
A Practical, Decision-theoretic Approach to Multi-robot Mapping and
Exploration

Jonathan Ko, Benjamin Stewart, Dieter Fox, Kurt Konolige
�

, and Benson Limketkai
�

University of Washington, Computer Science & Engineering, Seattle, WA
�

SRI International, Artificial Intelligence Center, Menlo Park, CA

In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2003.

Abstract
An important assumption underlying virtually all ap-

proaches to multi-robot exploration is prior knowledge
about their relative locations. This is due to the fact that
robots need to merge their maps so as to coordinate their
exploration strategies. The key step in map merging is
to estimate the relative locations of the individual robots.
This paper presents a novel approach to multi-robot map
merging under global uncertainty about the robot’s rela-
tive locations. Our approach uses an adapted version of
particle filters to estimate the position of one robot in the
other robot’s partial map. The risk of false-positive map
matches is avoided by verifying match hypotheses using
a rendezvous approach. We show how to seamlessly in-
tegrate this approach into a decision-theoretic multi-robot
coordination strategy. The experiments show that our
sample-based technique can reliably find good hypotheses
for map matches. Furthermore, we present results obtained
with two robots successfully merging their maps using the
decision-theoretic rendezvous strategy.

1 Introduction

Efficient exploration of an unknown environment is a fun-
damental problem in multi-robot coordination. As au-
tonomous exploration and map building becomes increas-
ingly robust on single robots, the next challenge is to ex-
tend these techniques to large teams of robots: Our current
project aims to field 100 robots. Compared to the prob-
lems occurring in single robot exploration, the extension to
multiple robots poses several new challenges. These chal-
lenges include limited communication between robots, no
assumptions about relative start locations of the robots, and
dynamic assignment of processing tasks.

The map merging problem, i.e. the problem of building
a map from data collected by different robots, is of utmost
importance for efficient multi-robot exploration. This is
due to the fact that the coordination of robots requires the
availability of a combined world model. Once such a com-
bined model can be generated, Burgard and colleagues [2],
for example, show how to coordinate robots by maximiz-
ing expected information gain. Zlot et al. [14] describe how
to deal with limited communication by making the explo-
ration strategies robust w.r.t. communication loss.

The complexity of map merging strongly depends on the
assumptions made about the knowledge of the robots’ ini-
tial locations. Commonly, the initial relative positions of
the robots are assumed to be known. Under this assump-

tion, map merging is very similar to map building for single
robots, as shown in [10]. Another typical scenario assumes
that the robots do not know their relative start locations, but
one robot is known to start in the map already built by the
other robot. In this case, map merging can be solved mostly
by localizing one robot in the other robot’s map using a lo-
calization approach capable of global localization [10; 5;
12]. In a different setting, Dedoglu and Sukhatme [3] in-
troduced several heuristics using a non-probabilistic, hy-
pothesis rejection approach for topological maps. Their ap-
proach assumes that there is an overlap between the maps
of the two robots and does not provide a measure of uncer-
tainty. Roy and Dudek [7] propose a rendezvous strategy
that aims at guiding robots to the same meeting points so as
to determine their relative locations. Their approach is de-
signed for extremely short-range communication and does
not coordinate robots.

In this paper we introduce a novel technique that ad-
dresses an extremely difficult instance of the multi-robot
map merging problem, i.e. for completely unknown start
locations including a chance that the maps of the two robots
do not overlap at all. The approach uses an adapted ver-
sion of particle filters to estimate the position of one robot
in the other robot’s partial map. The technique estimates
the posterior over robot positions both inside and outside
the partial map. Thus, it is able to estimate whether or not
there is an overlap between the robots’ maps. Due to the se-
quential nature of the estimation process, our approach can
be integrated seamlessly into an online, decision-theoretic
multi-robot coordination strategy. This strategy trades off
the utility of exploration versus the utility of map merg-
ing. For large teams of robots, the avoidance of wrong
map matches is of utmost importance, since false-positive
matches can result in inconsistencies from which a dis-
tributed team of robots can not recover. In order to over-
come this risk, our robots actively verify location hypothe-
ses using a rendezvous strategy (similar in spirit to [7]).
Once two robots have verified their relative locations, they
merge their maps and coordinate their exploration.

This paper is organized as follows. In the next section,
we describe the overall coordination structure for large
teams of robots. Section 3 shows how to extend an ex-
isting approach to multi-robot coordination to the case of
unknown robot locations. The key technical contribution
of this paper is given in Section 4, which presents a particle
filter based approach to partial map localization. The fol-
lowing section describes experiments supporting the relia-

3

8

5
6

1

2

9

14

12
11

13

10

7

4

(a)

3

8

5
6

1

2

9

14

12
11

13

10

7

4

(b)

Figure 1: Dynamic coordination structure at two points in time.

