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ABSTRACT
Clos networks are an important class of switching networks
due to their modular structure and much lower cost com-
pared with crossbars. For routing I/O permutations of Clos
networks, sequential routing algorithms are too slow, and all
known parallel algorithms are not practical. We present the
algorithm-hardware codesign of a unified fast parallel rout-
ing architecture called distributed pipeline routing (DPR)
architecture for rearrangeable nonblocking and strictly non-
blocking Clos networks. The DPR architecture uses a lin-
ear interconnection structure and processing elements that
performs only shift and logic AND operations. We show
that a DPR architecture can route any permutation in re-
arrangeable nonblocking and strictly nonblocking Clos net-
works in O(

√
N) time. The same architecture can be used to

carry out control of any group of connection/disconnection

requests for strictly nonblocking Clos networks in O(
√

N)
time. Several speeding-up techniques are also presented.
This architecture is applicable to packet and circuit switches
of practical sizes.

Categories and Subject Descriptors: B.4.3 [Intercon-
nections]: Parallel I/O; C.2.6 [Internetworking ]: Routers

General Terms: Algorithms; Design

Keywords: Clos network, circuit switching, packet switch-
ing, permutation routing, rearrangeable nonblocking, strictly
nonblocking, parallel algorithm, parallel architecture, pipelin-
ing.

1. INTRODUCTION
Switching networks serve as the core of network switches

and routers, and the communication subsystems in high-
performance parallel computer systems. An N × N switch-
ing network simultaneously connects up to N input/output
pairs, which form a (partial) I/O permutation, using link-
disjoint (or conflict-free) paths within the network. A switch-
ing network is strictly nonblocking if there always exists
a connection path from any idle input to any idle output
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in the presence of existing connections, regardless of how
the existing connection paths were selected. A switching
network is rearrangeable nonblocking if connections for any
(partial) I/O permutation can be established under the con-
dition that rearrangement of existing connections is allowed.
Strictly nonblocking switching networks are suitable to be
used as switches in circuit switching networks, whereas rear-
rangeable nonblocking networks are more cost-effective for
implementing packet switches for packet switching networks.
The routing problem of a nonblocking switching network is
to find conflict-free paths for I/O permutations. The focus
of this paper is on the design and analysis of a practical fast
parallel architecture for routing permutations in rearrange-
able and strictly nonblocking Clos switching networks[6].

A 3-stage N × N Clos network can be constructed from
smaller crossbar switches arranged in three stages so that
it can be rearrangeable nonblocking or strictly nonblock-
ing depending on the number of middle-stage modules. Its
cost, measured by the number of crossing points, is O(N 1.5),
which is significantly less than that of an N × N crossbar.
Due to its modular structure, the generalized Clos networks
can be recursively constructed with more than three stages
and cost lower than O(N1.5) [3]. However, unlike crossbars
for which routing is trivial, the routing problem for Clos
networks is time consuming. The best known sequential al-
gorithm for rearrangeable Clos network has time complexity
O(N log N) [15]. For strictly nonblocking Clos networks, we
have not seen any algorithm that routes O(N) new connec-
tions in the presence of O(N) existing connections in less
than O(N1.5) time in the worst case. In order to speed up
routing, parallel algorithms must be used. For rearrangeable
3-stage Clos networks, the best parallel time complexity is
O(log2 N) if the number of middle stage modules is a power
of 2 [8]. This result is also reported in [11, 12] in differ-
ent forms. For an arbitrary number of middle stage mod-
ules, the best parallel time known is O(log3 N) according
to [8]. These parallel time complexities are derived on the
abstract parallel random access machine (PRAM) model [9]
or a completely connected multiprocessor system of N pro-
cessors supporting constant time communications of compli-
cated patterns, which are either unrealistic or too expensive
to build. We have not seen practical fast parallel algorithms
for routing an arbitrary set of connections in strictly non-
blocking Clos networks.

In this paper, we present the algorithm-hardware code-
sign of a fast parallel routing architecture called distributed
pipeline routing (DPR) architecture. We first present a
unified PRAM algorithm for routing in rearrangeable and



strictly nonblocking Clos networks, and then describe the
DPR architecture that directly implements this algorithm.
The attractive features of the DPR architecture include its
simplicity and very small constant associated with its time
complexity. It uses a linear interconnection structure and
O(N) processing elements that performs only shift and logic
AND operations. A permutation routing task is decom-
posed into groups of simple Boolean logic operations, and
these operations are distributed over processing elements in
a pipelined fashion. Pipelining is further utilized at different
levels to improve performance. We show that a DPR archi-
tecture can route any permutation in rearrangeable non-
blocking and strictly nonblocking Clos networks in O(

√
N)

time. The same architecture can be used to carry out con-
trol of any group of connection/disconnection requests for

strictly nonblocking Clos networks in O(
√

N) time. Several
speeding-up techniques are also presented. Considering that√

N ≤ log2
2 N for N ≤ 65, 536, our architecture is applicable

to packet and circuit switches of practical sizes.

2. ROUTING IN CLOS NETWORKS
The Clos network C(n1, r1, m, n2, r2) is an r1 ·n1×r2 ·n2 3-

stage network, where the first stage S1 consists of r1 (input)
crossbars S1(i), 0 ≤ i ≤ r1 − 1, of size n1 ×m, the last stage
S3 consists of r2 (output) crossbars S3(j), 0 ≤ j ≤ r2 −1, of
size m×n2, and the middle stage S2 has m crossbars S2(k),
0 ≤ k ≤ m−1, of size r1×r2. Each input crossbar S1(i) has
a connection to each middle stage crossbar S2(k). Similarly,
each middle stage crossbar S2(k) has a connection to each
output crossbar S3(j). Each component crossbar is called a
module. Figure 1 shows the structure of C(n1, r1, m, n2, r2).
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Figure 1: Three-stage Clos network C(n1, r1, m, n2,

r2).

