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ABSTRACT A practical procedure is presented for an extension of quantifier-free Presburger arithmetic that 
permits arbitrary unmterpreted predicate and function symbols This theory includes many of the formulas one 
tends to encounter in program venficatlon and is powerful enough to encode the semantics of array operators as 
well as MAX, MIN, and ABSVALUE An implementation of the procedure has proved to be of great value in 
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1. Introduction 

The procedure described here operates over  an extension o f  the class o f  unquant i f ied  
Presburger formulas.  Briefly, Presburger  formulas  are those that can be budt  up f rom 
integers, integer variables, addmon,  l the usual ari thmetical  relations (<,  _<, > ,  _>, =),  and 
the first-order logical connectwes.  The  formula  (Vx) (3y )3x  + y = 2 D x < y, for example,  
falls within the class. The  subclass o f  unquanuf ied  Presburger  formulas  consists o f  those 
Presburger  formulas  having no quanttfiers.  

The  extension o f  unquant i f ied  Presburger we shall be deal ing with introduces,  for each 
n _> 0, an unl imited number  o f  n-ary funct ion symbols (mterpreted as functions f rom Z n 
to Z )  and n-ary predicate symbols ( interpreted as relations over  Zn). 

The  formula  

x <f~f l )  + 1 /kJ~y) _< x ~ (P(x,  y )  ~ P ( f ( y ) ,  y)),  

for example,  is a m e m b e r  o f  the extended class. One  can easily check that this part icular  
formula  is valid, that  is, that it evaluates to true for all integers x, y, z, no  mat ter  what  
monadic  integer funcuon is assigned t o f  and dyadic integer relat ion to P. 

Funct ion  symbols may  appear  in any term context  and may  have arbi t rary terms as 
arguments,  including expressions containing funct ion symbols. For  example,  the formula  
g(x + 2 f ( y ) )  = 4 is a member  o f  the class. 

The  extended theory includes a surprisingly large propor t ion o f  the formulas  encountered  
m program verification. It is part icularly well  suited to programs that mampula te  arrays 
and other  data  structures that can be modeled  as uninterpreted functions. The  semantics 
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Arbitrary multiplication is not permitted It ts convenient, however, to use multtphcatton by constants as an 
abbrevtaUon for repeated addition, x + x + x lS thus written 3x 
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of the McCarthy [11] A C C E S S  and CHANGE array prtmitives are easily encoded wRhin 
the theory; for example, the formula 

M = ACCESS(CHANGE(A,  L V ) , J  + 2) 

can be mechanically translated to an equivalent formula 

J + 2 = I D M =  V 
A J +  2 ~ I D  M = A [ J +  2], 

where A is now an interpreted funcUon symbol. 
A number of other constructs, including MAX, MIN,  and A B S V A L U E ,  can be dealt 

with m a similar manner. For instance, the valid formula 

x = y  + 2 D M A X ( x , y )  = x 

containing the interpreted function symbol M A X  translates to 

[x >_ y D g A X ( x ,  y) = x A y >_ x D g A X ( x ,  y) =y]  

D 

[x = y + 2 D MAX(x,  y) = x], 

where M A X  is now unlnterpreted. 
The discussion that follows is presented in six sections. Section 2 provides historical 

perspective and cites related work. Section 3 describes a decision method for the unextended 
class that forms the basis of the extended procedure. Sections 4-6 establish the decidability 
of the extended class and introduce a basic version of the procedure. Section 7 presents an 
extremely efficient refinement of the basic procedure. 

2. Related Work 

The class of closed Presburger formulas was first shown to be decidable by Presburger [14] 
in 1929. The best-known decision procedure for it (described by Kreisel and Krevine [9], 
among others) is based on a method of elimination of variables. In its raw form, the 
algorithm is prone to combinatorial explosion, and is therefore not practical for nontrivlal 
problems. More effioent versions of the method of elimination have since been given by 
Cooper [4]. Cooper's most recent procedure [5] is the most effioent known algorithm for 
full Presburger. Oppen [13] has shown that Cooper's algorithm is probably the best one 

can do in the worst case (deterministic time complexity on the order of 2 22" in the length 
of the formula). 

More recent work has focused on the subclass of Presburger without quantifiers. The 
decision complexity of this subclass is no worse than exponential, making it substantially 
easier to decide (in theory, at least) than full Presburger. A number of theorem-provers for 
this class (Bledsoe [3], Shostak [16]) have been successfully implemented and used for 
program verificaUon. 

