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Abstract
This review introduces the different strategies and computational methods that can be used in order to predict
RNA genes. It discusses our current view of RNA genes as well as recent computational analyses of RNA genes
and concludes with an outlook to future directions in algorithm development and data analyses.
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INTRODUCTION
RNA genes are genes that do not encode a

functional protein-product. They are thus also

called non-coding genes (ncRNAs). The chemical

and biophysical properties of RNA [1] make it ideal

for regulating very diverse processes in the cell and

for serving as a ‘communication-layer’ [2, 3]

between a genome and the variety of its expressed

products. The view that is emerging today is that

RNA genes play diverse and functionally important

roles in the cell and that they deserve the same

attention as protein-coding genes.

The first RNA genes to be discovered were

transfer RNAs (tRNAs) [4–6] and ribosomal RNAs

(rRNAs). Both types of RNAs play pivotal roles in

protein synthesis, both assume well-defined struc-

tures which are crucial for defining their function

and both are highly conserved across bacteria,

archaea and eukaryotes, not only in terms of

structure, but also function. These early findings

have significantly contributed to the initial view that

there are few RNA genes which encode highly

structured RNA molecules whose functional role is

to assist the synthesis of proteins. Since then, many

exciting discoveries have lead to a revision of this

initial view.

The discovery of two RNAs with catalytic

properties, so-called ribozymes, in the early 1980s,

namely the self-splicing group I intron in the 26S

ribosomal RNA of Tetrahymena thermophila [7] and

ribonuclease P in Escherichia coli [8], promoted RNA

from a passive bystander to an active player in the

cell. Recent, high-resolution X-ray studies of the

structure of the ribosome [9–11] further support

this view by showing that the ribosome’s functional

properties, in particular the all-important peptide

bond synthesis, are due to the ribosomal RNAs

and not to the protein components which serve as

a structural scaffold.

Since the discovery of splicing in 1977 [12, 13], it

has been shown that small nuclear RNAs (snRNAs)

are essential for nuclear pre-mRNA splicing, in

particular the U1 snRNA [14] and U2 snRNA [15]

which bind complementary consensus sequences at

the 50 splice site and the branch site, respectively,

at the beginning of several carefully orchestrated

splicing steps. This type of interaction via comple-

mentary base-pairing between the U1 snRNAs and

the pre-mRNA was first predicted by theoretical

studies [16, 17] before it was confirmed by

experiments.

Especially the last few years have seen an

explosion of breakthroughs in RNA research.

Small structural RNA elements in the exons

of protein-coding transcripts, so-called ribo-

switches [18–20], measure the concentration of
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small metabolites by switching from one structural

confirmation to another one upon binding

or release of a metabolite molecule which is recog-

nized with high specificity. Depending on the gene

involved, this mechanism can cause premature

termination of transcription, activate or repress

translation or result in the cleavage of the mRNA

by activating the mRNA’s self-cleavage activity.

The latter mechanism represents a clever combina-

tion of catalytic and structural activity, called a

ribozyme-riboswitch [21]. So, protein-coding genes

with riboswitches can control their own gene

expression on RNA level.

The discovery of the RNA interference pathway

(RNAi) in 1998 [22] has resulted in the discovery

of many small RNA genes, so-called microRNA

genes, that regulate the expression of other genes on

mRNA level. The primary transcripts of these genes

(pri-mRNAs) are processed into shorter, stem-loop

forming transcripts of about 70 nucleotides length

(pre-mRNA) which are exported from the nucleus

to the cytoplasm, where they are converted into

mature miRNAs of about 20 nucleotides length

by the endonuclease Dicer which also initiates the

formation of the RNA-induced silencing complex.

A miRNA can down-regulate the expression of

one or more protein-coding genes on RNA level

by binding a partially complementary stretch of

the mRNA which is then either cleaved and

degraded or prevented from being translated.

MicroRNAs were first detected in the nematode

Caenorhabditis elegans [23–27], but have by now been

also found in several organisms, including plants

[28, 29], animals [30] and human [31, 32].

These experimental studies of specific families of

RNA genes have recently been complemented by

several genome-wide transcriptome studies employ-

ing different experimental techniques: (i) high-

density tiling array studies of the human genome

[33–35], (ii) cDNA studies of the human [36] and the

mouse genome [37–40] and (iii) mapping studies

of transcription factor binding sites in the human

genome [41]. These experimental studies and their

accompanying theoretical analyses, see the original

papers and [42], all conclude that a large part of the

genome is transcribed into transcripts which do not

appear to encode proteins.

It remains to be shown which of these trans-

cripts are functional and which ones correspond

to ‘transcriptional noise’ [43]. More detailed experi-

mental studies of large scale mouse cDNAs data [39],

using a combination of reverse transcriptase-

dependent PCR, microarray and Northern blot

analyses, ‘provide strong support for the conclusion

that ncRNAs are an important, regulated compo-

nent of the mammalian transcriptome’. Several

recent theoretical surveys that scan the human

genome with computer programs in order to identify

genomic locations that may overlap structural

RNA genes [44–46] also provide some evidence

that RNA genes may be much more abundant that

previously thought.

What are RNA genes?
An RNA gene is a gene whose functional product

is an RNA rather than a protein. An RNA gene

thus corresponds to a contiguous sub-sequence of

the genome which corresponds to the un-spliced

version of its functional transcript.

The following examples and Figure 1 illustrate

how the functional transcripts of RNA genes can

relate to the initial transcripts of the genome. They

show, in particular, that there is generally no one-

to-one correspondence between the transcript that

is initially transcribed from the genome and the

functional transcript of an RNA gene.

RNAgenes can be encoded in introns
of protein-coding genes
Small nucleolar RNAs (snoRNAs) are small RNA

molecules that guide the methylation or pseudo-

uridylation of ribosomal RNAs. Human snoRNAs

have been found to be encoded in the introns of

protein-coding genes which are transcribed by

polymerase II. The human U15A snoRNA, for

example, resides in the most 50 intron of the

ribosomal protein S3 gene [47] thereby providing

a mechanism for ensuring a balanced stoichiometry

for different nucleolar components. Other examples

are snoRNAs encoded in the introns of the human

cell cycle regulatory gene RCC1 [48]. Further

studies showed that these snRNAs are excised

from already spliced and de-branched introns of

the RCC1 pre-mRNA by exo-nucleolytic proces-

sing [49]. See Figure 1D.