When n1 = n2 = n and r1 = r2 = r, the network C(n1,

r1, m, n2, r2) is called a symmetric 3-stage Clos network,
denoted by C(n, m, r). We are particularly interested in
N ×N symmetric Clos networks C(n, m, r), where N = nr.
It is known that C(n, m, r) is rearrangeable nonblocking if
and only if m ≥ n [1] and C(n, m, r) is strictly nonblocking
if and only if m ≥ min{2n − 1, nr} [6]. Thus, rearrangeable

and strictly nonblocking C(n, m, r)s with m = O(n) have
O(N1.5) crossing points. Figure 2 gives a 3-dimensional view
of C(n, 2n − 1, n), where each module is represented by a
plane.
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Figure 2: A 3-dimensional view of C(n, 2n − 1, n).

For C(n, m, r), the N = nr inputs are denoted by a set
I = ∪0≤i≤r−1IGi, where IGi = {Ii,k|0 ≤ k ≤ n − 1} is
the i-th input group that consists of inputs of input module
S1(i), with Ii,k being the k-th input of S1(i). Similarly,
the set of N outputs is O = ∪0≤j≤r−1OGj , where OGj =
{Oj,k|0 ≤ k ≤ n−1} is the j-th output group, which consists
of outputs of output module S3(j), with Oj,k being the k-
th output of S3(i). The connections between I and O of
C(n, m, r) can be characterized by a mapping π from I to
O. For a (partial) permutation, each input in I is to be
connected to at most one output in O and each output in O

is to be connected to at most one input in I. We represent
I/O connections by a bipartite graph G(V1, V2; E), which has
r nodes in each of V1 and V2, and a set E of edges between
V1 and V2. More specifically, the nodes in V1 are labeled
v′

i (for input group IGi) and the nodes in V2 are labeled
v′′

j (for output group OGj ), 0 ≤ i, j ≤ r − 1. There is a
one-to-one correspondence between each I/O connection in
an I/O mapping π and an edge in E: the I/O connection
from Ii,j to Op,q is corresponding to an edge between node
v′

i and node node v′′
p . Clearly, G(V1, V2; E) is a multigraph

of degree at most n. We denote the set of edges in E that
connect the same pair of nodes v′

i and v′′
j by Ei,j , i.e. Ei,j =

{e|e = (v′
i, v

′′
j ) ∈ E}. We call G(V1, V2; E) an I/O mapping

graph.

Example 1. Consider the following I/O mapping:

„

(0, 0)∗ (0, 3) (1, 0) (1, 1) (1, 2) (1, 3)
(0, 2)∗ (2, 4) (4, 1) (3, 3) (0, 3) (1, 2)

(1, 4) (2, 0)∗ (2, 4)∗ (3, 1)∗ (4, 1)∗ (4, 2)
(0, 1) (4, 0)∗ (3, 0)∗ (2, 2)∗ (3, 2)∗ (3, 4)

«

in which (x, y) and (x′, y′) in the same column indicates
input Ix,y is mapped to output input Ox′,y′ in strictly non-
blocking C(5, 9, 5). A column marked with ∗ corresponds to
an existing I/O connection and a column without ∗ indicates
a new connection to be established. The corresponding I/O
mapping graph is shown in Figure 3.

For routing in rearrangeable nonblocking C(n, m, r) used
as a cell switch, no connection is assumed existing.
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Figure 3: An I/O mapping graph of strictly non-
blocking C(5, 9, 5), where a solid edge corresponds
to an existing I/O connection, and a dashed edge
corresponds to an I/O connection to be established.
(xy, x′y′) is a connection from Ix,y to Ox′,y′ .

The routing problem for C(n, m, r) can be solved by prop-
erly coloring edges of G(V1, V2; E) with at most m colors.
We say that the edges are properly colored if no two edges
incident at the same node have the same color. A proper
coloring of edges in G(V1, V2; E) translates into conflict-free
I/O connections within C(n, m, r) as follows: if an edge be-
tween v′

i and v′′
j is assigned color k, then its corresponding

I/O connection is established by letting it to take the unique
path through the middle stage module S2(k). Hence, we can
reduce the problem of routing connections in C(n, m, r) to
the following two graph coloring problems:

Weak Edge Coloring Problem: Given an I/O mapping graph
G(V1, V2; E), properly color edges in E. If we can find a
weak edge-coloring of G(V1, V2; E) using at most c1 different
colors, we call this coloring a (weak)1 c1-edge coloring of
G(V1, V2; E).

Strong Edge Coloring Problem: Given an I/O mapping graph
G(V1, V2; E) with a subset Ec of properly colored edges of
E, color edges in E − Ec without changing the colors of
edges in Ec so that all edges in E are properly colored. If
we can find a strong edge-coloring of G(V1, V2; E) using at
most c2 different colors, we call this coloring a strong c2-edge
coloring of G(V1, V2; E).

Note that the degree of any I/O mapping graph G(V1, V2; E)

of C(n, m, r) is n. Let ∆(G) denote the degree of a bipartite
multigraph G. The following two lemmas guarantee that an
m-edge coloring is always possible for any G(V1, V2; E) of a
rearrangeable nonblocking C(n, m, r), and a strong m-edge
coloring is always possible for any G(V1, V2; E) of a strictly
nonblocking C(n, m, r).

Lemma 1. [2] Every bipartite multigraph G has a ∆(G)-
edge coloring.

Lemma 2. [12] Any multigraph G has a strong (2∆(G)−
1)-edge coloring.

1The definition of weak edge-coloring is the same as the
definition of edge-coloring in graph theory. Thus we omit
“weak” in the rest of this paper.