Circles indicate robots, solid arrows indicate robots exploring in

coordination, dashed lines indicate robots verifying a hypothesis

of their relative positions, and dotted lines indicate communica-

tion between robots but no valid location hypotheses exist.

bility of our techniques. Finally, in Section 6, we conclude
and discuss directions for future research.

2 Dynamic Coordination Architecture

Our distributed approach to mapping and exploration uti-
lizes a dynamically evolving coordination architecture. At
each point in time, the state of the system can be sum-
marized by a graph structure where the nodes are indi-
vidual robots and edges represent the current interaction
between robots (see Fig. 1). Two robots are connected
if there is a communication link between them. The key
sub-structure of our architecture are exploration clusters,
indicated by the two shaded areas in Fig. 1. Such clusters
contain all robots that can communicate with each other
and know their relative locations. The robots within each
cluster share a common map and coordinate their explo-
ration strategy, using state-of-the-art techniques such as [2;
10]. Each exploration cluster determines one robot respon-
sible for data combination and coordination (robots 4 and
7 in Fig. 2). All map information is frequently spread
throughout the cluster. Direct communication between all
robot pairs within a cluster is not required for this update.

A crucial situation occurs when a robot moves into
the communication range of another robot (dotted arcs
in Fig. 1). At this point in time, the robots do not yet know
their relative locations. In our approach, the robot within
the larger exploration cluster (measured by map size) es-
timates the position of the other robot within its partial
map, using the sensor data collected by the other robot.
For example, Fig. 1(a) shows a situation in which robot
6 estimates the location of robot 9 within the map of its
cluster. As soon as 9’s location is uniquely determined, it
can be added to the exploration cluster and coordinate with
robots 6 and 4. Unfortunately, as we will describe in Sec-
tion 4, it is non-trivial to uniquely determine the best map
match from the location of a robot in another robot’s partial
map. On the other hand, keeping track of all possible map
matches over time is intractable since the complexity is ex-
ponential in the number of robots. To overcome the com-
plexity problem and the danger of false-positive matches,
we propose a very simple, effective method: Robots must
actively verify their relative locations before merging maps.
To do this one robot first generates a hypothesis of another
robot’s location. The correctness of this hypothesis is re-
solved by the two robots arranging to meet one another at a

r1 c11

r2
r3

r4

f1

f7 f8

f5

9f

c12

f4

f2

f3 f6

Figure 2: Coordination example: Shown is a partial map built

by an exploration cluster of four robots (�✂✁☎✄✝✆✝✆✝✆✝✄✞�✠✟ ✡ . Additionally,

two location hypotheses (☛☞✁✌✁✠✄✌☛✍✁✏✎ ✡ have been generated for robot

☛☞✁ . The map has nine exploration frontiers ✑✓✒✔✁✕✄☎✆✝✆✝✆✝✄✖✒✠✗ ✡ .
rendezvous point. For example, the dashed arc in Fig. 1(a)
indicates that robot 12 and 13 are currently verifying a lo-
cation hypothesis. If the robots fail to meet, the hypothesis
is rejected and they continue with the hypothesis genera-
tion phase. Otherwise, robot 13 can be added to the explo-
ration cluster, as shown in Fig. 1(b). Whenever robots lose
contact, they explore independently until they get back in
communication range.

3 Decision-theoretic Coordination

This section describes the decision-theoretic framework
used to coordinate robots within an exploration cluster. We
assume that the robots within the cluster share a map and
the positions ✘✚✙ of all robots in the partial map are known.
Fig. 2 shows an exploration cluster of four robots sharing
a partial occupancy grid map. Areas in which unoccupied,
explored grid cells are next to unexplored areas serve as
exploration frontiers ✛✔✙ [13; 2]. The number of frontiers
is reduced by merging neighboring frontier grid cells, as
shown in the figure. If there are other robots in the com-
munication range of the cluster, then ✜☞✙✣✢ denotes the ✤ -th
hypothesis for robot ✜ ✙ ’s position within the partial map of
the cluster. At any point in time, each robot in the explo-
ration cluster can be assigned either to a frontier or to a
hypothesized location of another robot. Coordination can
be phrased as the problem of finding the assignment that
maximizes a utility-cost trade-off, similar to the approach
used in [2], with the extension of hypothesis verification.
More specifically, let ✥ denote an assignment that deter-
mines which robot should move to which target (frontiers
and hypotheses). Each robot is assigned to exactly one tar-
get and ✥✧✦✩★✝✪✫✤✭✬✯✮✱✰ if the ★ -th robot in the exploration clus-
ter is assigned to the ✤ -th target. Among all assignments
we choose the one that maximizes expected utility minus
expected cost:

✥✳✲✴✮ ✵✔✶☎✷✹✸✺✵✂✻✼
✽
✾ ✙✩✿ ✢✖❀✞❁ ✼

✥✧✦✓★☎✪✞✤✭✬❂✦ U ✦✓★✝✪✫✤✭✬❄❃ C ✦✓★☎✪✞✤✭✬❅✬ (1)

The cost and utility of each robot target pair ✦✩★✝✪✞✤✳✬ can be
computed as follows.
Cost: If the target is a frontier then the cost is given by
the minimum cost path from the robot’s position ✘❆✙ to the

frontier position ✛✚✢ . Minimal cost paths can be computed
efficiently by � ✲ search. For hypothesis verification, the
cost is given by the minimal path to a meeting point be-
tween the robots plus the cost to establish whether the two
robots actually meet or not.