Oppen 2 has noted that the extension of the unquantified subclass dealt with in this paper 
is also no worse than exponential deterministic time complexity. It is, perhaps, surprising 
that the incorporation of predicate and function symbols does not give away deodability 
altogether. Downey [6] has proved that the addition of even a single predicate symbol to 
the language of full Presburger produces a reduction class. 

An Implementation of our procedure (coded in INTERLISP for the DEC PDP-10) has 
been used for the past two years in conjunction with a system for verifying JOVIAL 
programs (Elspas et al. [7]). We have found that most formulas of a few lines are handled 
in seconds, and that larger formulas are generally decided much more qmckly than by 
humans. 

z Private communicat ion 
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A number of  other theorem-provers dealing with similar theories are currently under 
development. The systems of  Suzuki [17] and of  Nelson and Oppen [12] are among these. 

3. The Unextended Class 

The new procedure can best be explained in relation to the author's adaptation [15] of  
Bledsoe's [3] method for handling the unextended unquantified class. This method is 
camed out in two stages. In the first stage the formula F to be decided is reduced to a set 
of  integer linear programming problems (ILP's) with the property that F is vahd if and 
only if none of the problems has a solution. In the second stage the ILP's are tested one by 
one for solvability. I f  one is found to have an integer solution, the solution provides a 
model for ~ F  and therefore a counterexample for F. 

Let us now consider these steps in greater detail. 
The reducUon to a set of  ILP's consists of  expanding the negaUon of  F into a disjunctive 

normal form: 

~F--- G1V G2 V ... V Gp, 

where each G, is a conjunction of  linear inequalities of  the form A _< B. Dunng the 
expansion, terms of  the form A = B are replaced by (A -< B A B -< A). Similarly, A _> B is 
replaced by B _< A; A < B is replaced by A + 1 _< B; ~(A -< B) is replaced by B + l -< A; 
and so on. The conjunctions G~, G2 ... . .  Gp in the expanded form make up the set of ILP's. 
Suppose, for example, that 

F E [ ( x  < 3 y +  2 ) A x =  l ] D x = y .  

Then 

SO 

and 

~F-= ~[x < 3 y +  2 A x =  I D x = y ]  
-= x < 3 y +  2 A x f f i  1 A ~ ( x = y )  
-= x_<3y+ l a x _ <  l a x > _  I A ( x +  l - < y V y +  l - < x )  

(x-< 3y + 1 A x - <  1A 1 - < x A x +  1 -<y) 
V ( x - <  3 y +  l a x - <  I A  1-< x A y +  l - < x )  

G ~ m x ~ + l A x ~ l A l ~ x A x + i - < y  

G 2 - = x _ < 3 y +  1 A x _ <  1A l _ < x A y +  l_<x  

~ F  is satisfiable if and only if etther G1 or G2 has a solution in integers, and so F is valid 
if and only if neither G1 nor G2 has such solutions. The G,'s are now tested for feasibility 
using an integer programming algorithm. 

Continuing the above example, it ts easy to see that the ILP G~ has the integer solution 
x = 1, y = 0. These values provide a model for ~ F  and hence a counterexample to F. 
(Counterexamples are also provided by G2, which is integer feasible as well.) 

It should be noted that the completeness of  the procedure depends on the completeness 
of  the method used to test for mteger feasibility. At present, there are no known complete 
integer programming methods that are also efficient. In practice, however, this point is of  
little concern. We have implemented both the SUP-INF method [3, 16] and Gomory's  
method [8], both of  which are reasonably fast, and have never, m two years of  experimen- 
tation, come across natural examples in which the incompleteness of  these methods was 
manifested, a 

4. Decldabihty of the Extended Class 

The decision mechamsm for the extended class elaborates upon a method for reducing an 

3 Gomory's method ~s mcomplete m the sense that ~t ,s not guaranteed to termmate 
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arbitrary formula F m this class to an  equival id formula  f m the unextended class The 
reduct ion ~s carried out m two steps, the first e l iminat ing uninterpre ted  predicate symbols  
and  the second el iminat ing uninterpreted funct ion symbols: 

(1) For each unmterpreted n-ary predicate symbol P occurring m F, letfp be a new n-ary function symbol 
Obtain F' from F by replacing each atomic formula P(t~, t~, , t , )  by the formulafp(tb t2. , tn) = 0 

