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Abstract

We present a scalable approach for range and k nearest neighbor queries under computationally
expensive metrics, like the continuous Fréchet distance on trajectory data. Based on clustering for
metric indexes, we obtain a dynamic tree structure whose size is linear in the number of trajectories,
regardless of the trajectory’s individual sizes or the spatial dimension, which allows one to exploit
low ‘intrinsic dimensionality’ of data sets for effective search space pruning.

Since the distance computation is expensive, generic metric indexing methods are rendered
impractical. We present strategies that (i) improve on known upper and lower bound computations,
(ii) build cluster trees without any or very few distance calls, and (iii) search using bounds for metric
pruning, interval orderings for reduction, and randomized pivoting for reporting the final results.

We analyze the efficiency and effectiveness of our methods with extensive experiments on
diverse synthetic and real-world data sets. �e results show improvement over state-of-the-art
methods for exact queries, and even further speed-ups are achieved for queries that may return
approximate results. Surprisingly, the majority of exact nearest-neighbor queries on real data sets
are answered without any distance computations.

Keywords: Fréchet Distance, Dynamic Metric Index, Clustering, Cluster Tree, Cover Tree, Nearest

Neighbor, Range Search

1 Introduction

�e rapid growth of movement data diversity and acquisition over the past decade poses expanding

scalability and flexibility demands on information systems. Tracking technologies such as video

analysis, RFIDs, and GPS have enabled experts to collect trajectory data on objects as diverse as flying

animals [34, 35, 55, 63], shipping vessels [50], basketballs [56], humans [52], vehicles [32, 67, 68],

hurricanes [54], athletes [57], terrestrial animals [23, 45], and tablet pen-tip writing [64]. �e size of

trajectory data sets continues to increase as improved tracking technology records higher frequencies

and larger numbers of objects. Real-world data sets [67, 68, 55, 56, 52] consist of tens of thousands

trajectories with thousand or more vertices per trajectory and keep growing. Moreover, tracking

complex objects whose position consists of several spatial coordinates (e.g. a Bison cow and its calf),

challenges researchers to provide computational solutions for trajectory data in high dimensions.

A research problem that has recently received considerable a�ention [8, 10, 25, 26, 28, 37], is the

search for efficient data structures and algorithms that enable nearest-neighbor and range queries on

large trajectory data sets. Proximity searches are a core engine underlying visualization and classification

applications that provide domain-specific researchers with be�er insight regarding their trajectory
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data. Example applications are diverse, such as: identifying potential changes in the migration paths

of birds [55, 63], locating similar European Football player ball possession trajectories when driving

towards the opponent’s net [57], determining if shipping vessels stay within range of a shipping

path [50], and discovering how many people have a similar commute along a specified route [52].

A challenging task in trajectory data analysis is choosing an appropriate trajectory similarity

measure. Common measures include the discrete or continuous Fréchet [7, 15, 17, 18] and Hausdorff [6]

distances, which fulfill the triangle inequality, and the non-metric Dynamic Time Warping (DTW) [46]

and Longest Common Subsequence (LCSS) [61] similarity measures. We focus on the continuous

Fréchet distance for high dimensional trajectory data for a variety of reasons. First, it jointly captures

the similarity in the position, shape, and direction between two trajectories. �e Hausdorff distance

does not capture similarity of directions, which is a requirement for many real-world applications such

as human body movement classification. Second, it is less affected by irregularly sampled trajectories

and thus suited for simplified trajectories. �e la�er is particularly useful in practice as real-world

data sets are typically simplified in a pre-processing step using standard trajectory simplification

algorithms [13, 27, 51, 69]. �ird, it is a metric (unlike DTW or LCSS) and hence it can take advantage

of metric indexing [40] techniques.

Proximity search problems present difficulties in several regards, which renders asymptotic worst-

case analysis o�en meaningless for concrete instances [53]. In such cases, empirical evidence is

especially pertinent to compare solution strategies [40]. For example, real-world trajectory data sets

may not contain a�ributes that lead to worst-case runtimes, but instead behave more ’reasonably’ and

perform much be�er in practice. �ough we state asymptotic worst case bounds for our algorithms, the

evaluation of our proposed solution strategies focuses heavily on a set of robust experiments using a

large variety of data sets.