Several RNAgenes can be derived
from the same transcript
Transfer RNAs (tRNAs) are short RNA molecules

ranging in size from 73 to 93 nucleotides that transfer

a specific amino acid to a growing polypeptide chain

at the ribosomal site of protein synthesis during
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translation. They assume a characteristic L-shaped

structure in the cell [5, 6]. The functional transcripts

of many tRNA genes, both in eukaryotes and

prokaryotes, are part of a larger precursor transcript,

see Figure 1B. The E. coli genome encodes, for

example, an operon that contains seven tRNA genes

[50]. The functional transcripts of these tRNA genes

are obtained by processing reactions that involve

both the removal of nucleotides and, in some

instances, the addition of nucleotides.

RNAgenes can have introns
In mammals, dosage compensation between males

and females is achieved by in-activating one of the

two X chromosomes in females. This silencing is

initiated by the expression of an RNA gene called

Xist [51, 52]. The human Xist gene encodes a large

(around 17 000 nucleotides), alternatively spliced and

poly-adenylated transcript which does not exhibit

any conserved open reading frame. The spliced

transcript of Xist has been shown to coat the inactive

X chromosome. The Xist gene is thus an example

for an RNA gene whose spliced transcript corre-

sponds to the functional transcript, see Figure 1C.

Another example for RNA genes with introns are

some tRNA genes in chloroplasts and cyanobacteria

whose introns are group I introns and thus capable

of self-splicing [53].

RNAgenes can correspond to pseudo-genes of
formerly protein-coding genes
Hirotsune et al. [54] studied a transgene-insertion

mouse mutant and found that this insertion reduces

the transcription of the pseudo-gene of Makorin1,

called Makorin1-p1. The reduced expression of

Makorin1-p1 de-stabilizes in turn the mRNA of

Makorin1 in trans via a cis-acting RNA decay

element in the 50 side of the Makorin1 transcript

that is homologous to the Makorin1-p1 transcript.

The pseudo-gene thus regulates the gene expression

of the corresponding protein-coding gene on

mRNA level and could therefore legitimately be

called an RNA gene [55]. See Figure 1E and F.

Summary
The current view of RNA genes is that they form a

rather heterogeneous group of genes which fulfill

diverse functional roles using diverse mechanisms.

The features that are most relevant in the context of

RNA gene prediction can be summarized as follows:

(i) The functional transcript of an RNA gene need

not correspond to the entire RNA sequence

Figure 1: Examples which showhow the functional transcript of the RNAgene is related to the region that is initially
transcribed from thegenome.Blackboxes in thegenome indicate theRNAgenes.Typically, situation (A) is assumed, i.e.
the initial transcript of the genome is not spliced and corresponds to the transcript that exerts the functional role.
However, weknowbynowof several experimentally confirmedRNAgeneswhich correspond tomore complex situa-
tions, see the text for examples. (B) shows an RNA gene whose functional transcript is excised from a longer initial
transcriptwhich encodes several RNA genes. (C) corresponds to anRNA genewith introns. (D) depicts an RNAgene
which is derived from an intron of another gene. (E) and (F) correspond to RNA genes which have been derived from
protein-coding genes.These genes are still transcribed, but no longer translated into a protein product.The genemay
have lost (E) or retained (F) its ability to be spliced.

398 Meyer
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/8/6/396/249003 by guest on 20 August 2022



that is initially transcribed from the genome.

In addition, one initial transcript of the genome

can give rise to several functional transcript

of different RNA genes. To summarize, there

is generally no one-to-one correspondence

between the initial transcript of the genome

and the functional transcript of an RNA gene.

(ii) RNA genes can be transcribed by polymerase II

or polymerase III, their transcripts can be poly-

Aþ or poly-A� (or both at different stages)

and these transcripts can have a wide range

of lengths, from a few nucleotides to tens of

thousands of nucleotides.

(iii) RNA genes can overlap protein-coding genes

on the same strand in the genome. The trans-

cript of an RNA gene may be derived from

the transcript of a protein-coding gene, e.g. one

of its introns.

(iv) RNA genes do not necessarily function by

assuming a distinct structure, but employ a

number of diverse mechanisms (which are not

mutually exclusive): complementary binding to

other RNA or DNA sequences in cis or in

trans, sequence or structure specific binding to

proteins and other molecules like metabolites,

catalytic self-cleavage etc.

(v) RNA genes can correspond to remnants of

protein-coding genes that can still be tran-

scribed, but no longer translated.

Several definitions relating to RNA structure
It is important to realize that RNA structure can, but

need not play a role in exerting the molecule’s

function in the cell, as the above examples illustrate.

There are also examples, where sequence and
structure features play functional roles. For example,

both the structure and the sequence in the anti-

codon loop are required for the proper functioning

of tRNA molecules. In order to understand how

RNA structure is modeled by computer programs,

we first have to introduce a few definitions.

An RNA molecule can form RNA–RNA inter-

action in cis via hydrogen-bonds by folding back onto
itself. These hydrogen bonds are weak compared to

the covalent bonds that define the sequence of RNA

nucleotides and involve pairs of non-consecutive

nucleotides which are complementary to each other.

The three so-called canonical or consensus base

pairs are {A, U}, {G, C} and {G, U}. It turns out that

many important properties of the three-dimensional

molecule can already be studied if we only know

the RNA sequence and the sequence positions that

form base-pairs, i.e. the so-called secondary structure.

This is the level of abstraction that is typically

chosen to study the structures of RNA genes. The

three-dimensional RNA structure is often either

unknown or difficult to predict. Figure 2 shows

the secondary structures of two naturally occurring

RNAs. The left hand side of the figures shows

a tRNA structure, once as two-dimensional figure

(top) and once in the equivalent dot-bracket or

Vienna notation (bottom). The right hand side of

Figure 2 shows the structure of the human telo-

merase. Unlike the left structure, this secondary

structure contains a so-called pseudo-knot, i.e.

base-pairs which are not nested. In order to depict

pseudo-knotted structures in the dot-bracket

notation in an un-ambiguous way, several types

of brackets are required, as this example shows.

We include pseudo-knots into the set of secondary

structures.