(2) For each pair f l t~. t.~, , in), r u b  u.,, , un) of distinct terms or subterms of terms in F' with the same 
outermost unmterpreted funcuon symbol f, construct the following axiom 

tl = ul A t~ = u~ A . . .  A tn f un Djq t l ,  tz, , tn) = f l u l ,  u2, , u , )  

Let F" be the formula given by 

A i A A 2 A . . .  A A r D F ' ,  

where the A, 's  are the axioms so constructed Next, for each term t occurring in F" that has an umnterpreted 
outermost function symbol, let xt be a new integer variable Obtain/e from F "  by replacing each such term 
t with xt (In the case where one such term is nested within another, the larger term is replaced ) 

Consider,  as an  example,  the valid formula  F given below: 

l(P(z) ~ z = 1) A g ( y )  - -  z + 4] ~ [ f ( g ( y ) )  • f ( 3  + 2z)V ~P ( I ) ] .  

Using step (1) to el iminate the uninterpreted funct ion symbol  P, we obta in  the formula F '  
gwen by 

l(f~(z) = 0 D z = 1) A g(y)  = z + 41 D I f ( g ( Y ) )  = f ( 3  + 2z) Vfp ( l )  # 0l. 

Applying  step (2), we observe that F '  contains two pairs o f  distract terms with the same 
outermost  function sy mb o l - - t h e  pairffi(z),fp(1) and  the p a l r f l g ( y ) ) , f ( 3  + 2z) The formula 
F "  is therefore gwen by 

[z = 1 3f~(z)  = f~ ( l ) l  A [g(Y) = 3 + 2z 3 f ( g ( y ) ) =  f ( 3  + 2z)] 
D 

[(fp(z) = 0 3  z =  1) A g(y)  = z +  4] 3 [ f ( g ( y ) ) = f i 3 +  2 z ) V f ~ ( 1 ) #  0]. 

Lett ing fp(z), fp(l) ,  g ( y ) ,  f i g ( y ) ) ,  and  f i3  + 2z) be replaced by xl, x2, xa, x4, and  xs, 
respectively, we obta in  F: 

[ z =  1 D x l = x 2 l A [ x a = 3 + 2 z D x 4 = x s ]  
D 

[ ( x 1 = 0 D z f f i l )  A x a f f i z + 4 1 D [ x 4 - - x ~ V x z ~ 0 ] .  

This latter formula is conta ined within the unextended class, and  can therefore be decided 
by using the method described in Section 3. 

The reduct ion just  described is qmte similar to Acke rmann ' s  [1] method for ehmina t ing  
funct ion symbols from universal ly quant i f ied equahty  formulas in predicate calculus with 
funct ion symbols and  identity. The correctness of  the reduct ion can be proved straightfor- 
wardly; given a model  for ~ F ,  one can construct  a model  for ~ f ,  and  conversely. The 
details are easdy gleaned from Ackermann ' s  proof, and  so are omitted here. 

Al though the reduct ion confirms the decidabil i ty of  the extended class, it does not  of  
itself provide a very good computa t ional  method.  Recall  that in step (2) o f  the reduction, 
an  axiom is constructed for each pair  of  terms ( including nested terms) with the same 
outermost  uninterpre ted  funct ion symbol.  The n u m b e r  of  such axioms is thus proport ional  
(m the worst case) to the square of  the length of  the given formula.  Moreover, each axiom 
at least triples the n u m b e r  of  ILP's  that must  be solved m deciding the reduced form- 
ula/~. 

Suppose, for example,  that the axiom x = y D f ( x )  = f l y )  is generated m step (2). It is 
easy to check that the expansion into disjunctive normal  form described in Section 3 
produces three disjuncts (corresponding to the cases in which x < y, x > y, a n d f ( x )  = 
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f ( y ) )  for each disjunct that would have been produced in the absence of  the axtom. 
As an illustration of  the kind of  combinatorial explosion that can result, consider the 

formula F given by 

x _< g(x) A x _> g(x) D x = g(g(g(g(x)))) .  

An axiom must be generated for every pair of  terms among g(x), g(g(x)),  g(g(g(x))) ,  and 
g(g(g(g(x)))) .  There are six such axioms, each one tripling the number of  disjuncts 
appearing in the disjunctive normal form expansion of  the corresponding reduced formula 
F. Deciding P therefore entails the solution of  36 (= 729) ILP's. 