1.1 Related Work

Search problems bound to find k nearest neighbors (kNN ) and neighbors within a spherical range

(RNN ) in vector spaces under a norm have a long and rich history. �e well known dD-Tree [11]
(a.k.a KD-Tree) successively partitions the input point set S ⊆ R

d with alternating axis-orthogonal

hyperplanes to obtain a balanced binary tree in the confines of O(|S|) space. However, axis-orthogonal

range search, using only linear space, requires Θ(|S|1−1/d) time in the worst-case. �e Range-Tree [12]

improves this worst-case time with the expense of storage that is exponential in d. �is frequent,

underlying phenomenon is well known as the ‘curse of dimensionality’ and Weber et al. [62] show

that the naive scan outperforms partitioning and clustering techniques for proximity search on average

if d exceeds 10. �eoretical and experimental works on general proximity search problems mainly

assume that the distance of two elements can be determined in negligible time, e.g. in O(d) or O(1).
Exact proximity searches on trajectories in R

d under the continuous Fréchet distance δF however are a

computationally harder problem than proximity search on mere points of Rd under Euclidean distances.

Alt and Godau [7] provide an O(n2) time algorithm for deciding if the Fréchet distance is at most

some given value. Combining this algorithm with Cole’s Parametric Search [22] gives an O(n2 log n)
time algorithm that determines δF . �e decision procedure δFD does not allow strongly sub-quadratic

algorithms, unless a common complexity theory conjecture (SETH) fails [15]. Recently, Buchin et

al. [18] gave a randomized algorithm that computes δF in O(n2(log log n)2) time on a word RAM.

Clearly, for exact RNN trajectory queries only δFD computations suffice, whereas exact kNN
queries might well require exact δF computations. �e 2017 SIGSPATIAL Cup [1] asked for practical

data structures to answer RNN queries under δF on trajectories in d = 2 dimensional space. Top

ranked competitors [10, 19, 29] apply filter-&-refine strategies that o�en use spatial hashing [19, 29]

or a quad tree [10] over the trajectory’s start point, end point, and bounding box points to determine

a potentially smaller list of candidates. Recently Bringman et al. [16] improved further upon their
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winning submission with an orthogonal-range search in a (4d)D-Tree (i.e. an 8 dimensional KD-Tree)

to obtain a candidate result list, which is then refined by heuristic distance computations and an even

further tuned decision procedure, to achieve practically fast range queries on three real-world data sets

in the plane (d = 2).
�ere is also work on data structures for approximate proximity queries under δF . In [26] de

Berg et al. present an approximate query structure for kNN and RNN queries. �e structure uses

O(|S|/ε2η) space, where ε > 0 is a quality parameter and η the fixed number of vertices that every

query trajectory Q is restricted to have. �e query algorithm returns S ⊆ S with an additive error of

at most ε · reach(Q) in O(1 + |S|) time, where reach(Q) denotes the maximum distance from the

start vertex of Q to any of its other vertices. �ough the structure is dynamic, the vertex number of a

query trajectory η must be fixed prior to construction and space usage is exponential with respect to it.

Driemel and Silvestri [28] provide asymptotic analysis on a set of data structures and query algorithms

for approximate NN searches under the Discrete Fréchet distance, and even for the Dynamic Time

Warping similarity measure. �ey utilize an asymmetric version of Locality Sensitive Hashing which

maps similar trajectories to the same hash table buckets. However the space and queries bounds are

exponential in n, i.e. the number of points per trajectory, already for constant factor approximations.

Recently, Xie et al. [65] provided a data structure for performing distributed kNN queries on

trajectories using either a ‘Discrete Segment Hausdorff Distance‘ or a ‘Discrete Segment Fréchet

Distance’. �e data structure is constructed by uniformly randomly sampling a set of trajectory

segments, which are then used to compute a set of spatial partition boundaries. Within each spatial

partition a variation of an R-Tree [39] data structure is constructed by computing the centroid of the

bounding box of trajectory segments. �eir experiments for exact 10-NN queries under the Discrete

Segment Fréchet Distance on a synthetic trajectory data set (|S| = 3M) shows an average run-time

of 4.5 seconds, performing 6, 000 distance calls, on a cluster of 16 compute nodes with 152 parallel

threads and 512GB total RAM.