From the set of canonical pairs above, it is clear

that a given RNA sequence has many potential

structures. In fact, the number of possible structures

grows exponentially with the length of the

RNA sequence. The challenge for the computa-

tional biologist is to find out whether structure plays

a functional role for a given RNA sequence and,

if yes, to predict this functional RNA structure,

i.e. the structure which is realized in the cell and

which confers the observed functional property to

the molecule. Some structure prediction program,

e.g. the well-known programs MFOLD [56–58] and

RNAFOLD of the Vienna package [58–62], take a

given RNA sequence and predict the most stable

structure. More precisely, they predict the pseudo-

knot free secondary structure that minimizes the

overall free-energy of the molecule in thermo-

dynamic equilibrium, i.e. the so-called minimum

free-energy (MFE) structure. As RNA sequences

typically comprise nucleotides of all four types A, C,

G and T, there is always the possibility of forming

some consensus base-pairs and of combining these

base-pairs into an RNA structure. These MFE

methods thus predict an MFE structure for almost

any RNA sequence. It is important to note that

transcripts of RNA genes do not necessarily assume

the MFE structure in the cell. Biological processes

that happen while the transcript is synthesized and

processed in the cell [63], the kinetics of the fold-

ing process [64–69], especially for long transcripts,

and molecules binding to the RNA sequence can
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prevent an RNA sequence from assuming the

thermodynamically most stable structure, i.e. the

MFE structure. In those situations, MFOLD and

RNAFOLD are not the appropriate methods for

predicting the functional RNA structure as their

implicit assumptions are not fulfilled. The compre-

hensive analysis by Gardner and Giegerich [70]

shows that comparative methods tend to system-

atically outperform MFE methods in predicting the

functional RNA structure.

As the examples of RNA genes above illustrate,

RNA genes do not necessarily function via structure

and there are also RNA genes, e.g. Xist, where

a local rather than a global RNA structure

plays a functional role. The term ‘structural RNA

gene’ has been recently introduced to refer to

RNA genes that have enough RNA secondary

structure to be detected by some structure-searching

methods [44–46]. Here, we use the term ‘structural

RNA gene’ to denote RNA genes for which

(global or local) structure plays a functional role.

Likewise, ‘unstructured RNA gene’ denotes an

RNA gene for which RNA structure plays no

functional role.

GOALSOFRNAGENEPREDICTION
The main goals of RNA gene prediction are:

(i) To identify the sequence units of the genome

that function as RNA genes.

(ii) Once the RNA gene and its functional tran-

script has been identified, to predict the function

of the gene, to identify its interaction partners

and to elucidate the mechanism by which it

functions.

In order to achieve the first goal, we have to

identify features which distinguish RNA genes from

other regions in the genome. At the moment, it is

not clear what the common characteristic features of

all RNA genes are. In contrast to protein-coding

genes, we cannot search for start and stop codons,

splice sites and regions with coding potential that can

be combined into a valid open reading frame.

STRATEGIES FOR PREDICTING
RNAGENES
There are many different strategies for predicting

RNA genes, see Figure 4 for an overview.

Figure 2: The left hand side of the figure shows the secondary-structure of a tRNA structure, once as
two-dimensional figure (top) and once in the equivalent dot-bracket or Vienna notation, where a dot denotes an
un-paired nucleotide and an opening or closing bracket a paired nucleotide (bottom). By reading theVienna notation
from left to right, one can un-ambiguously determine the base-paired sequence positions. The right hand side of
the figure shows the secondary structure of the human telomerase [134]. Unlike the left structure, this secondary
structure contains a so-called pseudo-knot, i.e. base-pairs which are not nested. In order to depict pseudo-knotted
structures in the dot-bracket or Vienna notation in an un-ambiguous way, different types of brackets are required, as
this example shows.We include pseudo-knots into the set of secondary structures. Both drawings were generated
with PSEUDOVIEWER [135].
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Homology based prediction of RNA
genes (Case 1)
Many families of RNA genes appear in a wide

range of evolutionarily related genomes. For exam-

ple, tRNAs and rRNAs in mouse and human not

only have similar RNA sequences, but also assume

similar structures for exerting their function in the

organism.

Some of the most powerful computational

methods for predicting RNA genes today make

use of this fact and employ a so-called comparative

approach which simultaneously analyses several

evolutionarily related input sequences. The com-

parative approach is the best way to detect sequence

and structure features that have been conserved

during evolution and that are therefore likely to play

a functional role, see Figure 3.

Transcript and functional structure of RNAgene
are known (Case 1a)
If we know several members of the same functional

RNA gene family and their functional structures

from the same of from evolutionarily related

organisms, it makes a lot of sense to capture the

characteristic features in a dedicated computational

model which we can then use to search genome

sequences for members of that gene family.

Trained model for sequence and structure already exists: The

data base RFAM [71] not only provides alignments

for more than 500 families of non-coding RNA

genes, but also dedicated computer programs which

summarize the predominant structure and sequence

features of one RFAM alignment. These programs can

be used to search a given genome sequence for

RNA genes that belong to this family. However, it

should be noted that some RFAM alignments do not

cover the entire transcript of the RNA gene, but

only a sub-sequence. The RFAM alignments have

typically been manually established by a human

expert who makes sure that functionally equivalent

parts of the structures and sequences are correctly

aligned. Figure 3 shows a hypothetical example of

such an alignment with an evolutionarily conserved

RNA structure. Once the alignment has been esta-

blished, so-called co-variance models (CMs) [72, 73]

can be set up to capture the sequence and structure

features along the alignment. CMs are probabilistic

models whose parameters and predictions have a

probabilistic interpretation. This is a crucial feature

that renders the training of these models as well as

the interpretation of their predictions fairly straight-

forward. In RFAM, each alignment is used as input to

the software package INFERNAL [74] which trains the

parameters of a dedicated CM. Once the CM has

been trained, it can then be used to search any target

sequence, e.g. a genome, for regions that are similar

to the ones represented by the corresponding RFAM

alignment, both in terms of structure and sequence.

Each match of the CM to the target sequence is

assigned a score which reflects the likelihood that this

region is a true match. These scores can be used to

rank the matches and to discard any matches below a

certain threshold score. The threshold value deter-

mines the sensitivity and specificity of the search.

In order to estimate the sensitivity of such a search

and to derive a sensible threshold value, the scores of

true matches can be compared to those of known

false matches. It is more difficult to estimate the

specificity of such a search as it can be difficult to

prove that a given match, e.g. a region in a given

genome, is never expressed in the living organism.

This is the reason why artificial negative test sets are

sometimes constructed from randomized sequences.

However, the type and degree of randomness in

these artificially constructed test sets does not

Figure 3: An alignment of several functionally equiva-
lentRNA sequences fromdifferentevolutionarilyrelated
organisms with a conserved RNA structure. The base-
pairs in the pairing columns have been fully conserved
during evolution, while two compensatory mutations
may have changed both nucleotides forming a pair. The
resulting pairs of co-varying or co-evolving columns in
the alignmentwhere theprimary sequence conservation
may be low, but the functional conservation in terms of
base-pairing ability is high (see highlighted pair of col-
umns) provide a strong sequence signal for structure
prediction.The drawing of the secondary structure was
generatedwith PSEUDOVIEWER [135].
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necessarily reflect the randomness observed in real

biological data. It therefore remains difficult to esti-

mate the true specificity of RNA gene searches.