C ✑✂✁✌✄☎✄ ✡✝✆✟✞ dist ✑ �✡✠✞✄❅✒☞☛ ✡ if target is frontier ✒✌☛
verify ✑ � ✠ ✄✞☛✎✍ ☛ ✡ if target is hypothesis ☛✎✍ ☛ (2)

Utilities: For simplicity, we assume that all robots have the
same exploration capabilities, i.e. the utility only depends
on the type of target and not the robot. If the target is a
frontier, then the utility can be estimated by the expected
area the robot will explore at that frontier [2]. If the target
is a location hypothesis, say ✜✑✏✖✢ , then the utility is given
by the expected utility of meeting robot ✜✕✢ . The function
coord estimates this utility by measuring the map size of
the other robot plus the expected utility of coordinated ex-
ploration versus independent exploration. Since it is not
known whether the other robot is at the location hypothe-
sis, the utility of meeting is weighted by the probability of
the hypothesis, denoted ✒❄✦✓✜✓✏✖✢❆✬ .
U ✑✂✁✌✄☎✄ ✡✝✆✟✞ explore ✑ � ✠ ✄❅✒ ☛ ✡ if target is frontier ✒ ☛✔ ✑ ☛ ☛ ✍ ✡ coord ✑ ☛✕☛ ✡ if target is hypothesis of robot ☛✕☛(3)

In most cases, all robots are assigned to frontiers, thereby
extending the explored area. However, if another robot en-
ters the communication range of the cluster, the relative po-
sition of this robot is estimated and subsequently verified
by meeting with the robot. In the next section, we will de-
scribe how to efficiently estimate the position of a robot in
a partial map.

4 Partial Map Localization

This section describes how to sequentially determine loca-
tion hypotheses by localizing one robot in another robot’s
partial map. Since this problem is very similar to the reg-
ular localization problem, we will first describe the recur-
sive Bayes filter, which underlies virtually all probabilistic
robot localization techniques [1; 6]:✔ ✑✂✖✘✗✚✙✓✛ ✁✕✜ ✗ ✄✕✢ ✁✕✜ ✗✤✣ ✁ ✡✥✆✧✦ ✗ ✔ ✑★✛✡✗✩✙✡✖✘✗ ✡✫✪✬ ✔ ✑✂✖ ✗ ✙✭✖ ✗✤✣ ✁✝✄✮✢ ✗✤✣ ✁ ✡ ✔ ✑✂✖ ✗✤✣ ✁✯✙✭✛❆✁✕✜ ✗✤✣ ✁✝✄✰✢ ✁✕✜ ✗☎✣ ✎ ✡✲✱ ✖ ✗✤✣ ✁✝✄ (4)

Here ✳✵✴✌✶ ✷ is the history of all sensor measurements obtained
up to time ✸ , and ✹✺✴✻✶ ✷✮✼✺✴ is the control information. Further-
more, ✽ ✷ is a normalizing constant which ensures that the
belief over the entire state space sums up to one. In the
context of robot localization, the term ✒❄✦★✾✿✷❁❀❂✾❃✷✮✼✫✴✔✪☞✹✿✷✮✼✫✴✍✬
is a probabilistic model of robot motion, and ✒❄✦☎✳❄✷❅❀❆✾❃✷❅✬ de-
scribes the likelihood of making observation ✳ ✷ given the
robot’s location ✾ ✷ and a map of the environment (see [6]

for details). In our implementation, maps are occupancy
grid maps and observations are laser range-scans.

A straightforward approach to partial map localization
would use the recursive Bayes filter (4) to estimate a robot’s
position both inside and outside the partial map. The likeli-
hood of observations outside the map can be approximated

by a fixed value ✒ ✦✤✳ ✷ ❀ outside ✬ , which can be learned from
previous data. Unfortunately, since only a small part of the
environment might be represented in the partial map, such
an approach would require estimating a robot’s location in a
potentially huge state space. Our solution to this problem is
based on the fact that we are only interested in those robot
trajectories that have an overlap between the two maps, i.e.
trajectories for which the other robot is in the partial map
at some point in time.