�ere are numerous approaches that seek to extend simple binary serach trees to the proximity

search problem for general sets S under a metric (see Table 9.1 in [40] for a basic overview). Classic

metric tree indexes partition the input along generalized metric balls or bisector planes, which offer

structures using only O(|S|) space. Proximity searches a�empt to prune sub-trees by means of the

query element’s distance to a sub-tree representative and the triangle inequality. For example, the static

and binary VP-Tree [66] is balanced due to recursively choosing a ball radius, around the picked vantage

point, which coincides with the median distance. In contrast, the dynamic and binary BS-Tree [43]

recursively partitions elements into the closer of two ball pivots, resulting in a potentially unbalanced

tree. �e well known M-Tree [21], which is essentially a multi-way BS-Tree, offers strategies to tune I/O

disk accesses. None of the above methods provide worst-case guarantees for proximity searches since

ball overlap depends on on the underlying input set S . In fact, all pairwise distances can have roughly

the same value, which enforces a worst-case query performance of Θ(|S|) for all such structures.

More recent approaches build upon clustering ideas to obtain a small set of ‘compact’ metric balls

with li�le ‘overlap’ that cover all elements. More formally, for a resolution ε, an ε-net of a finite metric

is a set of centers of distance at least ε whose ε-balls cover all elements – e.g. �adtree cell centers of

a certain level. Since packing and covering problems strongly depend on the dimension of Euclidean

spaces, authors seek to capture the ‘intrinsic dimensionality’ of metric spaces for algorithm analysis

with measures thereof. Gonzalez’ farthest-first clustering [36] provides ε-nets of size no bigger than an

optimal ε
2 -net, however straight-forward implementations perform O(|S|2) distance calls. Navigating-

Nets [49] connect layers of nets, having shrinking resolutions, with additional links for a data-structure,

in which the worst-case NN search time can be bounded in terms of the spread and doubling-constant

of the finite metric. However, the factor for |S| in the space bound depends on non-trivial terms

over the doubling-constant. �e expansion constant γ of [44] is another data set parameter, which is

weaker than the doubling constant (c.f. Section 2.2). �e Cover-Tree [14] offers a simpler, yet dynamic,
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Figure 1: An example of a 2-NN query on 545 bat trajectories [35]. �e top plots 2D trajectories: query,

pruned, searched, prune stage candidates, reduce stage candidates, and decide stage results. �e bo�om

shows the corresponding CCT dendrogram for nodes that were pruned (do�ed line) or searched (solid

line) (c.f. Section 5).

approach within the confines of O(|S|) space, irrespective of d and ‘intrinsic dimensionality’ measures

of the metric. �e authors maintain ε-net properties of tree levels during insert and delete operations,

which provides hierarchical cluster trees of arity γ4 and depth O(γ2 log |S|) whose form depend on

the expansion-constant γ. Moreover, their NN search tree traversal takes no more than O(γ12 log |S|)
operations. On the other hand, the experiments by Kibriya and Frank [47], on the performance of exact

NN search over low dimensional real-world data under Euclidean distances, report a query performance

ordering of KD-Trees over Cover-Trees over VP-Trees. �e naive scan sporadically outperforms each

even on low dimensional real-world data and performances of either method converge on synthetic

data with d ≥ 16, as the curse suggests.
Many real-world trajectory data sets S consist of ten thousand or more elements and the number of

vertices n per trajectory is o�en in the thousands. Since the performance penalty for a single Fréchet

proximity decision δFD or distance computation δF is huge (e.g. n2 ≈ |S| or n2 � n log |S|), our main

objective is to minimize the absolute number of these expensive computations at query time. �is is in

the same spirit as analysis in the I/O-model [4] of computation, which measures the cost of answering a

query as the number of expensive I/O operations performed by the query algorithm. In our se�ing, the

cost is primarily measured in the number of continuous Fréchet distance computation calls performed

by the query algorithms.

1.2 Contribution and Paper Outline

We present a scalable and extendable framework for approximate and exact kNN and RNN proximity

queries under computationally expensive metric distance functions that is suitable for practical use in
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information systems – e.g. proximity queries under the continuous Fréchet distance on high-dimensional

trajectory data. In contrast to known approaches, we describe how to effectively extend clustering based,

generic metric indexes to dynamic data structures that answer proximity queries correctly but perform

only a very small absolute number of expensive distance calls. We call this metric index structure Cluster

Center Tree (CCT). Using contemporary desktop hardware, our publicly available, single threaded

Matlab implementation allows to answer exact proximity queries over a 10M trajectory data set with

1.04 distance calls (latency below 1 second) on average.

