs o f terms for which EQPAIRS need be tried are f (a) , f (b) , and f (a) ,
f (f (b)) . Trying f(a), f (b) first, one immediately obtains a violation: EQPAIRS
(f (a) , f (b) , ~) = {(a, b)}. The formula [a = b D f (a) = f (b)] A G is now expanded into
disjunctive form, giving the three conjunctions

a _ < b - l A G , b _< a - l A G, f (a) = f (b) A G.

The ILP's associated with the first two of these are infeasible. The third one, however,
yields a solution:

a = 1, b = 1, f (a) = 1, f (b) - - 1, f (f (b)) = 2.

Applying EQPAIRS to the p a i r f (a) , f (f (b)) produces {(a, f (b))} . Step (4) is again
applied recursively to the three conjunctions in the expansion of [a = f (b) D f (a) =
f (f (b))] A f (a) = f (b) A G. This time, all ILP's are found to be infeasible, and the
procedure terminates.

A Prac twa l Dec l swn Procedure f o r A r t thme tw with F u n c t w n S y m b o l s 359

6. Terminat ton

It Is easy to see, in fact, that the recurslve step, (4), must always terminate. Otherwise,
some branch of the computa t ion would be mfimte, yielding an infinite sequence o f ILP's
G, G', G", ... with a corresponding sequence o f solutions S, S', S", . and subsmutivl ty
formulas H, H' , H" , Since each solution assigns values to exactly the same set T o f
terms, some H must be repeated in the sequence. This is impossible, however, since each
solution S falls to satisfy its corresponding H, but does satisfy all preceding H ' s .

7. A M o r e Ef f ic ient Verswn o f the Procedure

Although the procedure gwen in Section 5 dramatical ly improves on the naive reduction
method, substantial addi t ional improvement is possible.

First note that the expansion o f H A G, into disjunctive form in step (4-c) ts unnecessary.
The conjunctions that result frofn thts expansion can be precomputed as follows:

H A G , F-[& = s 1 A . . . A r n = s n D t l = t 2] A G ,

--- [& # st V "" V r , # sR V tl = t2] A G,

rl _< sl - 1 A G, V sl _< ri - 1 A G~

V rn _< sn - I A G, W sn_< rn - 1 A G,

~/ tl = t2 A G~.

Note that 2n + I conjunct ions are thus generated, each one augment ing G, with an
inequali ty. I f the ILP solver used can be operated incremental ly (as can simplex-based
methods), the new ILP's can be solved with little addmona l effort.

In the great major i ty o f cases encountered m practice, further speedup is possible. Note
from the defini t ion o f E Q P A I R S that S(r j) = S(s j) for e a c h / , l _<j _< n. N o w suppose tt
can be established, for a g iven / , that rj and sj are equal in all solutions for G,. In thts case,
the two conjunct ions r~ _< sj - 1 A G, and s~ _< rj - 1 A G, are necessarily unsatisfiable and
can therefore be dispensed with.

Wha t makes th~s observat ion useful Is that one can test whether r: and sj are equal m all
solutions o f G, quite easily; it is necessary only to test (using the ILP solver) for maxG, (rj
- - sj) = mina, (rj -- s~) = 0. This can be done more quickly than testing r~ _< s~ - l A G, and
s~ _< rj - l for feasibility, since it does not involve addi t ional mequahtles .

Return ing to the earl ier example,

G1 -= x _< g (x) A g (x) _< x A x _< g (g (g (g (x)))) - 1,
H ~ x = g (x) D g (x) = g (g (g (g (x)))) ,

we see that x and g (x) must have equal values in all solutions o f Gi, and so only the
conjunct ion g (x) = g (g (g (g (x)))) A G1 needs to be tested.

These ideas suggest the following replacement for step (4-c):

(4)(c) The &scovered solutton S is tested for wolauons of subsUtutlwty by computing EQPAIRS(t~. t,, ~) for
pairs tj, tz, E T that have different values m S but the same outermost function symbol If EQPAIRS
returns ~ for all such pairs, the soluuon S provtdes a counterexample for F and the procedure halts If tj,
t2 are found for whtch EQPAIRS(t~, t2, ~) = {(r~, s~). , (r,. s,,)}, n _> 1, then step (4) is apphed
recurslvely to

t~ = t2 A G,,

and for 1 _<j_< n, to

and

r~_<sj- lAG, unless maxa,(sj-rj)_<O

s~_<rj- lAG, unless max6,(rj-sj)_<0

G, is unsattsfiable if and only if each of the conjuncttons thus tested is found unsattsfiable

360 ROBERT E. SHOSTAK

Finally, it might be remarked that the function EQPAIRS can be implemented much
more efficiently than the definition suggests. If, for example, a table is used to record the
results o f internal calls, the amount of work reqmred to compute EQPAIRS can be made
to grow no faster than the square of the length of the input.