3. A PARALLEL ROUTING ALGORITHM
In this section, we present a parallel algorithm for edge

coloring of bipartite multigraphs of degree n. This algorithm
can be used to find m-edge coloring of bipartite multigraphs
of degree n, where m ≥ n, and strong m-edge coloring of
bipartite multigraphs of degree n, where m ≥ 2n − 1. The
approach of solving routing problems by graph edge-coloring
has been used extensively (e.g. [5, 7, 10, 8, 12, 14]). Unlike
existing work, which aimed at finding theoretically fastest
algorithms, our objective is to design a fast algorithm COL-
ORING that is feasible for hardware implementation.

There are r2 processing elements PEi,j , 0 ≤ i, j ≤ r − 1.
Let Color1[0..r − 1, 0..m − 1] be an r × m Boolean array
such that Color1[i, k] = 1 if and only if color k is available
for any edge incident at node v′

i in V1. Similarly, we define
Color2[0..r − 1, 0..m − 1] as an r × m Boolean array such
that Color2[j, k] = 1 if and only if color k is available for any
edge incident at node v′′

j in V2. As input of COLORING,
we are given a bipartite multigraph G(V1, V2; E) of degree n

with Ec being the subset of colored edges. We use Ei,j to
denote the subset of edges of E with one end node incident
at v′

i and the other incident at v′′
j .

algorithm COLORING(G(V1, V2; E))
begin

for k = 0 to m − 1 do
for all PEi,j, 0 ≤ i, j ≤ r − 1, do in parallel

ci,j,k := (i + j + k) mod m;
if there is an uncolored edge e in Ei,j

and Color1[i, ci,j,k] ∧ Color2[j, ci,j,k] = 1
then begin

select one uncolored edge e from Ei,j ;
assign color ci,j,k to edge e and mark e

“colored”;
Color1[i, ci,j,k] := 0; Color2[j, ci,j,k] := 0

end
end

Theorem 1. Let G(V1, V2; E) be any bipartite multigraph
such that |V1| = |V2| = r and its degree is n, and Ec be a
subset of edges that are properly colored with no more than
m colors. If m ≥ 2n−1, then algorithm COLORING colors
the edges in Euc = E − Ec properly without changing the
colors of edges in Ec. If m ≥ n and Ec = ∅, then algorithm
COLORING properly colors the edges in E.

Proof. The algorithm has m iterations. The proof con-
sists of the following simple facts:

(i) In iteration k, one uncolored edge, if any, in each Ei,j ,
0 ≤ i, j,≤ r − 1, is selected. Note that such a se-
lected edge may or may not be colored in the itera-
tion, and it is colored if and only if Color1[i, ci,j,k] ∧
Color2[j, ci,j,k] = 1 and the color used is (i + j +
k) mod m.

(ii) In iteration k, if two edges, one in Ei,j and one in Ep,q

are assigned the same color, then i 6= p and j 6= q.
This is because (i+ j +k) mod m = (p+q +k) mod m

only if i 6= p and j 6= q.

(iii) For each uncolored edge, all m colors are tried.

(iv) After m iterations all uncolored edges are assigned col-
ors and no two edges incident at a common node are



assigned the same color because of (i), (ii) and (iii),
and Lemma 1 and Lemma 2.

This completes the proof of the theorem.

Using the nr-processor EREW PRAM abstract parallel
machine model, each iteration of the outer for-loop of COL-
ORING can be easily carried out in O(1) time. Similarly,
using an nr-processor parallel computer system with nr

processors connected as a complete graph, each iteration
can be carried out in O(1) time. The total time required
by COLORING is O(m). Since for C(n, m, r) to be rear-
rangeable nonblocking and strictly nonblocking, m ≥ n and
m ≥ 2n − 1, respectively, we have the following result:

Corollary 1. For an N × N rearrangeable or strictly
nonblocking C(n, m, r) network with m = O(n) = O(

√
N),

algorithm COLORING takes O(
√

N ) time to route any I/O
mapping on an N-processor EREW PRAM or a completely
connected N-processor parallel computer system in O(

√
N)

time.

PRAM model is not realistic. A completely connected
multiprocessor system requires O(N2) interconnection com-
plexity, making it unscalable and too expensive to build. In
the next section, we present a parallel processing architec-
ture for algorithm COLORING. This architecture has linear
interconnection complexity and can achieve the same perfor-
mance as PRAM and a completely connected N -processor
parallel computer system.

4. DISTRIBUTED PIPELINING ROUTING
ARCHITECTURE

In this section, we introduce our hardware routing archi-
tecture for C(n, m, r) networks. We name our architecture
as the Distributed Pipelining Routing (DPR) architecture.
We consider a subclass (rearrangeable or strictly) nonblock-
ing Clos networks C(n, m, r) such that n = r. The reason
of choosing n = r is because for such networks our DPR de-
sign is optimally balanced. Our design can be extended to
perform routing in nonblocking C(n, m, r) networks of arbi-
trary valid values of n, m and r. For brevity, we omit this
extension in this paper.

4.1 Basic Hardware Features
The design of DPR for (rearrangeable or strictly) non-

blocking Clos networks C(n, m, n) is based on the structure
of G(V1, V2; E) and algorithm COLORING. It has the fol-
lowing features:

(1) Corresponding to each node v′
i in V1 (i.e. each input

group IGi of C(n, m, n)), there is a ring IRi of n pro-
cessing elements (PEs) denoted by IPi,j , 0 ≤ j ≤ n−1.
IPi,j is connected to IPi,(j−1) mod n by a unidirectional
link. Similarly, there is a ring ORi of n PEs denoted
by OPi,j , 0 ≤ j ≤ n−1, corresponding to each node v′′

i

in V2 (i.e. each output group OGi) such that OPi,j is
connected to OPi,(j−1) mod n by a unidirectional link.
IRi (resp. ORi) is called input ring (resp. output ring)
i.