Apart from the CMs provided for the RNA gene

families in RFAM, several other specialized programs

have been developed in order to detect RNA

genes that belong to specific RNA gene families.

TRNASCAN-SE [75] employs a CM to model

tRNAs. It is the standard program to annotate

tRNAs in newly sequenced genomes and has been

shown to have almost perfect sensitivity as well

as a low false positive rate (the estimate is one false

positive per 15 gigabases). Other dedicated gene

prediction programs are, for example, BRUCE

[76] for detecting transfer-messenger RNA genes

(tmRNA genes), SNOSCAN [77] for detecting box

c/D small nucleolar RNAs (snoRNAs) which are

required for methylation of eukaryotic ribosomal

RNA and SNOGPS [78] and FISHER [79] for detec-

ting box H/ACA snoRNAs. A large number of

dedicated programs have also been developed to

detect miRNAs, for example PROMIR [80] for

human, MIR-ABELA [81] for mammals, MIR-

SCAN [82] for vertebrates, MIRSEEKER [83] for

drosophilids, HARVESTER [84] for plants, BAYES-

MIRFINDER [85] for eukaryotes and RNA-

MICRO [86] for pre-generated multiple sequence

alignments. These programs use either heuristic

method or a probabilistic model in order to capture

the characteristic structural and sequence features

of miRNAs.

Model for sequence and structure needs to be established: If

we have an RNA gene for which no dedicated

prediction program or a CM in RFAM already exists,

it is possible to create a new one.

If the function of the RNA gene relies on well-

defined structural elements and if we have ortho-

logous sequences from related organism, we can

employ INFERNAL or CMFINDER [87] in order to

derive a dedicated CM which we can then use to

search long target sequences for RNA genes of

this type. For INFERNAL, we first need to establish

a high quality sequence alignment that correctly

aligns functionally equivalent sequence and structure

elements. Often, this is best done manually with the

help of a visualization program such as RALEE [88]

that highlights consensus base-pairs in base-pairing

alignment columns. For this, we can for example use

an alignment computed by CLUSTALW [89] as the

starting point. If we happen to know the functional

structure for each individual sequence in our data

set, we can alternatively employ structure alignment

tools such as RNAFORESTER [90, 91] or RNA-

DISTANCE [58, 92] in order to create a global seq-

uence and structure alignment. Once the alignment

has been fixed, it is used as input to INFERNAL in

order to train the parameters of a dedicated CM.

CMFINDER takes un-aligned sequences as input and

outputs a trained CM. Both, for INFERNAL and

CMFINDER, the resulting parameters of the trained

CM capture the sequence and structure variation in

the training sequences. One potential drawback of

CMs is their limited ability to detect target sequences

whose primary sequence or structure differs sig-

nificantly from those in the training alignment.

Ideally, the degree of structure and sequence

variation in the training alignment should reflect

the sequence and structure diversity that we aim to

detect with the CM. INFERNAL addresses these

limitations by employing more sophisticated techni-

ques for CM training and for searching databases.

It utilizes Dirichlet mixture priors and an effective

sequence weighting method to extend the model’s

ability to also recognize more diverged target

sequences. In addition, a local search mode can

be also used to detect target sequences with a high

degree of structural variation. CMs cannot model

pseudo-knotted RNA structures because they

employ essentially variants of stochastic context-

free grammars (SCFGs).

The computational complexity for searching a

target sequence of length L with a CM of INFERNAL

that captures an alignment of N nucleotides

length is OðL N1:3Þ time [93] and OðN2 logðNÞÞ

memory [74] using several heuristic (time) and exact

(memory) tricks in order to reduce the nominal time

requirement OðL N3Þ and memory requirement

OðN3Þ of CMs.

It is possible to further reduce the memory and

time requirements of CM-based analyses by using a

two-step approach. In the first step, the potentially

long target sequence is searched with a computa-

tionally less expensive method that captures only

sequence features. In the second step, the matches

returned in the first step are analyzed with the CM.

For the first step, Weinberg and Ruzzo [94] intro-

duced heuristic filters, i.e. profile-HMMs which

capture only sequence rather than structural features

explicitly. Similar to CMs, profile-HMMs can be

automatically trained with a given sequence align-

ment in order to capture its characteristic sequence
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features. For tRNAs genes, Weinberg and Ruzzo

show that the performance of their automatically

trained heuristic filter is about as accurate as the

custom-tailored method TRNASCAN-SE [75] which

cannot be readily adjusted to model other RNA

families.

If we have only a single RNA gene whose

functional structure we know, but no functionally

equivalent sequences from evolutionarily related

genomes, we can still attempt to search a long

target sequence for regions that are similar to the

known RNA gene, both in terms of sequence and

structure. RSEARCH [95] is an SCFG-based

program that can be used to search one long target

sequence with an RNA sequence whose known,

pseudo-knot free secondary structure is explicitly

taken into account. It assigns a score to each match

which quantifies the reliability of the prediction.

These scores can be used to rank the matches. The

main drawback of this strategy is that it is computa-

tionally costly. The computational requirements for

searching a long target sequence of length L with a

shorter query sequence of length N are OðL N3Þ

time and OðN3Þ memory, if no heuristic tricks are

used. As this method compares the target sequence

only to a single RNA sequence rather than a set of

evolutionarily related sequences that represent the

RNA gene family, its sensitivity is typically lower

than that of CM-based methods. Alternatively, we

can use the program RNAMOTIF [96]. This programs

allows the user to manually define a motif. The motif

definition can capture sequence features, secondary

and even tertiary structure features, including

pseudo-knots. The user can also define custom

scores that are then used to score every match of the

motif’s model, called a descriptor, to a potentially

long target sequence. As long as the user is willing

(and knowledgeable enough) to manually specify

both the motif and the scoring scheme, RNAMOTIF

can be used for highly specific and sensitive sequence

searches. Coming up with a motif description and a

good scoring scheme requires a fairly high degree of

expertise and biological insight because both define

what the characteristic and important features of the

corresponding RNA family should be.