ACKNOWLEDGMENTS. The author is grateful to W. Bledsoe, D. Oppen, B. Elspas, and J.
Spitzen for helpful discussions about this work.

REFERENCES

(Note References [2, 10, 15] are not cited m the text.)

i ACgERMAN, W Solvable Cases of the Decision Problem. North-Holland Pub Co, Amsterdam, 1954, pp
102-103

2 BLEDSOE, W.W The Sup-lnfmethod m Presburger arithmetic Memo ATP-18, Math Dept, U of Texas at
Austin, Austin, Tex, Dec 1974.

3 BLEDSOE, W W A new method for prowng certain Presburger formulas Advance Papers 4th lnt Joint Conf
on Artlf Intell., TlblhsI, Georgia, U S S.R, Sept. 1975, pp 15-21.

4 COOPER, D C Programs for mechanical program verification. In Mach lntell. 6, B. Meltzer and D Michle,
Eds, American Elsevier, New York, 1971, pp 43-59

5 COOPER, D C Theorem proving in arithmetic wRhout multnplscaUon In Math lntell 7, B Meltzer and D
Mlchte, Eds, American Elsevier, New York, 1972, pp 91-99

6 DOWNEY, P Undecldablhty of Presburger arithmetic with a single monadtc predicate letter Tech Rep 18-
72, Center for Research in Computing Technology, Harvard U , Cambridge, Mass, 1972

7 ELSPAS, B, BOYER, R E , SHOSTAK, R , AND SPITZEN, J A verification system for JOVIAL/J3 programs SRI
Tech Rep 3756-1, Stanford Research Institute, Menlo Park, Cahf , Jan 1976

8. GOMORY, R E An algorithm for integer solutions to linear programs Princeton-IBM Math Res Rep, Nov
1958, also in Recent Advances m Mathemaueal Programming, R.L Graves and P Wolfe, Eds, McGraw-Hill,
New York, 1963, pp. 269-302.

9 KREISEL, G , AND KREVINE, J L Elements of Mathemat:eal Logic North-Holland Pub Co, Amsterdam,
1967, pp 54-57

10. LEE, R D An apphcatton of mathematical logic to the integer hnear programmmg problem Notre Dame J.
Formal Logic XIII, 2 (April 1972), 279-282

! i MCCARTHY, J. Towards a mathematical science of computation Proc IFIP Congress 62, North-Holland
Pub Co, Amsterdam, 1962, pp 21-28.

12 NELSON, G , AND OPPEN, D A simplifier based on efficient decision algorithms Proc Fifth ACM Symp on
Pros Langs, Tucson, Anz , Jan 1978

13 OPPEN, D A 2 z~" upper bound on the complexity of Presburger arithmetic Ph D. Th , U of Toronto,
Toronto, Ont , Canada, 1975, ./. Comptr Syst Sc~ (to appear)

14 PRESBURGER, M UberdteVollstandigkeitemesgewlsscnSystemsderAnthmetmkganzerZahlenmWelchem
die Addition als etnzige Operation hervortntt Sprawozdanle z I Kongresu Matematykow Krajow Slowcan-
sklch Warszawa, 1929, Warsaw, Poland, pp. 92-101

15 SHOSTAK, R An algorithm for reasoning about equality Proc Seventh Int Joint Conf on Artff lntell,
Cambridge, Mass, Aug 1977

16 SHOSTAK, R. On the SUP-INF method for proving Presburger formulas. Jr ACM 24, 4 (Oct 1977), 529-543.
17 SUZUKI, N Verifying programs by algebraic and logical reduction Proc. Int. Conf on Reliable Software,

SIGPLAN Notices (ACM) 10, 6 (June 1975), 473-481

RECEIVED AUGUST 1977; REVISED MARCH 1978

Journal of the Assoclauon for Computm s Machinery. Vol 26. No 2. Apn11979