In the event that the function symbol associated with a given axiom has more than one 
argument place, the combinatorial effect is even more pronounced; one can easily check 
that two more cases are developed by each addmonal  argument position. 

5. Bastc Procedure f o r  the Extended Class 

The procedure given m this section greatly reduces the combinatorial  explosion produced 
by the reduction process. The improvement is founded on two observations: (1) in most 
cases, only a small part of  the information contained in the generated axioms is of  relevance 
to the validity of  the reduced formula; (2) it is frequently possible to determine which 
information is relevant in advance of  its application. 

The example formula F ~ x _< g(x)  A g(x)  _< x D x = g(g(g(g(x)) ) )  of Section 4 serves 
well as an illustration of  the basic idea. Suppose we pretend, for a moment, that F is a 
member of  the unextended class, that is, that the terms g(x)  and g(g(g(g(x)) ) )  are simply 
integer variables that happen to have fancy names. If  we then apply the procedure of  
Section 3, the expansion into disjunctive form produces the following two ILP's: 

{x _< g(x), g(x)  _~ x, x _< g(g(g(g(x))) )  - 1) 

and 

(x <_ g(x), g(x)  _< x, g(g(g(g(x))) )  <_ x - 1}. 

Let us focus on the first of these. If  this ILP is solved, the following solution (among 
others) is obtained: 

x = 0, g(x)  = 0, g(g(g(g(x))) )  = I. 

At this point, the procedure of  Section 3 terminates, offering the discovered solution as a 
counterexample to the formula F. 

If  we return to the view of  F as a formula in the extended theory, however, it can be 
seen that the above solution is not a legitimate model for ~F.  In particular, the substltutivity 
axioms of  equality forbid that x and g(x)  be given the same value while g(g(g(g(x)) ) )  is 
gwen a different value. (Note, incidentally, that this violation occurs in all solutions of  the 
ILP's In question.) The violated substltUtlvity property is neatly expressed by the following 
formula. 

x = g(x)  ~ g(x)  = g(g(g(g(x)))) .  

If  we now assert this formula as a hypothesis of  F, the following formula F* is obtained: 

[x = g(x)  D g(x)  = g(g(g(g(x))))]  
D 

x_<g(x )  A x _ > g ( x )  ~ x = g(g(g(g(x)))) .  

If  the new formula F* is viewed as a member of the unextended class and given to the 
procedure of  Section 3, the resulting ILP's are found not to have any integer solutions. The 
original formula F must, therefore, be valid as a member of  the unextended class and 
hence as a member of  the extended class. 
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Note that, in the case of our example, this approach reqmres the solution of only seven 
ILP's (one to provide the illegitimate counterexample and six to decide the augmented 
formula F*),  as opposed to the 729 required by the reduction method. Part of the 
improvement is attributable to the omission of unneeded axioms generated in the reduction 
method. More importantly, the three axioms from that method that are relevant, 

x = g(x)  ~ g(x)  = g(g(x) ) ,  
g(x)  = g (g (x ) )  ~ g (g (x ) )  = g (g(g(x) ) ) ,  

and 

g(g(x))  ffi g(g(g(x)))  D g(g(g(x)))  = g(g(g(g(x)))) ,  

are replaced by a single formula: 

x = g(x) D x = g(g(g(g(x)))) .  

This replacement alone accounts for a ninefold reduction in the number  of ILP's that must 
be solved in the example problem. 

We now give a detailed description of the procedure: 

(1) 

(2) 

(3) 

(4) 

Using step (1) of the reduction method, all  unmterpreted predicate symbols are elunmated from the fo rmula ,  
F to be decided 
Expresstons revolving + or * that  occur as arguments to unmterpreted function symbols are el tmmated 
through the mtroducUon of  new variables. (For example, the formula x _< y + f ( 3 z  + 5) becomes z / = 3z + 
5 D x _<y + f ( z ' ) . )  Let F '  be the resulting formula 
The negation o f F '  is placed into a disjunctive normal  form G1 V G2 V ... V Gv, as described m Secuon 3. 
Each G, ~s a conjuncuon of  l inear mequahues  
The G,'s are tested one by one for sattsfiabdtty by applying steps (a), (b), and (c) below If none is sausfiable, 
F ts vahd. 
(a) The ILP assocmted wRh G, is solved, usmg eRher of the methods suggested m Section 3 
(b) If there is no solutton, G, is unsatlsfiable 
(c) Otherwise, the discovered solution is examined for violations of substRutlvlty of equahty (m a way 