(2) A request for connection from input Ii,p to output Oj,q

is received by IPi,p. IPi,p forms a 3-tuple (p, j, ),

where is a blank field to be filled. After routing, a 3-
tuple (p, j, c) is returned to Ii,p, where c corresponds to
a color, indicating that a connection from Ii,p to Oj,q is
going to go through middle stage module S2(c). Note
that upon receiving (p, j, c), Ii,p can make a connec-
tion from Ii,p to output Oj,q by self-routing. IPi,j is
responsible for finding c for I/O pair (Ii,p, Oj,q). We
call such a 3-tuple a connection addition request token
(CAR token). CAR tokens of each input group IGi

flow around ring IRi in pipelined fashion.

(3) Each IPi,j in ring IRi has a 1-bit cell denoted by c′i,j ,
a circuit capable of carrying out simple Boolean logic
operations, a couple of working registers, and a small
amount of memory. In IRi, the last processing ele-
ment, IPi,n−1, has m − n additional cells. A total
of m cells form an m-cell ring, with 1 cell in each of
the first n − 1 PEs, and m − n + 1 cells in the last
PE, IPi,n−1. This m-cell ring is called an input circu-
lar shift register (ICSR). For easy reference, we denote
this m-cell ring by ICSRi.

(4) Each OPi,j in ring ORi has a 1-bit cell denoted by c′′i,j .
The last processing element, OPi,n−1, in ORi has m−n

additional cells. A total of m cells form an m-cell
ring, with 1 cell in each of the first n − 1 PEs, and
m − n + 1 cells in the last PE, OPi,n−1. This m-cell
ring is called an output circular shift register (OCSR),
and we denote it by OCSRi.

(5) Each IPi,j is associated with a modulo-m circular counter
CCi,j . Thus, there are n circular counters in each IRi,
and a total of N = n2 such counters. (For conve-
nience, we also assume that each OPi,j is associated
with a modulo-m circular counter CCi,j . We denote
the counters for IP s as CC1

i,js and counters for OP s

as CC2
i,js.) All counters are incremented by a com-

mon system clock. The initial value of CCi,j is set
(i + j) mod m.

(6) Each IPi,j is connected to OPj,i by a 1-bit bidirectional
link. Thus, Both IPi,j and OPj,i can access c′′j,i.

(7) All IP s, OP s, ICSRs and OCSRs are under the control
of a common system clock.

The architecture of input rings IRi and output rings QRj

for C(5, 9, 5) are shown in Figure 4. Figure 5 shows the
overall structure of our DPR architecture.

4.2 Hardware Algorithm
Based on the architecture presented in the previous sec-

tion, we have a hardware algorithm HARD-COLORING
that implements algorithm COLORING of Section 3. The
algorithm iterates continuously with each iteration consist-
ing of three phases:

algorithm HARD-COLORING
begin

repeat
Phase 1;
Phase 2;
Phase 3

for ever
end
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Figure 5: DPR architecture for Clos network
C(5, 9, 5). The sequence of values of each CC1

i,j and

CC2
i,j is given on the left side and right side of IPi,j

and OPi,j , respectively.

We call each iteration of HARD-COLORING a routing
cycle. We now present the details for each of the three phases
of a routing cycle.

4.2.1 Phase 1 - Distribution of I/O Edges
In IRi, IPi,j is responsible for processing all I/O connec-

tion requests from input group IGi to output group OGj .
We call IPi,j the agent for I/O connections from IGi to
OGj . Each I/O connection from input group IGi to output
group OGj corresponds to an edge from v′

i to v′′
j in the corre-

sponding I/O mapping graph G(V1, V2; E), and all CAR to-
kens from IGi to OGj correspond to the set Euc

i,j = Euc∩Ei,j

of new edges of G(V1, V2; E) to be colored (note: for reconfig-
urable nonblocking Clos networks, Euc = E). The purpose
of this phase is to prepare CAR tokens, and distribute them
to their respective agent PEs. The operations of this phase
are given below:

for all IPi,p, 0 ≤ i, p ≤ n − 1, do in parallel
if Ii,p receives a request to be connected to Oj,q

then prepare a CAR token (p, j, )
for k = 1 to n − 1 do

for all IPi,j , 0 ≤ i, j ≤ n − 1, do in parallel
if IPi,j has a CAR token (p, j′, ) such thatp 6= j

then send (p, j′, ) to IPi,(j−1) mod n

4.2.2 Phase 2 - Color Assignment
This phase directly implements the algorithm COLOR-

ING. Boolean circular shift registers ICSRis (resp. OCSRis)
are used to represent array Color1 (resp. Color2), and
each ICSRi (resp. OCSRi) is used to represent subarray
Color1[i, 0..m−1] (resp. Color2[i, 0..m−1]). The operations
of this phase are as follows:

for k = 0 to m − 1 do
begin

for all IPi,j , 0 ≤ i, j ≤ n − 1, do in parallel
begin

if c′i,j ∧ c′′j,i = 1 and there is a CAR token
(p, j, ) with its third field unfilled
then assign CC1

i,j value (i.e. a color
number) as the value of the third field of the
token to obtain (p, j, CC1

i,j),
and set c′i,j := 0 and c′′j,i := 0;

increment CCi,j by 1;
end
for all ICSRi and all OCSRi, 0 ≤ i ≤ n − 1,
do in parallel

perform a circular shift operation;
end

4.2.3 Phase 3 - Redistribution of I/O Edges
The purpose of this phase is to move each CAR token (j′,

p, cj′,p) in IRi at the end of Phase 2 back to IPi,j′ , where
the token originally came from in Phase 1. Suppose that a
token T = (j′, p, cj′,p) is currently in IPi,j , and to be sent
back to IPi,j′ . We define T ’s current forward distance to its
destination as j − j′ if j′ ≤ j, and n − j′ + j if j′ > j. The
current forward distance of T to its destination is the min-
imum number of hops in IRi for T to reach its destination
IPi,j . The operations of this phase are given below:



for k = 1 to n − 1 do
for all IPi,j , 0 ≤ i, j ≤ n − 1, do in parallel

if IPi,j has a token T such that its forward
distance to its destination is k

then send T to IPi,(j−1) mod n

Example 2. Consider the I/O mapping and colors for
existing connections in Example 1, as shown in Figure 3.
For IR1 of the DPR for C(5, 9, 5), there are five connection
requests: (I1,0, O4,1), (I1,1, O3,3), (I1,2, O0,3), (I1,3, O1,2),
and (I1,4, O0,1). In Phase 1, five CAR tokens, (0, 4, ), (1, 3,