Only transcript of RNAgene is known (Case 1b)
Sequence based homology search: Some RNA genes do

not act by assuming a well-defined RNA structure

or we simply do not know whether or not RNA

structure plays a functional role. In those cases, it is

possible to attempt a homology search that is based

on sequence similarity only rather than sequence

and structure similarity. This approach can also be

justified for structural RNA genes whose sequences

have been so well conserved during evolution that

sequence similarity suffices to identify them in

genomes, e.g. tRNA and rRNA genes.

Profile hidden Markov models (profile-HMMs)

are probabilistic models that capture the sequence

conservation along a given alignment, in the same

way that CMs capture sequence and structure con-

servation along an alignment. As for CMs, the

parameters of profile-HMMs can be trained with

a fixed alignment of evolutionarily related sequences

where functionally equivalent regions are aligned.

For profile-HMMs, this training can be done with

the software package HMMER [97]. Once the

profile-HMM has been established, it can then be

used to search a long target sequence for regions

that resemble the sequences in the training align-

ment. Profile-HMMs are used by the PFAM [98] data

base of protein families in the same way that CMs

are used by the RFAM data base of RNA families.

Profile-HMM are faster than CMs because they do

not consider the long-range correlations along the

sequence that arise through the base-pairs of the

conserved structure, but they are slower than well-

known heuristic local sequence alignment methods

such as BLAST [99].

The computational complexity for searching

a target sequence of length L with a profile-HMM

that models an alignment of N nucleotides length

is OðL NÞ time and OðL NÞ memory. For long

genome sequences L and profile-HMMs that

represent long RNA genes, i.e. large N values,

this can be computationally too costly and a fast

pre-processing step with heuristic similarity search

programs like BLAST is required to quickly narrow

down the search space before more costly methods

are employed.

Pair-wise homology search by simultaneously predicting
structure and alignment: If a profile-HMM for a simi-

larity based homology search cannot be established

for the known RNA gene, either because function-

ally equivalent sequences are not known or because

they are too diverged to establish the high-quality

alignment required for model training, it is possible

to employ methods that take the single RNA

sequence and search it against a target sequence

by simultaneously investigating sequence and
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structural similarities, for example DYNALIGN [100,

101] (MFE approach), FOLDALIGN [102, 103] (MFE

approach), STEMLOC [104] (pair-SCFG approach) or

CONSAN [105] (pair-SCFG approach). These pro-

grams are computationally very costly as they

take two un-aligned sequences as input and simul-

taneously predict and align the pseudo-knot free

secondary structures of the two sequences. Without

playing any heuristic tricks, it takes OðL2
1L

2
2Þmemory

and OðL3
1 L3

2Þ time to analyze two input sequences

of length L1 and L2 with a pair-SCFG.

DYNALIGN and FOLDALIGN can both be used to

scan a long target sequence with a shorter sequence.

It is important to note that FOLDALIGN has been

devised to detect local regulatory structures rather

than global structures with multi-loops. It computes

a score which can be used to rank putative conserved

structural elements. DYNALIGN reduces the compu-

tational complexity of the pair-SCFG approach by

limiting the search space that is explored to align

the two sequences and by limiting the size of internal

loops in RNA structures. The advantage of these

programs is that they do not require a fixed input

alignment which can be hard to establish if the

primary sequence identity between the two RNA

sequences is low, typically below 40%. Their dis-

advantage is that they do not explicitly model

unstructured regions in the two input sequences.

The predicted results may therefore strongly depend

on the chosen sequence window. If the score of the

predicted common RNA structure is high and

the structure is similar to the known RNA structure,

the region is likely to overlap the desired RNA

gene. Because methods that simultaneously align

and fold are computationally costly, they should

only be applied if global RNA structure is likely

to play a functional role and if the RNA sequence

that is searched against the longer sequence is

fairly short.

Analyzing sets of potentially homologous RNAgenes
The sequence based homology search against one or

several genomes results in sets of potentially homo-

logous RNA genes. These sets can be analyzed in

more detail in order to test the hypothesis that they

actually correspond to RNA genes, see Figure 3.

Classifying a given sequence alignment: Often, sets of

potentially homologous sequences are presented

as multiple sequence alignments. We can use these

multiple sequence alignments as input to classifica-

tion programs like QRNA [106], EVOFOLD [46] and

RNAZ [45] which test whether the sequences in

the alignment contain similar structures or not.

QRNA [106] takes a fixed alignment of two

sequences as input and classifies it into RNA

structure-containing, protein-coding or other.

It uses an SCFG-based approach and assigns a

score to each input alignment which quantifies

the reliability of the predicted classification. RNAZ

(MFE approach) and EVOFOLD (SCFG approach)

can handle input alignments of more than two

RNA sequences. Both programs classify a fixed

input alignments as either structure encoding or

non-encoding based on its observed pattern of

mutations, see Figure 3, and assign a reliability

score to their classification. Both programs evaluate

the structure-encoding potential of the alignment

by considering pseudo-knot free secondary struc-

tures. In cases where the input alignment does

not exhibit the characteristic pattern of co-evolving

columns, RNAZ relies on the assumption that

RNA genes are thermodynamically more stable

than expected by chance, an assumption which has

been shown not to hold in general [107]. RNAZ

predictions should depend to a smaller extent

than those of EVOFOLD on the quality of the input

alignment as RNAZ evaluates the similarity of the

encoded structures based on the similarity of their

minimum free energies rather than the corresponding

individual MFE structures themselves. For the same

reason, RNAZ should be better at handling RNA

structure variation. However, EVOFOLD depends to

a much smaller extent than RNAZ on the chosen

sequence window as its underlying model can expli-

citly model non-structural regions in the input align-

ment, whereas RNAZ forces each sequence in the

input alignment to assume its MFE structure which

can strongly depend on the chosen sequence

window. An added benefit of EVOFOLD is that it

takes the evolutionary tree relating the input seq-

uences in the alignment explicitly into account.

Folding a fixed multiple sequence alignment: Rather than

classifying the fixed multiple-sequence alignment as

described before, we can also use programs like

PFOLD [108, 109], RNAALIFOLD [61] and RNA-

DECODER [110, 111] in order to predict a common,

evolutionarily conserved RNA structure. These

methods take as input a fixed multiple sequence

alignment (as well as an evolutionary tree relating the

sequences in the alignment, in case of PFOLD and

RNA-DECODER) and predict a conserved secondary
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structure without pseudo-knots. RNAALIFOLD and

RNA-DECODER can also use a structure as additional

input constraint. All three programs estimate the

reliability of the predicted consensus structure by

calculating the base-pairing probabilities for different

pairs of columns in the alignment (RNAALIFOLD) or

the base-pairing probability for each individual

column in the alignment (PFOLD and RNA-

DECODER). This extra information is valuable for

highlighting regions in the predicted RNA structure

that are particularly well or poorly supported by the

fixed sequence alignment. All three methods look for

co-varying columns in the input alignment, see

Figure 4, as strong evidence for particular base-pairs

in the predicted structure. As the primary sequence

conservation in the co-varying columns can be low,

structure prediction methods that take a fixed input

alignment only work well if the sequences in the

input alignment have a minimum pair-wise sequence

identity, typically at least 60%, which allows them

to be reliably aligned based on sequence similarity

alone.