described momentarily) If there are no wolatlons, G, ts satisfiable, and the discovered soluuon prowdes 
a counterexample for F If, on the other hand, a wolatlon ~s found, a formula H that summarizes the 
vtolated property of subsUtutwlty is formulated Step (4) is now apphed recurslvely to each of the 
conjunctions m the &sjunctwe expansion of H A G, G, ts satisfiable (m the extended theory) ff and 
only ff each of these is sausfiable 

We have yet to show how to examine a given solution S for violations of substltutivity 
and how to generate the associated substitutivity formula. We must also show, of course, 
that the procedure (step (4) in particular) terminates. For notational convenience, we 
assume in the explanation that follows that all unmterpreted function symbols appearing 
in F are monadic; the general case is a straightforward extension. 

The technique for detecting violations is founded on the recursive function EQPAIRS 
defined below. The definition depends on the following conventions. Let S be the 
discovered integer solution for the Gt whose satisfiability is to be determined, and T the set 
of terms to which S assigns values. For each term t ~ T, let S(t)  designate the value 
assigned to t by S. Let U be the set of terms in T together with all of their subterms. (For 
example, if S is given by x ffi 0, g(x) = 0, and g(g(g(g(x))))  = 1, then T = {x, g(x), 
g(g(g(g(x))))} and U = {x, g(x), g(g(g(g(x)))) ,  g(g(x)), g(g(g(x)))}.)  Finally, for each 
term t E U, define the set 

j" {t" E TI S(t) = S(t')} if t E T, 
E t = [ { t }  if t ~ T .  

EQPAIRS is defined as follows: 
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EQPAIRS(tl, t2, alreadytned) = 
if (t~, t2 ) ~ alreadytrwd, then return 
else i f t l  E Eta, then return { (h ,  /2)} 
else if for some functwn symbol f and terms Ul, u2 

(t) f(ul) E Et~ and 
(n) f(u2) E Et~ and 
(m) EQPAIRS(ul, u2, alreadytrwd U {(tl, t2)}) # ~, 

then return P~ O P2 O P3, where 

P1 = ifh =f(ul) then ~ else {(tl,f(ul))} 
P2 = if t2 =f(u2) then ~ else {(t2,f(u2))} 
Ps = EQPAIRS(ub us, alreadytrwd U {(h, t2 )}) 

else return 0 

As is evident from the definition, EQPAIRS is a function of  three arguments. The first 
two (tl and t2) are bound to terms in U, and the third (alreadytried) is bound to a set of  
pairs in U x U. The third argument is always bound to the empty set on external calls, 
and comes into play on internal calls only as a device to prevent infinite recursion. 
EQPAIRS returns a set of  pairs in T x T. 

The usefulness of  EQPAIRS turns on the following result, stated here without proof: 
THEOREM. I f f o r  all h ,  t~ E T, ezther s(h ) = s(tz) or E Q P A I R S ( h ,  tz, ~ )  = 0 ,  then S has 

no violatwns o f  substitutivity, and hence G, ts satisfiable as a member  o f  the extended theory. 
On the other hand, i f  f o r  some ta, t2, s( tl) ~ s( t2 ), and E Q  PA I R S (  ti, tz, 0 )  = ( ( ri, sl ) . . . . .  
(r~, s~)}, n _> 1, then the formula  

H =- [rl = S l  A rz = s2 A ... A rn ffi sn D tl = t2] 

fol lows f r o m  substitutivity but is not satisfied by S. 
To check S for violations of  substitutiwty, it thus suffices to compute EQPAIRS(t~, t2, 

~3) for pairs h,  t2 of  terms in Tassigned different values by S. A violation exists if  and only 
if  EQPAIRS(t~, t2, ~ )  # ~3 for some such pair. In such a case the formula H summarizes 
the wolation. 

Note from the defmltion of  EQPAIRS that, if  t~, t2 E T, s(t~) ~ s(t2), and EQPAIRS(h ,  
t2, ~ )  # O, then t~ and t2 must be functional terms with the same outermost function 
symbol. In checking S for violations of  substitutiwty, therefore, one need only compute 
EQPAIRS(t l ,  t2, O) for such pairs. 