More specifically, non-overlapping trajectories are not
represented explicitly but summarized by a single state ❇❂✷
that measures the probability that the robot was not in the
partial map so far. To do so, we adapt the recursive update
rule (4) so as to only track positions ✾✿✷ that correspond to
overlapping trajectories.✔ ✑✂✖ ✗ ✙✭✛✂✁✕✜ ✗ ✄✕✢ ✁✕✜ ✗✤✣ ✁ ✡✥✆✧✦ ✗ ✔ ✑★✛ ✗ ✙✑✖ ✗ ✡✲✪❈ ✬ ✔ ✑✂✖✘✗❄✙❉✖❊✗✤✣ ✁ ✄✮✢✘✗✤✣ ✁ ✡ ✔ ✑✂✖❊✗✤✣ ✁ ✙✂✛ ✁✕✜ ✗✤✣ ✁ ✄✕✢ ✁✕✜ ✗✤✣ ✎ ✡✲✱ ✖✘✗☎✣ ✁✿❋

✔ ✑✂✖ ✗ ✙✭● ✗☎✣ ✁✝✄✰✢ ✗☎✣ ✁ ✡ ✔ ✑✂● ✗✤✣ ✁❍✙✭✛❆✁✕✜ ✗✤✣ ✁✝✄✕✢ ✁✕✜ ✗✤✣ ✎ ✡✤■ (5)

Note that some of the positions ✾ ✷ might be outside the
partial map, since the only constraint is that their trajectory
up to time ✸ had an overlap with the map. As suggested
above, we use a fixed value ✒ ✦✤✳ ✷ ❀ outside ✬ to determine
the likelihood of ✳ ✷ for such positions outside the map. The
additional term on the right side of (5) models the fact that
the robot can enter the map at any iteration for the first
time. More specifically, if the robot has not been in the
partial map so far, it enters the map in the current iteration
with a fixed probability ❏ :✒ ✦★✾❑✷▲❀❄❇✫✷✮✼✫✴❆✪✌✹❑✷✮✼✺✴✠✬ ✮ ❏▼✒ ✦★✾❑✷▲❀✹✛❆✷✮✼✫✴✂✪☞✹✿✷✮✼✫✴✠✬ (6)

Here we assume that the positions ✾ ✷ immediately after en-
tering the map only depend on the positions of the fron-
tier cells ✛❆✷✮✼✺✴ of the partial map, that is we use the tran-
sitions from unexplored to free space as entry points into
the partial map (see also Fig. 3(b)–(d)). At each iteration,
the probability of non-overlapping trajectories is updated
based on the observation likelihood and the fact that a frac-
tion ❏ of trajectories moved into the map:✔ ✑✂●❑✗◆✙✓✛ ✁✕✜ ✗✌✄✕✢ ✁✕✜ ✗✤✣ ✁ ✡✟✆✦ ✗ ✔ ✑★✛ ✗ ✙ outside

✡ ✑✮❖◗P❙❘ ✡ ✔ ✑✂● ✗✤✣ ✁❚✙✑✛❆✁✕✜ ✗☎✣ ✁✝✄✕✢ ✁✕✜ ✗✤✣ ✎ ✡ (7)

Again, ✒❄✦☎✳ ✷ ❀ outside ✬ denotes the likelihood of observing✳✓✷ outside the partial map. The normalization factor ✽✩✷ is
computed so that the probabilities over ❇ ✷ and all locations✾ ✷ sum up to one. The effect of this normalization is such
that if the observation is very likely inside the map, then the
outside likelihood ✒ ✦✤✳❆✷❯❀ outside ✬ is lower and the proba-
bility of ❇ ✷ decreases while the probability for overlapping
trajectories ✾ ✷ increases.

Implementation as particle filter

We will now describe how to implement the recursive
Bayes filter for partial map localization using particle filters
(see also [6; 4]). In a nutshell, particle filters represent pos-

teriors over a robot’s position by sets ❱ ✷ ✮❳❲❩❨☎✾ ✾ ✙ ❀✷ ✪✌❬ ✾ ✙ ❀✷❪❭ ❀

1. Inputs: �❃✗✤✣ ✁ ✆✂✁☎✄ ✖✝✆ ✠✟✞✗✤✣ ✁ ✄✡✠☛✆ ✠☞✞✗✤✣ ✁✍✌ ✙✡✁ ✆ ❖☞✄✕✆✝✆✝✆✝✄✏✎✒✑ , ●❃✗✤✣ ✁ , control information ✢✘✗✤✣ ✁ , observation ✛✡✗ , partial map ✓✥✗ ,
probability of entering partial map ❘ , number of entry point samples ✎✕✔

2. �❃✗✗✖ ✆✙✘
// Initialize

3. for all samples
✄ ✖ ✆ ✠☞✞✗☎✣ ✁ ✄✡✠ ✆ ✠✟✞✗☎✣ ✁ ✌ in � ✗☎✣ ✁ do // Prediction step

4. sample ✖ ✆ ☛✚✞✗ from ✔ ✑✂✖✘✗✩✙✭✖ ✆ ✠☞✞✗✤✣ ✁ ✄✮✢✘✗✤✣ ✁ ✡ // Predict next position using motion