Proposed CCT Related Work

Data Structure Size linear
exponential [26, 28, 41]

Construction Time Variants with O(|S|2), but

practically fewer, or zero dis-

tance calls.

�ery Types Exact, approximate, and min-

error queries for NN , kNN ,

and RNN under δF .

Not for δF [28, 41, 65], only approxi-

mate [26, 28, 41], only RNN [10, 19, 29],

or NN [28, 41] only.

δF Calls Very few in constructions and

queries.

Order of magnitude more [21, 14].

Empirical Evaluation 16 real and over 20 synthetic

data sets with up to |S| = 10M
and d = 32.

No experiments [28, 41] or few for d = 2
only [19, 29, 26, 21, 37, 65].

Table 1: CCTs jointly satisfy many relevant practical aspects whereas related works (c.f. Section 1.1)

typically neglect at least one aspect.

Our approach is based on an extendable set of heuristic distance and decision algorithms, which is

exchangeable for indexing other computationally expensive metric distance functions. We improve on

known heuristic bounds for δF and δFD , which are also practical for high dimensional trajectory data

(c.f. Section 3).

Known, generic clustering methods are transferable to CCTs. However, dynamic constructions with

O(|S|γ6 log |S|) distance calls provide coarse cluster radii and static constructions with compactness

guarantees use O(|S|2) distance calls. �e proposed dynamic and batch construction heuristics achieve

CCTs with compact clusters using only very few distance calls – e.g. sub-linear on some instances.

Moreover, our approximate radii construction (not excluding exact proximity searches) still achieves

compact clusters without any distance calls (c.f. Section 4).

We propose heuristic query algorithms that exploit low intrinsic dimensionality in the underlying

metric for search space pruning – i.e. excluding clusters of trajectories based on the triangle inequality.

To delay unavoidable δF and δFD calls to later stages, our methods leverage cluster compactness and

bounds, exclude candidate trajectories based on orderings of the approximation intervals, and finally

resolve remaining ambiguity with randomized pivoting for correct query results. Inexpensive heuristic

checks further save on some bound computations and our search algorithms naturally extend to queries

that may contain approximate results (c.f. Section 5).

Given the aforementioned hardness of exact proximity searches and Fréchet distance computations,

we evaluate scalability across various data set characteristics, quality of our CCT constructions, overall

query efficiency, and pruning effectiveness with extensive experiments. Observed query performances

follow the proposed overlap and compactness metrics for CCT quality. Our experimental results show

improvement over recent, state-of-the-art approaches for RNN (even for d = 2) and improvement

over the generic Cover-Tree, M-Tree and the linear scan (even for d > 16). Moreover, the majority

of the exact NN queries on our real world-data sets are solved without any distance calls and further

speed-ups are achieved on approximate queries (c.f. Section 6).
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Summarizing aforementioned in Table 1, CCTs jointly satisfy many relevant practical aspects

whereas related works (c.f. Section 1.1) typically neglect at least one aspect.

2 Preliminaries

A trajectory P of size m is a polygonal curve through a sequence of m vertices 〈p1, . . . , pm〉 in R
d,

where each contiguous pair of vertices in P is connected by a straight-line segment. Let n denote the

maximum size of all trajectories in S . We reserve the term length of a trajectory for the sum of the

Euclidean lengths of its segments.

Fréchet distance �e continuous Fréchet distance δF (P,Q) between two trajectories P and Q can

be illustrated as the minimum ‘leash length’ required between a girl, who walks monotonously along P ,

and her dog, who walks monotonously along Q . To simplify notation, we associate with a trajectory P
its natural parametrization P : [0, 1] → R

d, which maps positions relative to the trajectories length to

the spatial points – e.g. P (0.5) is the half-way point. A continuous, monotonous map f : [0, 1] → [0, 1]
is called a reparameterization, if f(0) = 0 and f(1) = 1. Let F be the family of all reparameterizations,

then the continuous Fréchet distance is defined as

δF (P ,Q) = inf
f,g∈F

max
α∈[0,1]

∥∥∥P
(
f (α)

)
−Q

(
g(α)

)∥∥∥,

where ‖·‖ is the Euclidean norm in R
d. We refer to the continuous Fréchet distance as δF or distance

throughout this work, when it is clear from the context. As noted above, most algorithms that compute

δF base on several calls to an O(dn2) time dynamic program which test if δF is at most some given

value ε. We denote this computation with the predicate δFD(P,Q, ε).