), (2, 0, ), (3, 1, ), (4, 0, ), are prepared as shown in Figure
6(a). After Phase 1, all CAR tokens in IR1 are received by
their agent IP s, and Phase 2 starts using the configuration
of Figure 6(b). Colors available are 1, 3, 4, 7 and 8. Col-
ors 0, 2, 5, and 6 can not be used. The process of Phase
2 is shown in Figure 6(c). There are 9 iterations. In the
figure, two rows of numbers are associated with each itera-
tion. The first row contains values of c′ cell, denoted by (x),
or CC1 counter and c′cell, denoted by y(x), in IR1. The
second row contains values of the corresponding c′′ cells and
counters CC2 in ORs. If there is a CAR token of empty
“color” field in IP1,j, and c′1,j ∧ c′′j,1 = 1, the current value

of CC1
1,j is assigned to the CAR token, and both of c′1,j and

c′′j,1 are reset to 0. In Phase 3, the filled CAR tokens are
sent back to their origins as shown in Figure 6(d). Figure
3 shows that the colors assigned to the edges of new connec-
tions from IG1 do not conflict with colors of the edges of the
existing connections.

4.3 Analysis of HARD-COLORING

We show that our hardware algorithm HARD-COLORING
is equivalent to algorithm COLORING of Section 3 for C(n,

m, n). The following fact is obvious.

Fact 1. At the end of Phase 1, all CAR tokens corre-
sponding to edges in Euc

i,j of G(V1, V2; E) are sent to their
agent IPi,j in pipelined fashion. Note that for rearrangeable
C(n, m, n), Euc = E.

Denote the value of circular counter CC1
i,j and CC2

j,i, 0 ≤
i, j ≤ n − 1, during the k-th iteration of Phase 2 of HARD-
COLORING by CC1

i,j(k) and CC2
j,i(k), respectively. Since

CC1
i,j(0) = CC2

i,j(0) = (i + j) mod m, and CC1
i,j and CC1

i,j

are incremented at the end of each iteration, the following
statement is true.

Fact 2. Right before iteration k of Phase 2, CC1
i,j(k) =

CC2
i,j(k) = ci,j,k = (i + j + k) mod m, where ci,j,k is the

local variable of PEi,j in the k-th iteration of COLORING.

As noted earlier, the Boolean array Color1[0..n−1, 0..m−
1] (resp. Color2[0..n− 1, 0..m− 1]) used in algorithm COL-
ORING is represented by ICSRis (resp. OCSRis), with
ICSRi (resp. OCSRi) representing subarray Color1[i, 0..m−
1] (resp. Color2[i, 0..m − 1]) for C(n, m,n). Denote the
value of c′i,j and c′′i,j in iteration k of HARD-COLORING by
c′i,j(k) and c′′i,j(k), respectively, and define that c′i,j(0) and
c′′i,j(0) correspond to Color1(i, ci,j,0) and COLOR2(i, ci,j,0)
of iteration 0 of COLORING, respectively.
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Figure 6: Operations of input ring IR1 of C(5, 9, 5)
on Example 1. (a) Configuration after CAR prepa-
ration in Phase 1. (b) Configuration at the end of
Phase 1. (c) Process of Phase 2. (d) Configuration
after Phase 3.



Lemma 3. In iteration k of HARD-COLORING, c′i,j(k)
and c′′i,j(k) accessed by IPi,j correspond to Color1[i, ci,j,k]
and Color2 [j, ci,j,k] accessed by PEi,j in the k-th iteration
of COLORING, respectively.

Proof. Since the proofs for c′i,j(k) and c′′i,j(k) are the
same, we only consider c′i,j(k). HARD-COLORING imple-
ments COLORING for r = n. In the k-th iteration, PEi,j in
COLORING only accesses Color1[i, ci,j,k] of array Color1.
Similarly, in the k-th iteration, IPi,j in HARD-COLORING
only accesses c′i,j(k) of c′ cells. By definition of c′i,j(0), the
claim is obviously true for k = 0. Let J = (j + 1) mod m.
Assume that the claim is true for k′ and consider the case
of iteration k′ + 1. Let J = (j + 1) mod m. PEi,j ac-
cesses Color1[i, ci,j,k′+1], which was accessed by PEi,J in
iteration k′. IPi,j accesses c′i,j(k

′ + 1). By the shifting op-
eration performed at the end of iteration k′, c′i,j(k

′ + 1) is
c′i,J (k′), which implies that it was accessed by IPi,J in iter-
ation k′. By the hypothesis, c′i,j(k

′ + 1) accessed by IPi,j

corresponds to Color1[i, ci,j,k′+1] accessed by PEi,j in the
k-th iteration of COLORING, respectively. This completes
the induction.

Based on Facts 1 and 2, Lemma 3 and Theorem 1, Phase 2
exactly implements algorithm COLORING. By the correct-
ness of COLORING, Phase 2 of HARD-COLORING prop-
erly colors uncolored edges in G(V1, V2; E) for C(n, m, n).

Since all I/O connections considered are partial or full per-
mutations, no two CAR tokens are destined for the same PE
in each iteration of Phase 3 of HARD-COLORING in Phase
3 of HARD-COLORING. Scheduled by their forward dis-
tances, all tokens are sent back to their origins in pipelined
fashion without conflict after n − 1 iterations.