RNAALIFOLD uses an extension of the MFE

folding algorithm employed by the MFE method

RNAFOLD to compute a pseudo-knot free consensus

structure. This is done by minimizing the overall free

energy and simultaneously taking primary sequence

conservation and co-varying columns in the align-

ment into account. This optimization, implemented

in a dynamic programming procedure, combines free

energy parameters with conservation scores; two

very different types of information whose respective

contribution to the overall optimization is a priori
not clear. The algorithm that is used to predict

the consensus structure is the same as for the non-

comparative MFE program RNAFOLD and the

computational complexity of the two programs is

the same.

PFOLD and RNA-DECODER both employ a

stochastic context-free grammar (SCFG) in order

Figure 4: Current strategies for predicting RNA genes. Empty arrows indicate steps that investigate or rely on
RNA structure.Of those, hatched arrows indicate steps that are computationally expensive.
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to derive a consensus structure and to compute base-

pairing probabilities for each column in the input

alignment. SCFGs are probabilistic models that can

capture the long-range constraints imposed by the

base-pairing sequence positions of the RNA struc-

ture. In contrast to programs like MFOLD, RNAFOLD

and RNAALIFOLD which use free energies as

parameters, SCFGs use probabilities rather than

physical quantities as parameters. SCFG-based meth-

ods are thus not limited to predicting the MFE

structure. Once the parameters of an SCFG have

been specified, efficient dynamic programming

algorithms can be used to derive the pseudo-knot

free secondary structure that has the highest overall

probability [CYK-algorithm [97]] or to calculate the

base-pairing probability for each sequence position

[inside-outside algorithm [97]]. As for the MFE

approach, SCFG-based methods make use of the

fact that the overall probability of a structure can be

expressed as the product of probabilities for smaller

parts of the RNA structure. The parameters of an

SCFG can be derived from large datasets of known

RNA structures and reflect the observed frequencies

of base-pairs and structural features. Pseudo-knotted

RNA structures cannot be modeled with SCFGs

because pseudo-knots are context-dependent.

Both, MFE-based and SCFG-based methods can

be adapted to take comparative information

from several RNA sequences into account. In

RNAALIFOLD, PFOLD and RNA-DECODER this

is done by using a fixed alignment of several RNA

sequences as input. Because the alignment is fixed,

it can be viewed as a hyper-sequence where each

position corresponds to a column of aligned nucleo-

tides and gaps rather than a single nucleotide.

PFOLD and RNA-DECODER use parameters that

score alignment columns rather than single nucleo-

tides. For example, the score for pairing two columns

(rather than two nucleotides) reflects how well the

nucleotides and gaps in the two columns could pair.

SCFGs provide a consistent probabilistic framework

for combining different sources of information,

in this case structure information and conservation

information.

The computational complexity of RNAALIFOLD,

PFOLD and RNA-DECODER is OðL3Þ time and

OðL2Þ memory for an input alignment of length L.
For a given alignment, RNAALIFOLD is typically the

least and RNA-DECODER the computationally most

expensive choice. This is due to the fact that the

models employed by RNA-DECODER are more

complex than those of the other two programs.

Of the three programs, RNA-DECODER is the only

method that can take known protein-coding regions

in the input alignment explicitly into account. It is

also the only one that explicitly models un-structure

regions in the input alignment. RNA-DECODER

is thus particularly well suited for detecting local

consensus RNA structures that do not involve the

entire alignment.

None of the above three programs can handle

pseudo-knotted structures. There exist computa-

tionally more expensive programs, e.g.

HXMATCH [112], KNETFOLD [113] and

ILM [114] which take a fixed input alignment and

predict a consensus RNA structure which may also

contain pseudo-knots. As these programs explore

a much larger search space than methods that only

investigate pseudo-knot free secondary structures,

their prediction accuracy on typical test sets (with

no or few pseudo-knotted structures) tends to

be lower than for programs that do not model

pseudo-knots.

Aligning folded sequences: In exceptional cases, for

example if the sequences correspond to the biolo-

gical transcript units and if we know (or suspect) that

a global RNA structure plays a functional role, we

can first predict an RNA structure for each

individual sequence, e.g. with MFOLD [56–58] or

RNAFOLD of the Vienna package [58–62], and

then align the predicted structured sequences

using programs like RNAFORESTER [90,91],

RNADISTANCE [58,92 ] or MARNA [115].

MFOLD and RNAFOLD take OðL2Þ memory and

OðL3Þ time to predict the pseudo-knot-free

MFE structure for an RNA sequence of length L.
Both programs express the MFE of the entire

structure as the sum of MFE-contributions from

smaller structural elements and employ a dynamic

programming procedure in order to determine the

global structure that minimizes the overall sum of

corresponding MFE-contributions. As they also

employ the same set of thermodynamic parameters,

the difference between both programs and their

respective structure predictions is minor.

RNAFORESTER and MARNA can both be

used to compute a global alignment of several un-

aligned input sequences whose pseudo-knot free

secondary structures are already known, whereas

RNADISTANCE calculates only pair-wise structural

alignments. RNADISTANCE takes only the structures
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as input, whereas RNAFORESTER and MARNA

also use the RNA sequences. RNAFORESTER and

RNADISTANCE present the individual structures as

trees and compute a structural alignment by aligning

the trees. Both programs calculate a score for the

resulting structural alignments. In contrast to

RNAFORESTER and RNADISTANCE, MARNA is

a method that employs a progressive pair-wise

alignment strategy which takes the known structures

indirectly into account when calculating the global

alignment. MARNA is the only one of the three

programs that is capable of proposing a pseudo-knot

free secondary structure for input sequences whose

structure is not known. In the extreme case, it can

even derive a consensus structure when none of

the individual structures are known. Gardner and

Giegerich [70] conclude, in a comparative analysis

of RNAFORESTER and MARNA, that ‘MARNA is

generally less dependant upon the accuracy of the

input structures’ than RNAFORESTER. However,

one advantage of RNAFORESTER is that is can single

out poorly predicted input structures. Overall,

the quality of this two-step approach is limited

by the quality of the individually predicted input

structures. This can be a serious limitation for long

sequences.