5. �❃✗✛✖ ✆ �❃✗✢✜ ✁✣✄ ✖ ✆ ☛✚✞✗ ✄✏✠ ✆ ✠✟✞✗☎✣ ✁ ✌ ✑ // Insert into next set

6. for ✁✤✖ ✆ ❖☞✄✝✆✕✆✝✆✝✄✡✎✦✥ do // Generate ✎✦✔ samples at entry points

7. sample ✖✝✆ ✠☞✞✗ from an entry point into the map // Entry points are given by transition from free space to unexplored

8. ✠ ✆ ✠✟✞✗ ✆ ✔★✧✪✩✬✫✮✭✯✱✰ ✄ �❃✗✲✖ ✆ � ✗✢✜ ✁✣✄ ✖ ✆ ✠☞✞✗ ✄✡✠ ✆ ✠☞✞✗ ✌ ✑ // Adjust weights accordingly and insert into set

9. ● ✗ ✆ ✑✮❖◗P❙❘ ✡ ● ✗☎✣ ✁ // Subtract fraction ❘ migrated from non-overlapping trajectories into map

10. for all samples
✄ ✖ ✆ ✠☞✞✗ ✄✡✠ ✆ ✠☞✞✗ ✌ in � ✗ do // Integrate observation into individual samples

11. if ✖ ✆ ✠☞✞✗✴✳ ✓ ✗ then ✠ ✆ ✠✟✞✗ ✖ ✆ ✠ ✆ ✠✟✞✗✤✣ ✁ ✔ ✑★✛ ✗ ✙✑✖ ✆ ✠☞✞✗ ✡
else ✠ ✆ ✠☞✞✗ ✖ ✆ ✠ ✆ ✠☞✞✗✤✣ ✁ ✔ ✑★✛ ✗ ✙ outside

✡
12. ●❑✗ ✆ ●❃✗ ✔ ✑★✛✡✗✚✙ outside

✡
// Integrate observation into non-overlapping trajectories

13.
✦ ✣ ✁✗ ✆ ● ✗ ❋✶✵ ✠☞✷ ✁✡✸ ✹ ✹ ✹ ✸ ✯✛✺✱✯ ✰ ✠ ✆ ✠✟✞✗ // Compute normalization factor

14. resample samples in �❃✗ using ✔ ✑★✛✡✗✩✙✡✖ ✆ ✠✟✞✗ ✡
only // Includes readjusting the weights according to partial resampling

15. determine location hypotheses // Hypotheses are determined using a grid over the state space

Table 1: Outline of particle filter based implementation of partial map localization.

★ ✮ ✰✹✪✪✻✼✻✼✻✍✪✍✽✿✾ of ✽ weighted samples distributed accord-

ing to the posterior. Here each ✾ ✾ ✙ ❀✷ is a sample (or state),

and the ❬ ✾ ✙ ❀✷ are non-negative numerical factors called im-
portance weights, which sum up to one. Sets at time ✸ are
generated from previous sets ❱✺✷✮✼✫✴ by a sampling procedure
often refereed to as SISR, sequential importance sampling
with re-sampling. SISR implements the recursive Bayes
filter update rule in a three stage process: First, draw sam-

ples ❀
✾ ✙ ❀✷ from the previous sample set using the importance

weights ❬ ✾ ✙ ❀✷ , then draw for each such sample a new state

from the predictive distribution ✒ ✦☎✾ ✷ ❀❊✾ ✾ ✙ ❀✷✮✼✫✴ ✪☞✹ ✷✮✼✫✴ ✬ , and fi-
nally weight these new states/samples proportional to the
observation likelihood ✒ ✦✤✳❆✷ ❀ ✾❃✷❅✬ . The last step, impor-
tance sampling, adjusts for the fact that samples are not
drawn from the actual posterior distribution but from the
predictive distribution.

Particle filters can be used to implement the partial map
algorithm as follows (Table 1). In the first iteration, at✸ ✮✴❁ , when there is no knowledge about the relative lo-
cations of the two robots, the samples are spread uniformly
throughout the partial map. These samples initialize over-
lapping trajectories ✾★❂ , and they are weighted so that they
sum up to ✦❅✰ ❃ ❇✤❂✚✬ . ❇❃❂ , the probability that the other robot
initially is not in the partial map, can be set according to
an estimate of the ratio between the sizes of the partial map
and the entire environment. At each iteration, the algo-
rithm updates the sample set ❱✫✷ and the probability of non-
overlapping trajectories ❇ ✷ based on the most recent obser-
vation ✳ ✷ and motion information ✹ ✷✮✼✺✴ (see Tab. 1). The
algorithm additionally takes ❄ ✷ , the current partial map,
as input. (5) is implemented in steps 3–8 of the algorithm.
In steps 3–5, new samples are generated based on the pre-
vious sample set. Samples entering the map for the first
time are added in steps 6–8. The weights of these samples
follow directly from (6). Line 9 adjusts the probability of

non-overlapping trajectories according to (7). Steps 10–12
integrate the observation ✳ ✷ into all relevant quantities. The
normalization factor is determined in the following step.
The resampling step, a crucial part of each particle filter,
will be described in the next section. Finally, the algorithm
determines hypotheses for the robot’s location by cluster-
ing the samples. In our current implementation, this is done
by overlaying a grid over the state space, searching for the
most likely grid cell (as determined by the samples within
each cell) and then performing local averaging in this cell.