Let us consider the time complexity of HARD-COLORING
now. Obviously, Phase 1 takes n − 1 steps, with each step
taking O(1) time. Phase 2 takes m steps, with each step
taking O(1) time if all tokens in each IPi,j can be found
in O(1) time. This can be easily done by linking all tokens
in each IPi,j as a queue in arbitrary order. While Phase 3
also takes n − 1 steps, we must ensure that each step takes
O(1) time. In IPi,j , by maintaining an (n−1)-element array
with its d-th element containing a pointer to the token, if
any, with forward distance d, finding the token with forward
distance k in the k-th iteration of Phase 3 can be done in
O(1) time (note: the token with forward distance 0 remains
in IPi,j in the remaining iterations of Phase 3). The total
number of steps is 2n + m − 2. Since O(m) = O(n), where

n =
√

N for rearrangeable or strictly nonblocking C(n, m, n)
networks, we have the following result:

Theorem 2. For an N×N rearrangeable or strictly non-
blocking C(n, m, n) network with m = O(n) = O(

√
N ), algo-

rithm HARD-COLORING takes O(
√

N) steps to route any
I/O mapping in one routing cycle on the DPR architecture.

Since the pair IPi,j and OPj,i are connected by a link,
the value of CC2

j,i is implied by the value of CC1
i,j , CC2

j,i

is redundant; its introduction is meerly for the purpose of
easy analysis. To see this, consider the control architecture
for C(5, 9, 5) shown in Figure 5. The sequence of values of
each CC1

i,j and each CC2
i,js is shown on the left and right

side of the figure, respectively.
In the DPR architecture, routing decisions are made in

parallel in different IRs and ORs. The elements of these

rings can be distributed in the input ports. The intercon-
nection of the DPR architecture is very sparse. It is easy
to see that the total number of interconnections connecting
IP s and OP s in the DPR architecture for C(n, m, n) is 3N ,
a linear function of the inputs (or outputs).

5. ADDITIONAL FEATURES

5.1 Connection Tear-Down
Algorithm HARD-COLORING finds conflict-free I/O paths

for new connections in a Clos network. When an input Ii,p

wants to tear down a connection for the I/O pair (Ii,p, Oj,q),
it can simply stop using its connection path. However, in
order to make used internal links of C(n, m,n) by connec-
tion (Ii,p, Oj,q) available for other connections, the current
state of the network must be updated.

For a rearrangeable Clos network for (slotted) packet switch-
ing, this can be done by simply setting all cells in ICSRis
and OCSRis to 1 concurrently. For circuit switching, the
situation can be more complicated if input Ii,p immedi-
ately wants to establish a connection to another output
Oj′,q′ after tearing down its current (Ii,p, Oj,q) connection,
and, furthermore, several inputs may want to tear down
their current connections and establish new connections. We
can slightly modify the three phases of algorithm HARD-
COLORING to cope with such situations, making the DPR
design for strictly nonblocking C(n, m, n) complete.

In Phase 1, each IPi,p can prepare at most two request
tokens (p, j, c)# and (p, j′, ), where (p, j, c)# is for deleting
its current connection from Ii,p to Oj,q going through middle
stage module S2(c) (an edge in G(V1, V2; E) connecting v′

i

and v′′
p with color c) and (p, j′, ) is for adding a new connec-

tion from Ii,p to Oj′,q′ . We name (p, j, c)# as a connection
deletion request token (CDR token). Symbol #, which can
be represented by a binary bit, is used to distinguish CDR
tokens from CAR tokens. There are four possibilities for
each input: no CDR token and no CAR token, a CDR to-
ken but no CAR token, no CDR token but a CAR token, and
a CDR token and a CAR token. Then, CDR token (p, j, c)#

(if any) is sent to its agent IPi,j , and CAR token (p, j′, ) (if
any) is sent to its agent IPi,j′ . Tokens from all IPi,js in IRi

are sent to their destinations (agents) in pipelined fashion.
Phase 2 then is modified to have two subphases. Subphase
2.1, called color erase subphase, consists of m steps as fol-
lows:

for k = 0 to m − 1 do
begin

for all IPi,j , 0 ≤ i, j ≤ n − 1, do in parallel
begin

if there is a CDR token (j′, j, k)# and k = CCi,j

then set c′i,j := 1 and c′′j,i := 1 and

discard token (j′, j, k)#;
increment CCi,j by 1;

end
for all ICSRi and all OCSRi, 0 ≤ i ≤ n − 1,
do in parallel

perform a circular shift operation;
end

Subphase 2.2 is color assignment subphase, which is ex-



actly the same as Phase 2 of the original HARD-COLORING.
This modified algorithm has 2m + 2n − 2 steps in total. In
summary, we have the following result:

Theorem 3. For an N×N strictly nonblocking C(n, m, n)

network with m = O(n) = O(
√

N), DPR architecture can
satisfy any group of connection/disconnection requests in

O(
√

N) steps.

5.2 Speedup of Color Erase and Color Assign-
ment

For strictly nonblocking C(n, m, n), m ≥ 2n − 1. Then,
each routing cycle of the modified HARD-COLORING for
C(n, 2n − 1, n) takes 6n − 4 steps. We introduce a scheme
called doubled shift registers, particularly designed for strictly
nonblocking C(n, 2n − 1, n), that can reduce the number of
each subphases of Phase 2 to n, resulting 4n − 2 steps in a
routing cycle.