Simultaneously aligning and folding sequences: If the pair-

wise sequence identity in the set of potentially

homologous RNA sequences is too low to come up

with a reliable sequence alignment, typically below

40%, it becomes difficult to predict a common

RNA structure.

The idea of co-estimating pseudo-knot free RNA

secondary structures and multiple sequence align-

ments (and evolutionary trees) was first suggested

in a theory paper by David Sankoff in 1985 [116].

It is possible, to define extensions of SCFGs that take

N rather than just a single RNA sequence as input

and simultaneously predict their pseudo-knot free

secondary structures as well as a global alignment.

These so-called N-SCFGs are computationally very

expensive and require OðL3NÞ time and OðL2NÞ

memory to analyze a set of NRNA sequences which

each have length L. It is possible to keep the memory

and time requirements at bay, either by analyzing

only two input sequences with a pair-SCGF or

by analyzing more than two sequences with a

heuristic method. So far, there are only few

alignment-free structure prediction methods, e.g.

CARNAC [117, 118] (no pseudo-knots),

COMRNA [119] (pseudo-knots), STEMLOC [104]

(no pseudo-knots) and CONSAN [105] (no pseudo-

knots). However, these programs tend to detect only

very conserved local structures. COMRNA,

CARNAC and STEMLOC can analyze several input

sequences (STEMLOC achieves this by a progressive

pair-wise method), whereas CONSAN is limited to

only two input sequences. COMRNA is the only

among these programs that can predict pseudo-

knotted structures. The predictions of COMRNA

rely on the calculation of maximal cliques, a problem

which is known to be NP-complete. In the general

case, it thus requires exponential time to run

analyses, but may be fast enough to analyze short

sequences.

Gardner and Giegerich [70] compare different

comparative RNA structure prediction approaches

and conclude that ‘structure-prediction-algorithms

vary widely in terms of both sensitivity and specifi-

city across different lengths and homologies’. It is

thus difficult to recommend a specific program that

is bound to outperform all others irrespective of the

data presented to the program. One feature that has

been noted in a number of studies is that CARNAC

predictions tend to have a high specificity, but

medium to low sensitivity.

Summary: homology based prediction
of RNA genes
In a recent paper, Freyhult, Bollback and

Gardner [120] provide the first critical comparative

assessment of the performance of different homol-

ogy search methods on non-coding RNA and

come to the conclusion that ‘the most popular

homology search methods are often the least

accurate’ and that ‘many studies have used inap-

propriate tools for their analysis’. They provide

a detailed analysis of different strategies and pro-

grams for several typical data sets which enables the

user to design new homology searches. They show

that computationally more expensive, RNA-

specific probabilistic methods like INFERNAL and

RSEARCH are particularly good at discriminating

signal from noise. A decision for or against a

particular strategy and program is inevitably a

decision between high accuracy and high speed

which each user has to make for himself.

Ab-initioRNA gene prediction (Case 2)
Ab-initio gene prediction constitutes the most chal-

lenging case of RNA gene prediction. In the most
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difficult case, we are given a single genome sequence

without any annotation and have to find the

encoded RNA genes. In the general case, ab-initio
RNA gene prediction is still a more or less unsolved

problem and will not be discussed here. However,

for specific genomes, we can sometimes play

surprising tricks.

One such example are the genomes of AT-rich

hyperthermophiles Methanococcus jannschii and

Pyrococcus furiosus. These two bacteria have to stabilize

their double-stranded DNA genome as well as

structural RNA genes against thermal denaturation.

One way of achieving this is by increasing the

strength of the hydrogen bonds, i.e. by increasing the

number of {G, C} base-pairs which form the most

stable base-pairs. Galtier and Lobry [121] observed

already in 1997 that there is a strong correlation

between the GC contents of rRNA and tRNA

genes and their optimal growth temperature in

hyperthermophiles. By searching for GC-rich

regions, Klein et al. [122] and, independently,

Schattner [123], managed to efficiently detect

known and new structural RNA genes in

M. jannschii and P. furiosus (Klein et al. only).
There also exist computationally efficient algo-

rithms which aim to predict locally stable RNA

structures on a genome-wide scale, for example the

program RNAPLFOLD [124, 125]. RNAPLFOLD

computes the average base-pairing probability for

any pair of sequence positions (i, j) by considering

the statistical ensemble of all pseudo-knot free

secondary structures in thermodynamic equilibrium

for a sub-sequence of length L. This fixed sized

window of length L is scanned along a potentially

long target sequence. This method is implemented in

an efficient sliding window-approach which requires

OðNL2Þ time and OðN þ L2Þ memory to calculate

the MFE structure and the matrix of base pairing

probabilities for each sequence window of length L
in a target sequence of length N. So far, the potential

of RNAPLFOLD for detecting RNA genes has not

been systematically investigated.

In these days, we usually have additional data to

help us find the RNA genes in a given genome. One

important source of information are genome seq-

uences from evolutionarily related organisms. In that

case, we can start the search for RNA genes by

mapping genome sequences from related organisms

to different regions of the target genome. This type

of information is often readily available in genome

browsers like ENSEMBL [126] and the UCSC genome

browser [127] or it can be established using fast

alignment tools like BLAT [128].

The first genome-wide screen for RNA genes of

this type was done for E. coli [129]. Comparative

sequence data from four related bacteria were

mapped to the E. coli genome, resulting in more

than 23 000 pair-wise alignments which were

classified into three mutually exclusive classes

(structure-containing, protein-coding and other)

using QRNA [106]. Of the 275 loci in the E. coli
genome that were predicted to be structure-

containing, 49 were assayed experimentally and

11 of 49 were found to express small transcripts of

unknown function.

So, once we have established sets of potentially

homologous sequences, we can, in principle, analyze

them in the same way as we would analyze sets of

potentially homologous RNA genes, see text above

and Figure 4. However, once crucial difference is

that the sets of sequences do not necessarily

correspond to transcribed units of the respective

genomes. Unless we have additional evidence from

cDNA data (or weaker evidence from tiling array

experiments), we simply do not know whether the

sequences in our sets are ever transcribed and

whether their boundaries correspond to the biolo-

gical transcript units. This complicates the inter-

pretation of the results that we get when analyzing

the sets with the methods described before, see in

‘Analyzing sets of potentially homologous RNA

genes’. As all of the methods investigate to some

degree RNA structure, i.e. the potential of different

positions along the sequences to form base-pairs,

their predictions can be biased in unknown ways if

the methods are presented with sequences that do

not correspond to biological transcripts. For exam-

ple, if the sequences are shorter than the real

transcripts, the methods cannot consider base-pairs

that involve nucleotides outside the sub-sequence.