After each iteration, the weighted samples accurately
represent the posterior of the other robot’s position given
that there is an overlap between the maps of the two robots.
The probability of no such overlap is given by ❇ ✷ .
Partial resampling

In the basic particle filter, all samples are frequently re-
sampled based on their accumulated weights [4]. Unfor-
tunately, in our context, such a resampling does not work
since the weights of the samples may differ by orders of
magnitude. For example, the probability that the robot en-
ters the partial map at any specific point in time is very
small (❏ is set to 0.01 in our experiments), resulting in ex-
tremely small weights for the entry point samples (step 8
in the algorithm). Hence, these samples are very likely not
to be chosen during the next resampling step, thereby mak-
ing it almost impossible to detect situations in which the
robot enters the map for the first time. Fortunately, it is not
necessary to resample according to the current weights of
the samples, as shown by [11]. In the context of impor-

tance sampling, if we have samples with weights ❬ ✾ ✙ ❀ and

resample them w.r.t. to a weighting function ✛ ✾ ✙ ❀
, then the

weights of the samples have to be adjusted to values pro-

portional to ❬ ✾ ✙ ❀✚❅ ✛ ✾ ✙ ❀ . This is consistent with the normal
resampling case, where we resample w.r.t. to the weights❬ ✾ ✙ ❀ and get samples with uniform weights. If we resample

End position

Start position

True path

Measured path

Partial map

(a)

Robot position

Entry samples

Entry samples

Best trajectory match

(b)

Robot position

Best trajectory match

(c)

50m
Robot position

(d)

Figure 3: Partial map localization: (a) Partial map and trajectory of the other robot. (b)–(d) Sample sets at different points in time.

Shown are the sets after partial resampling, i.e. the samples have different weights. The pictures also show the entry point samples and

the most likely hypothesis for the other robot’s position, along with its path attached to this hypothesis. (a) After only short overlap, the

best match is not yet correct. The summed probability of all samples inside the map is �✹✆ ✁✄✂✆☎ . (b) The robot exits the map, but already

determined the correct match. Now, the probability of being inside the map dropped to �✔✆ �✆�✆�✞✝✄☎ , since all high-weight samples just exited

the map. (c) After moving about 50m outside the map, the robot returned and the match is correct (probability of this match is �✹✆ ☎✟✂✆✂ ✡ .

Figure 4: Sample sets after resampling using the complete

weights of the samples shown in Fig. 3 (b)–(d). It becomes clear

that the approach puts high weights on the correct hypotheses.

samples inside the map w.r.t. to the observation likelihood✒❄✦☎✳ ✷ ❀ ✾ ✾ ✙ ❀✷ ✬ , then we only have to divide the weights of the
resulting samples by this likelihood. Note that even though
this step reverses the likelihood multiplication in step 11 of
the algorithm, it is still necessary to compute the weights in
step 11. This weight update is needed to weight samples in-
side the partial map against samples outside the map (which
are weighted by ✒ ✦✤✳✓✷❅❀ outside ✬). As a result of this resam-
pling procedure, all samples do not have the same weights,
but carry the “non-resampled” weights with them into the
next iteration. Hence, even though our approach does not
resample the complete sample set at each iteration, it still
keeps track of the correct posterior density. Furthermore, it
is possible to generate the fully resampled set at any point
in time (cf. 3 and 4).

Intuitively, the key advantage of this partial resampling
step is that samples that enter the map with a small weight
are not immediately “deleted” in the next resampling step,
but they are given a chance to accumulate higher weights
if they predict observations well inside the map. Another
very important advantage of this approach is that samples
outside the partial map are not deleted but tracked until they
re-enter the map.

5 Experiments

In these experiments we test different aspects of our ap-
proach to map merging and its integration into the decision-
theoretic coordination.

5.1 Map merging

Fig. 3 illustrates a typical partial map localization run using
a map built from 30m of robot motion. Fig. 3(a) shows the

partial map with the complete path of the other robot (as
measured by the robot’s wheel encoders and as determined
by localization in the complete map). It is clear that oc-
cupancy map matching as described in [8] is very likely to
fail in finding good matches in such environments, since the
trajectory of the other robot is highly corrupted by noise. In
the beginning of this example, all samples are spread uni-
formly inside the partial map. The start position of the other
robot is outside the map. Fig. 3(b)–(d) show the partially
resampled sample sets at different points in time. The cor-
responding sets after full resampling are shown in Fig. 4.
The sequence shows that our approach is able to find the
correct match even when the other robot starts outside the
map, enters, exits, and then re-enters the partial map.