Instead of using one ICSRi in each IRi, we use two
ICSRis, ICSR1

i and ICSR2
i , each having n cells. Sim-

ilarly, we use two n-cell OCSRis, OCSR1
i and OCSR2

i ,
in each ORi. The j-th cell of ICSR1

i (resp. OCSR1
i )

and the j-th cell of ICSR2
i (resp. OCSR2

i ) reside in the
same IP (resp. OP ). The j-th cell of ICSR1

i and the
j-th cell of ICSR2

i are respectively connected to the i-th
cell of OCSR1

j and the i-th cell of OCSR2
j . The shift op-

erations of ICSR1
i s, ICSR2

i s, OCSR1
i s and OCSR2

i s are
performed synchronously. ICSR1

i and OCSR1
i are used to

maintain the availability of colors 0 through color n − 1,
and ICSR2

i and OCSR2
i are used to maintain the avail-

ability of colors n through color 2n − 2. Color 2n − 1 is
never used, and the values of its corresponding cells are al-
ways enforced to be 0 (i.e. unavailable). Each IPi,j has
two modulo-n circular counters CC

1,1
i,j and CC

1,2
i,j such that

CC
1,2
i,j = (CC

1,1
i,j + n) mod 2n. The modified input ring

IR and output ring OR structures for C(5, 9, 5) are shown
in Figures 7. For convenience, we assume that there are
two modulo-n circular counters CC

2,1
i,j and CC

2,2
i,j in OPi,j .

For Clos network C(5, 9, 5), the sequence of values of each
(CC

1,1
i,j , CC

1,2
i,j ) and each (CC

2,1
i,j , CC

2,2
i,j ) is given on the left

side and right side of IPi,j and OPi,j , respectively, in Figure
8.

With this modified architecture, two pairs of cells, (ICSR1
i,j ,

OCSR1
j,i) and (ICSR2

i,j , OCSR2
j,i) can be accessed by IPi,j

for color status. Thus, up to two CDR tokens and two CAR
tokens can be processed by IPi,j in each step of Phase 2 of
HARD-COLORING. Special digital logic circuit associated
with working registers must be designed to handle different
combinations of 1 and 2 tokens. In order to access two tokens
stored in the memory of each IPi,j , 2-port memory or sim-
ple memory interleaving can be used. To further reduce the
effective memory access time, these techniques can be com-
bined with latency hiding, which overlaps memory access
with shifting ICSR1

i s, ICSR2
i s, OCSR1

i s, and OCSR2
i s. It

is easy to verify that, by using CC
1,1
i,j , CC

1,2
i,j , CC

2,1
i,j , and

CC
2,2
i,j (where CC

2,1
i,j and CC

2,2
i,j are implied by CC

1,1
i,j and

CC
1,2
i,j , respectively) to access “colors”, this scheme reduces

the number of steps used in Phase 2 by half.

5.3 Overlapping Phases
A rearrangeable Clos network can be used as switching

fabric in packet routers as follows. A packet received in an

IPi,3 IPi,2 IPi,1 IPi,0IPi,4

4,iOP 3,iOP 2,iOP 1,iOP 0,iOP

OPj,3 OPj,1 OPj,0OPj,2OPj,4

(b)

4,jIP 3,jIP 2,jIP 1,jIP 0,jIP

(a)

Figure 7: The input and output rings with doubled
shifter registers for C(5, 9, 5). (a) IRi. (b) ORj .
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Figure 8: DPR architecture with doubled shifter
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is given on the left side and right side of IPi,j and
OPi,j , respectively.



input port is divided into fixed size cells, which are scheduled
by arbitration circuits (collectively called cell scheduler) so
that for each cell slot the connections for a (partial) I/O
permutation can be established. A set of cells forming a
permutation are transmitted over the switching fabric in a
cell slot. In output ports, cells are then reassembled into
packets. To meet the stringent timing requirement for each
of these tasks, a pipelined approach can be adopted.

We implement an input ring IRi by three rings, IR1
i ,

IR2
i and IR3

i , one corresponding to a phase in the 3-phase
HARD-COLORING algorithm as shown in Figure 9. Then,
phases in consecutive routing cycles can be overlapped to
achieve improved performance. The principle used is two-
dimensional pipelining. Let IP s

i,j , 1 ≤ s ≤ 3, denote the
j-th IP in ring IRs

i . IP s in IRs are connected as a two-
dimensional torus. Within each IR, CAR tokens are moved
or processed in pipelined fashion using vertical links. As
soon as a CAR token reaches its agent IP 1

i,j , it is passed to

IP 2
i,j of IR2

i using the horizontal link between them. Sim-

ilarly, as soon as a CAR token is assigned a color in IP 2
i,j ,

it is passed to IP 3
i,j using the horizontal links connecting

the two IP s. Considering arbitration and cell transmission
as two additional phases, and, for simplicity, assuming that
each phase takes time that is equal to a cell slot, we obtain a
timing diagram of all pipelined operations in cell switching
as shown in Figure 10. Clearly, using this two-dimensional
pipeline, each routing cycle takes n steps effectively for for
C(n, n, n).

OPto s
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i,1I
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i,3I

i,4I

i,0I

i,1I

i,2I

i,3I

i,4I

IR
1
i IR

2
i IR

3
i

Figure 9: Pipelined input ring IRi structure that
overlaps phases of 3 consecutive routing cycles for
routing rearrangeable C(n, n, n).

Arbitration Phase 1 Phase 2 Phase 3 Cell Trans

Arbitration Phase 1 Phase 2 Phase 3 Cell Trans

Arbitration Phase 1 Phase 2 Phase 3 Cell Trans

Arbitration Phase 1 Phase 2 Phase 3 Cell Trans

time

Figure 10: Timing diagram of pipelined cell switch-
ing using rearrangeable C(n, n, n).