If, on the other hand, the sequences are longer

than the real transcripts, the methods will also take

base-pairs into account that cannot form in the cell.

These examples illustrate why it is difficult to inter-

pret the predictions of two recent studies of the

human genome based on RNAZ [44, 45] and

EVOFOLD [46] and explain why it is almost impos-

sible to convert the number of structure-encoding

regions that these studies predict into a reliable RNA

gene count.

Due to several genome-wide cDNA and tiling

array experiments, for example for the human
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genome [33–36] and the mouse genome [37–40], we

know regions of the genome which are transcribed.

In case of full length cDNA sequences, we even

know the exact transcript boundaries. We can use

these transcripts as input to a theoretical analysis

which determines which of the transcripts corre-

spond to RNA genes. This is currently done by

investigating the protein-coding potential of each

transcript and by discarding any transcripts with

coding potential. Typical measures for coding

potential are the length of the longest putative

open reading frame as well as the ratio of synon-

ymous to non-synonymous mutations in the puta-

tive open reading frame, see the afore-mentioned

publications for details. By now, there already exists

dedicated computer programs in order to disting-

uish protein-coding from non-coding transcripts,

e.g. CONC [130] which employs support vector

machines. However, depending on the nature

of the transcripts (splice, un-spliced, poly-Aþ,

poly-A-, length bias), these measures may be too

crude to reliably distinguish the transcripts of

protein-coding genes from those of RNA genes.

As was explained earlier, see ‘What are RNA genes?’

above, RNA genes can, for example, be found in the

introns of pre-mRNA transcripts. This explains why

a binary sorting scheme into protein-coding versus

non-coding transcripts is probably too coarse to get

an unbiased and comprehensive view of all

RNA genes.

The study by Cawley et al. [41] shows how

different types of annotation, in their case predicted

transcription factor binding sites along human

chromosomes 21 and 22, can help to narrow down

the location of potential RNA genes.

SUMMARY, DISCUSSION
ANDOUTLOOK
RNA gene prediction is an exciting field of

research, where much has already been achieved,

but where there is also ample scope to make

important novel contributions.

We already have a wealth of computer programs

that predict RNA structures or investigate the

structure formation potential of RNA sequences.

It has been shown in numerous studies that compa-

rative approaches provide the best way of identify-

ing potentially functional sequence and structure

features because they allow us to detect sequence and

structure features that have been conserved during

evolution.

Several already promising methods could be

further improved by extending them to deal with

un-aligned input sequences. The requirement for

a fixed input alignment currently imposes a con-

siderable limitation on several popular programs

which needs to be overcome with new conceptual

ideas and computational tricks in order to make these

methods applicable to a wider range of interest-

ing data and to increase their sensitivity. Several

comparative methods would probably also benefit

from explicitly modeling the known evolutionary

relationship of the input sequences. This would

allow these methods to dynamically re-adjust their

parameters according to the range of evolution in

the input sequences. Another limitation is due to the

fact that most RNA gene prediction method employ

computational techniques which make the investiga-

tion of pseudo-knotted structures computationally

very costly. This is the main reason why most

methods completely ignore pseudo-knotted struc-

tures. Pseudo-knotted structures constitute only a

minority in current structural data bases. However,

this may—at least in part—be more a reflection

of our difficulty to detect them than their true

abundance in nature. As pseudo-knots are known

to play diverse and important functional roles [131]

and as ignoring pseudo-knots can bias the structure

predictions in unknown ways, it would be good to

invest some effort into developing novel algorithms

that can model pseudo-knotted structures in a con-

ceptually more elegant and computationally more

efficient way.

Right now, all RNA gene prediction methods

aim to detect structural RNA genes and essentially

ignore unstructured RNA genes, i.e. genes which

do not exert their function via a well-defined

RNA structure. Moreover, many programs silently

assume a global RNA structure that spans the

entire transcript rather than one or several local

RNA structures, i.e. RNA structures that span only

a sub-sequence of the entire transcript and that are

separated by potentially long, unstructured spacer

regions. In addition, none of these methods attempt

to identify the transcripts of RNA genes. The overall

effect is that most RNA gene prediction methods

effectively search of structure-containing regions in

the genome which do not necessarily correspond to

transcripts of the genome. This is typically done

by scanning a sequence window of fixed length
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along the entire genome sequence. However, an

accurate assessment of potential RNA structure and

structure-formation potential can only be made if the

investigated sequences correspond to the relevant

biological sequence units that are present in the cell.

Future developments in RNA gene prediction

methods should therefore address the first goal

in RNA gene prediction more explicitly and aim

to identify regions of the genome that are

transcribed. One structure-independent approach

for detecting tRNA genes by scanning

for polymerase III transcription sites has already

been described in 1994 by Pavesi et al. [132].

More recently, Glusman et al. [133] detected

sequence signals that can distinguish transcribed

from un-transcribed regions of the genome and

that may be employed by future gene prediction

programs to predict both, structural and non-

structural RNA genes. While we learn how to

predict the transcribed regions of a genome, we

should reduce the window dependency of the

existing methods and pragmatically integrate experi-

mental data (e.g. cDNA and tiling array-data) as

well as theoretical predictions (e.g. prediction

transcription factor binding sites) into genome-

wide analyses.

Much can probably be gained by caring even

more about the details, both on the theoretical and

in experimental side. We know from numerous

examples, that RNA genes constitute a diverse group

of genes that go about very different tasks in

the cell using very diverse mechanisms. We are

likely to deprive ourselves of the opportunity to

discover novel and maybe unexpected classes

of RNA genes if we use a too general one-fits-all

approach. Finding and exploring new sequence

signals, like those discovered by Glusman

et al. [133], will not only increase our insight into

the underlying biology and will also lead

to improved methods that give appropriate weight

to the different signals in RNA genes. It may also

be possible to improve the detection of some

RNA gene families by searching for potential

interaction partners that are known to interact

via a known mechanism. This strategy has already

been successfully employed to detect miRNAs.

These novel theoretical approaches, together with

unbiased and comprehensive transcriptome data

from genome-wide experiments have the potential

to significantly improve our understanding of

how genomes regulate themselves.
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