To evaluate our approach more systematically, we built
15 partial maps based on data collected in three indoor
environments. We then collected additional data in the
same environments and randomly chose sub-trajectories
from this data. Each partial map was paired with 10 sub-
trajectories resulting in 150 map-trajectory pairs (the maps
built by robot A and the trajectories generated by robot
B). For each pair, we determined the quality of our partial
map localization approach using a precision-recall measure
adapted to the sequential nature of the decision making
problem. To see, consider that at each iteration of the par-
ticle filter, robot A determines the probability of the most
likely hypothesis for B’s position in its map. In our eval-
uation, A considers a hypothesis to be valid if its proba-
bility exceeds a specific threshold ✥ . Precision measures
which fraction of these valid hypotheses are correct. Cor-
rectness is tested by comparing the position of the hypoth-
esis to a reference path computed offline in the complete
map of the environment. To determine recall, we checked
at what times robot B was in robot A’s partial map. Recall
measures the fraction of this time for which robot A gen-
erated a correct hypothesis, i.e. at the correct position and
with probability above the threshold ✥ .

We used the 150 map-trajectory pairs to test the influence
of partial resampling on the performance of map merging.
This was done by evaluating the precision recall trade-off
for different values of ✒ ✦✤✳❙❀ outside ✬ , the likelihood of sen-
sor measurements outside the partial map. This likelihood

Start robot B

Start robot A

IIa
Ia

End robot B

End robot A

Ib

IIb

Rendezvous

Ia Ib IIa IIb

Figure 6: Coordinated exploration: Robots A and B start at unknown locations and explore independently. The trajectories of A and B

are shown as dotted and solid lines, respectively. After some time, the robots reach positions Ia and Ib, and A estimates B’s location in

its map. The corresponding maps are shown in Ia and Ib. The overlap between the two maps is not sufficient to create a hypothesis with

probability above �
✆

�✹✆ ✂ . Both robots keep exploring until, at positions IIa and IIb, A finds a very likely hypothesis for B’s position.

Both robots move to the meet point and verify the hypothesis. The maps are merged and the robots start coordinated exploration. A moves

to the left and B first moves into the small hallway in the lower part.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
r
e
c
i
s
i
o
n

Recall

Full

Partial

0.5

0.95

0.75

0.2

0.05

Figure 5: Precision vs. recall: Each point represents an aver-

age over 150 pairs of partial maps and trajectories. Each curve

shows the trade-off for different thresholds � (0.0001-0.999). The

dashed lines indicate results obtained with partial resampling for

different values of ✔ ✑★✛❯✙ outside
✡

(the highest value is nine times

greater than the lowest value). Solid lines represent the corre-

sponding results obtained with the original resampling approach.

is a crucial value for partial localization since it determines
the ratio between weights of samples inside the partial map
and those outside the map. The solid and dashed curves
in Fig. 5 show the results obtained for six different likeli-
hoods using partial resampling and the original resampling,
respectively. Each curve gives the trade-off for different
thresholds ✥ (0.0001–0.999). Note that values to the upper
right represent better trade-offs. The curves show that par-
tial resampling is clearly superior to full resampling. Par-
tial resampling demonstrates better precision/recall rates
and robustness against parameter changes. The curves also
show that for the best ✒❄✦☎✳❁❀ outside ✬ , our approach achieves

a precision of 75% and at the same time a recall of 45%, i.e.
75% of all hypotheses exceeding the threshold are correct,
and during 45% of the time robot B was in the map, the
probability of the correct location was above the threshold
and had the highest likelihood among all locations 1. For
the same likelihood, our approach can achieve a recall rate
of 70%, but at the cost of lowering the precision to 55%.
These results are extremely encouraging since they were
obtained with rather small maps obtained from 20–30m of
robot motion. Obviously, for larger maps, the precision and
recall can both be increased. Furthermore, our approach
to hypothesis verification additionally increases the robust-
ness against false matches.

5.2 Integration into coordination

In this preliminary experiment we demonstrate the inte-
gration of partial map merging into the multi-robot co-
ordination structure. To do so, two Pioneer DX2 robots
were placed at different, unknown locations in our envi-
ronment (see Fig. 6). The task of the robots was to ex-
plore the environment, merge their maps when possible,
and then perform coordinated exploration. The picture
shows that the two robots successfully completed the in-
dividual steps of this task. Note that not all steps were fully
automated. Robot detection was determined manually by
checking whether the two robots moved within less than
one meter. We are currently implementing unique robot

1Note that recall can not be expected to be much higher, since
the robot has to move for several meters inside the map before a
match can be found

detection using signatures in laser range-scans and a coor-
dinated motion pattern between two robots.