For routing strictly nonblocking C(n, 2n−1, n) using dou-
bled shift registers (refer to Section 5.2), each of Phase 1 and
Phase 3 takes n− 1 steps, and each of the two subphases of
Phase 2 takes n steps. We can implement an input ring IRi

by four rings, IR1
i , IR2.1

i , IR2.2
i and IR3

i as shown in Fig-
ure 11(a), and implement an output ring ORj by two rings
OR2.1

j and OR2.2
j as shown in Figure 11(b). IR1

i s are used

for executing Phase 1, IR3
i s are used for executing Phase

3, IR2.1
i s and OR2.1

i s are used for executing Phase 2.1 (first
subphase of Phase 2), and IR2.2

i s and OR2.2
i s are used for

executing Phase 2.2. Then, phases of consecutive routing
cycles can be performed in an overlapped way so that any
group of disconnection/connection requests can be processed
in 4n steps. Similar to cell switching discussed above, this
performance can be maintained if arbitration operations for
resolving output contentions are included as an additional
phase. Furthermore, due to pipelining, groups of disconnec-
tion/connection requests can be sampled more frequently as
every n steps, and every request group can be satisfied in n

steps effectively.
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Figure 11: Overlapping routing cycles for routing
strictly nonblocking C(n, 2n − 1, n). (a) Pipelined in-
put ring IRi structure. (b) Pipelined output ring
ORj structure.

5.4 Phaseless Approach
We present another scheme for improving the routing per-

formance of C(n, 2n−1, n) with doubled shift registers. Each
input ring IR and output ring OR in the corresponding
DPR architecture has exactly n IP s and n OP s, respec-
tively. Each ICSR has exactly n cells, one in each IP .
Similarly, each OCSR has exactly n cells, one in each OP .
Thus, the four phases (the two subphases of Phase 2 for pro-
cessing CDRs and CARs are counted as two phases) can be
interleaved in a synchronous way. We call this scheme the
phaseless scheme. Each step in this scheme is called a com-
posed step. A composed step performs four substeps, each
corresponding to one step in each (sub)phase of the phased
approach. In the phaseless scheme, a token is available for
processing in the next (sub)phase as soon as it is processed
in a substep. Thus, in the best case, a token can be com-
pletely processed in O(1) time. For example, to make a
connection from Ii,j to Oj,i, its CAR token (j, j, ) has to go
through at least the entire Phase 1 and the first subphase of
Phase 2 in the phased approach. But it may be completely
processed in one composed step (which has 4 substeps).

In the phased approach, there is a well-defined schedule
for the tokens to go through its ring IR without conflict. In
the phaseless scheme, tokens in the same IPi,j can be put
into a priority queue, and they are sent to IPi,(j−1) mod n in
the order enforced by the queue. The simplest queue is the
FIFO queue.



6. CONCLUDING REMARKS
We presented an efficient parallel algorithm COLORING

for routing Clos networks, and a hardware implementation
HARD-COLORING of this algorithm. The resulting hard-
ware solution is a high-speed DPR architecture that employs
distributed and parallel processing. Pipelining is entensively
used at different levels. The overall structure of this archi-
tecture is simple and scalable because of its linear intercon-
nection complexity. Our algorithm takes O(

√
N ) steps for

optimized nonblocking C(n, m, r) networks. The constants
associated with the time complexity is very small. Using
phase-overlapping method, our architecture effectively takes
exactly

√
N steps, each requiring simple data movement and

Boolean logic operations.
The best known parallel routing algorithm for rearrange-

able N × N Clos network C(n, m, r) has time complexity
O(log2 N), when m is a power of 2. For arbitrary eligible
m, the best known parallel time complexity is O(log3 N).
The constants associated with these complexities are large,
and the parallel machine models used for deriving these com-
plexities are either unrealistic or impractical. To the best of
our knowledge, for strictly nonblocking Clos networks, our
algorithm is so far the best.

Let us compare the relative magnitudes of N , log2
2 N ,

log3
2 N and

√
N in the following table:

N log2
2 N log3

2 N
√

N

16 16 64 4
64 36 216 8
256 64 512 16

1,024 100 1,000 32
4,096 144 1,728 64
16,384 196 2,744 128
65,536 256 4,096 256

In general, comparing two time complexities O(f(N)) and
O(g(N)) by comparing f(N) and g(N) does not make sense.
In our case, however, such a comparison reveals that the ac-
tual performance of our DPR architecture is superior over
known parallel algorithms for the following reasons. First,
our DPR architecture is a realistic model with linear in-
terconnection complexity, whereas PRAM is not physically
implementable and a completely connected multiprocessor
system is not scalable because of its O(N2) interconnection
complexity. Second, the time complexity of DPR architec-
ture is measured by the number of steps performed. By our
analysis, this number is no more than c ·

√
N , where c is a

single-digit constant. In the worst case, each step consists
of a shift operation, a logical AND or reset operation, and
a memory access. In contrast, known unrealistic parallel
algorithms involve complex shared-memory or distributed
memory data communication operations and arithmetic op-
erations, and the coefficients associated with their time com-
plexities are large. Third, since an N ×N reconfigurable or
strictly nonblocking Clos network has at least N 1.5 cross-
points to be controlled and considerable additional hardware
is required to integrate it into a network switch, it is quite
safe to say that N = 65, 536 is an upper bound for prac-
tical switch sizes according to the current and foreseeable
hardware technologies. Therefore, we claim that for practi-
cal switch sizes N the actual performance of our solution is
better than the known O(log2 N)-time and O(log3 N)-time
parallel algorithms.

For cell/packet switching, we considered using a separate

hardware called scheduler to find permutations by resolving
contentions. A hardware scheduling algorithm such as the
ones of time complexity O(log2 N) in [13] can be used. In [4],
the relatively scalable schedulers are defined. A scheduler is
relatively scalable with respect to a switching network if its
interconnection complexity is not larger than the intercon-
nection complexity of its associated nonblocking switching
network. The scheduler of [13] are not scalable with respect
to Clos networks It remains a challenging open problem
of designing a high-performance scalable scheduler for Clos
networks. One possible way is to incorporate contention
resolution functions into our routing architecture.
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