Note also that EQPAIRS is defined nondeterministically; there may be more than one 
choice of f i ,  u~, and u2 that satisfies (i), (u), and (hi) in the definition. It makes no difference 
which choice is made. Similarly, there may be several pairs t~, t2 for which EQPAIRS is 
nonempty. It suffices to generate H on the basis of  the first such pair  encountered. 

Let us now return to the earlier example: 

F -ffi x _< g(x)  A g(x)  _< x D x = g(g(g(g(x)) ) ) .  

If  we apply steps (l),  (2), and (3) of  the procedure, 

Gi ~ x _< g(x)  A g(x)  _< x A x _< g(g(g(g(x) ) ) )  - l 

and 

G2 -= x _< g(x)  A g(x)  <_ x A g(g(g(g(x) ) ) )  <_ x - ! 

are obtained as before. Solving G~ once again produces the solution S: 

x -- O, g(x)  = O, g(g(g(g(x)) ) )  = I. 

Since g(x), g(g(g(g(x) ) ) )  form the only pair of  terms in T with the same outermost 
function symbol and with different assigned values, it suffices to compute EQPAIRS for 
that pair only: 
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EQPAIRS(g(x), g(g(g(g(x)))), 6 )  

E,~x, = (x, g(x)} 
e ,~z~g~, ,  = {g(g(g(g(x))))} 

Letting g(x) be f(uj ), g(g(g(g(x)))) be f(uz), and recursing: 
EQPAIRS(x, g(g(g(x))), {(g(x), g(g(g(g(x))))) }): 

E~ = {x, g(x)} 
E,~g~,~x,) = {g(g(g(x)))} 

Lettmg g(x) be f(ul ), g(g(g(x))) be f(u2) 
EQPAIRS(x, g(g(x)), {(g(x), g(g(g(g(x))))), (x, g(g(g(x)))) }) 

Ex = {x, g(x)} 
E~,,(x), = {g(g(x))} 

Letung g(x) be f(u~), g(g(x)) be f(u2)" 
EQPAIRS(x, g(x), {(g(x), g(g(g(g(x))))), (x, g(g(g(x)))), 

(x, g(g(x))) })" 
Ex = {x, g(x)} 

= ((x, g(x))} 
= {(x, g(x))} 

= {(x, g(x))} 
= (<x, g(x)>}. 

The formula H produced in this case is thus 

x = g(x) D g(x) = g(g(g(g(x)))). 

The ILP's corresponding to the conjunctions in the disjunctive expansion ofH A Gi are all 
found infeasible; hence, Gi is unsatisfiable. 

In a similar manner, G2 is found unsatisfiable. The procedure thus halts, reporting that 
F is valid. 

In this last example, only one level of recursion in step (4) was needed. In rare instances, 
more than one is required. Consider, for example, the following theorem: 

F = a _< b _<f(a) _< 1 D a + b _< l X/b + f ( b )  _< 1 V f ( f ( b ) )  _<f(a). 

Applying steps (1), (2), and (3) of  the procedure, one obtains the following single 
conjunction G: 

a _< b A b _<f(a) Af(a) _< I A 2 _< a + b A 2 _< b +f(b) Af(a) + I _<f(f(b)). 

Solving the corresponding ILP produces as one possibility the following solution S: 

a - -  1, b =  1, f ( a ) - -  1, f ( b ) =  2, f ( f ( b ) ) =  2. 

The only two pairs o f  terms for which EQPAIRS need be tried are f (a) ,  f (b) ,  and f (a) ,  
f ( f ( b ) ) .  Trying f(a),  f (b )  first, one immediately obtains a violation: EQPAIRS 
( f (a) , f (b) ,  ~ )  = {(a, b)}. The formula [a = b D f ( a )  = f ( b ) ]  A G is now expanded into 
disjunctive form, giving the three conjunctions 

a _ < b - l A G ,  b _< a - l A G, f (a )  = f (b )  A G. 

The ILP's  associated with the first two of  these are infeasible. The third one, however, 
yields a solution: 

a =  1, b =  1, f ( a ) =  1, f ( b ) - -  1, f ( f ( b ) ) =  2. 