6 Conclusions and Future Research

We have presented a novel approach to coordinated multi-
robot exploration under global uncertainty about the robot’s
relative start locations. The key technical innovation of this
approach is an adapted particle filter that allows pairs of
robots to efficiently and sequentially estimate their relative
locations during the exploration process. The approach es-
timates the posterior over robot positions both inside and
outside the partial map. Thus, a robot does not only es-
timate another robot’s position within its partial map, but
it can also estimate the probability of an overlap between
the maps. In contrast to an alternative approach using map
matching, our technique can estimate map matches sequen-
tially, i.e. the estimates can be updated whenever new data
arrives. The experimental results show that this approach
works very well even on small map patches based on 20m
of robot motion.

We also show how to seamlessly integrate this approach
to map merging into a decision-theoretic multi-robot coor-
dination strategy. In order to overcome the risk of false-
positive map matches, the robots actively verify location
hypotheses using a rendezvous strategy. Initial experiments
using two robots show that our system is able to explore en-
vironments even when the start locations of the robots are
unknown. Despite these encouraging results, this is only
a first step toward the robust deployment of large robot
teams. However, we strongly believe that the framework
described in this paper scales toward the scenario of dis-
tributed exploration of very large indoor environments. We
are currently working on a complete implementation and
thorough experimental evaluation of our architecture.

So far, we assume that robots within an exploration clus-
ter can always communicate with each other. The consid-
eration of communication for the exploration strategy is an
important aspect of future research. Our approach to partial
map localization can sequentially estimate another robot’s
location. However, as described in this paper, the technique
assumes that the partial map does not change during the lo-
calization process. Obviously, this assumption is not valid.
We are currently investigating how to adjust the approach to
dynamically changing maps. First tests indicate that good
results can be achieved by simply growing the map during
the partial localization process (deleting samples that are in
occupied areas as the map grows).

Another key problem in partial map merging has not
been addressed in this paper. This is the question of how
to determine the likelihood of observations outside the par-
tial map. Currently, we set a fixed value for this likeli-
hood. The experiments show that our approach can achieve
good results even for highly varying settings of this likeli-
hood. In [9] we present an approach that uses a hierarchi-
cal Bayesian model to estimate the structure of an environ-
ment. This structure is used to better estimate the likeli-
hoods of sensor measurements outside of partial maps. Ex-

periments using a feature based sensor model show that this
approach can increase the quality of the estimation process.

Acknowledgments

This work has partly been supported by the NSF under
grant number IIS-0093406 and by DARPA’s SDR Pro-
gramme (contract number NBCHC020073).

References
[1] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan. Estimation

with Applications to Tracking and Navigation. John Wiley,
2001.

[2] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun.
Collaborative multi-robot exploration. In Proc. of the
IEEE International Conference on Robotics & Automation
(ICRA), 2000.

[3] G. Dedeoglu and G.S. Sukhatme. Landmark-based match-
ing algorithm for cooperative mapping by autonomous
robots. In Proc. of the 5th International Symposium on Dis-
tributed Autonomous Robotic Systems (DARS), 2000.

[4] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential
Monte Carlo in Practice. Springer-Verlag, New York, 2001.

[5] J.W. Fenwick, P.M. Newman, and J.J. Leonard. Coopera-
tive concurrent mapping and localization. In Proc. of the
IEEE International Conference on Robotics & Automation
(ICRA), 2002.

[6] D. Fox. Adapting the sample size in particle filters through
KLD-sampling. International Journal of Robotics Research
(IJRR), 22, 2003.

[7] N. Roy and G. Dudek. Collaborative exploration and ren-
dezvous: Algorithms, performance bounds and observa-
tions. Autonomous Robots, 11(2), 2001.

[8] A.C. Schultz and A. William. Continuous localization using
evidence grids. In Proc. of the IEEE International Confer-
ence on Robotics & Automation (ICRA), 1998.

[9] B. Stewart, J. Ko, D. Fox, and K. Konolige. The revisit-
ing problem in mobile robot map building: A hierarchical
Bayesian approach. In Proc. of the Conference on Uncer-
tainty in Artificial Intelligence (UAI), 2003.

[10] S. Thrun. A probabilistic online mapping algorithm for
teams of mobile robots. International Journal of Robotics
Research, 20(5), 2001.

[11] S. Thrun, J. Langford, and V. Verma. Risk sensitive parti-
cle filters. In Advances in Neural Information Processing
Systems 14. MIT Press, 2001.

[12] S.B. Williams, G. Dissanayake, and H. Durrant-Whyte. To-
wards multi-vehicle simultaneous localisation and mapping.
In Proc. of the IEEE International Conference on Robotics
& Automation (ICRA), 2002.

[13] B. Yamauchi. Frontier-based exploration using multiple
robots. In Proc. of the Second International Conference on
Autonomous Agents, 1998.

[14] R. Zlot, A. Stentz, M. Bernardine Dias, and S. Thayer.
Multi-robot exploration controlled by a market economy. In
Proc. of the IEEE International Conference on Robotics &
Automation (ICRA), 2002.