Applying EQPAIRS to the p a i r f ( a ) , f ( f ( b ) )  produces {(a, f (b))} .  Step (4) is again 
applied recursively to the three conjunctions in the expansion of  [a = f (b )  D f (a )  = 
f ( f ( b ) ) ]  A f (a )  = f (b )  A G. This time, all ILP's  are found to be infeasible, and the 
procedure terminates. 
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6. Terminat ton 

It Is easy to see, in fact, that the recurslve step, (4), must always terminate.  Otherwise,  
some branch of  the computa t ion  would  be mfimte,  yielding an infinite sequence o f  ILP's  
G, G', G", ... with a corresponding sequence o f  solutions S, S', S",  . and subsmutivl ty  
formulas  H, H' ,  H" ,  . . . .  Since each solution assigns values to exactly the same set T o f  
terms, some H must be repeated in the sequence. This  is impossible, however,  since each 
solution S falls to satisfy its corresponding H, but does satisfy all preceding H ' s .  

7. A M o r e  Ef f ic ient  Verswn o f  the Procedure  

Although  the procedure gwen  in Section 5 dramatical ly  improves on the naive  reduction 
method,  substantial  addi t ional  improvement  is possible. 

First note that the expansion o f  H A G, into disjunctive form in step (4-c) ts unnecessary. 
The  conjunctions that result frofn thts expansion can be precomputed  as follows: 

H A G ,  F-[& = s 1 A . . .  A r n = s n D t l = t 2 ] A G ,  

--- [& # st V "" V r ,  # sR V tl = t2] A G, 

rl _< sl - 1 A G, V sl _< ri - 1 A G~ 

V rn _< sn - I A G, W sn_< rn - 1 A G, 

~/ tl = t2 A G~. 

Note  that 2n + I conjunct ions are thus generated,  each one augment ing  G, with an 
inequali ty.  I f  the ILP solver used can be operated incremental ly  (as can simplex-based 
methods),  the new ILP's  can be solved with little addmona l  effort. 

In the great major i ty  o f  cases encountered m practice, further speedup is possible. Note  
from the defini t ion o f  E Q P A I R S  that S(r j )  = S(s j )  for e a c h / ,  l _<j _< n. N o w  suppose tt 
can be established, for a g iven / ,  that rj and sj are equal  in all solutions for G,. In thts case, 
the two conjunct ions r~ _< sj - 1 A G, and s~ _< rj - 1 A G, are necessarily unsatisfiable and 
can therefore be dispensed with. 

Wha t  makes  th~s observat ion useful Is that one can test whether  r: and sj are equal  m all 
solutions o f  G, quite easily; it is necessary only to test (using the ILP solver) for maxG, (rj 
- -  sj) = mina, (rj -- s~) = 0. This can be done more quickly than testing r~ _< s~ - l A G, and 
s~ _< rj - l for feasibility, since it does not  involve addi t ional  mequahtles .  

Return ing  to the earl ier  example,  

G1 -= x _< g ( x )  A g ( x )  _< x A x _< g ( g ( g ( g ( x ) ) ) )  - 1, 
H ~ x = g ( x )  D g ( x )  = g ( g ( g ( g ( x ) ) ) ) ,  

we see that x and g ( x )  must have equal  values in all solutions o f  Gi, and so only the 
conjunct ion g ( x )  = g ( g ( g ( g ( x ) ) ) )  A G1 needs to be tested. 

These ideas suggest the following replacement  for step (4-c): 

(4)(c) The &scovered solutton S is tested for wolauons of subsUtutlwty by computing EQPAIRS(t~. t,, ~) for 
pairs tj, tz, E T that have different values m S but the same outermost function symbol If EQPAIRS 
returns ~ for all such pairs, the soluuon S provtdes a counterexample for F and the procedure halts If tj, 
t2 are found for whtch EQPAIRS(t~, t2, ~) = {(r~, s~). , (r,. s,,)}, n _> 1, then step (4) is apphed 
recurslvely to 

t~ = t2 A G,, 

and for 1 _<j_< n, to 

and 

r~_<sj- lAG,  unless maxa,(sj-rj)_<O 

s~_<rj- lAG,  unless max6,(rj-sj)_<0 

G, is unsattsfiable if and only if each of the conjuncttons thus tested is found unsattsfiable 
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Finally, it might be remarked that the function EQPAIRS can be implemented much 
more efficiently than the definition suggests. If, for example, a table is used to record the 
results o f  internal calls, the amount of  work reqmred to compute EQPAIRS can be made 
to grow no faster than the square of  the length of  the input. 
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