Discrete Fréchet distance �e closely related discrete Fréchet distance minimizes over discrete,

monotonous mappings f : {1, . . . ,m} → {1, . . . ,m} for a trajectory P of sizem. It is an upper bound

to δF , since only alignments of vertex sequences are considered. In fact, the additive error is no more

than the length of a longest line-segment in either trajectory (P or Q ). Eiter and Mannila [30] gave

a quadratic time algorithm, and Agarwal et al. [2] presented a (weakly) sub-quadratic algorithm for

computing the discrete Fréchet distance which runs in O(mn log logn
logn ) time.

�ough DTW differs from discrete Fréchet only in replacing maximum with the summed distances

of matched points, the triangle inequality can well be violated on irregular sampled trajectories 1.

2.1 Proximity Search Problems

Our data structure for S is designed to handle both an additive error ε+ ≥ 0 and a relative error ε∗ ≥ 0.
�ough the computer science community prefers the later for algorithm analysis, our interaction with

domain experts o�en leads to additive error specifications. We only state the proximity search problems

for the additive error regime, since replacing +ε+ with ·(1 + ε∗) provides those for the multiplicative.

�e k-Nearest-Neighbor Problem:

In: A query trajectory Q , an integer k ≥ 1 and a non-negative real ε+ ≥ 0.

Out: A set Sknn ⊆ S of k trajectories, such that for all P ∈ Sknn we have

δF (P ,Q) ≤ τk + ε+,

where τk denotes the k th smallest value in the set {δF (P,Q) : P ∈ S}.
1�e reader may consider DTW among the three 1D trajectories 〈0, 2〉, 〈0, 1, 2〉 and 〈0, 1− ε, 1 + ε, 2〉 as example.

6



�e Range-Search Problem:

In: A query trajectory Q and reals τ ≥ 0 and ε+ ≥ 0.

Out: A set Srnn ⊆ S of trajectories, such that both

Srnn ⊇ {P ∈ S : δF (P,Q) ≤ τ} , and

Srnn ⊆ {P ∈ S : δF (P,Q) ≤ τ + ε+}

hold.

2.2 Intrinsic Dimensionality Measures of Metric Spaces

Let S be a set and the mapping δ : S × S → R
+ a metric on S . For P ∈ S we denote with

B(P, ε) = {Q ∈ S : δ(P,Q) ≤ ε} the metric ball of radius ε.

Doubling Constant [38] Let µ ∈ N be the smallest number such that for every real ε > 0, every
ball in S of radius ε can be covered by at most µ balls of radius ε/2. More formally, for every P ∈ S
and ε > 0 there exist Q1, . . . , Qµ ∈ S , such that

B(P, ε) ⊆

µ⋃

i=1

B(Qi, ε/2).

Expansion Constant [44] Let γ ∈ N be the smallest number such that

∣∣∣B(P, ε)
∣∣∣ ≤ γ

∣∣∣B(P, ε/2)
∣∣∣

for every real ε > 0 and P ∈ S .
We have µ ≤ 4γ for finite sets S (see e.g. Proposition 1.2 in [38]).

2.3 González Clustering for Metric Spaces

Our batch construction algorithms (c.f. Section 4.1) are based on the following farthest-first algorithm

for hierarchical, divisive clustering [36]. Given a metric δ on a set S , the algorithm successively adds

new cluster centers to a set L.

González-Clustering (S, δ):

Arrays dist[ ] = ∞ and parent[ ] = ∅

1. Pick C ∈ S

2. Set L = {C}, S = S \ {C}

3. FOREACH X ∈ S with δ(X,C) < dist[X]
Set dist[X] = δ(X,C) and parent[X] = C

4. Pick C = argmax
X∈S

dist[X]

5. Set L = L ∪ {C} and S = S \ {C}

6. If S 6= ∅ GOTO 3

7



Group Bound Novelty Output Time d

LBf

LBsev Known R O(d) all

LBbb Improved R
O(d22d−1) d ≤ 3

O(d) d > 3
LBst New R O(1) all

LBfd LBtr New true/false O(d(n+m)) all

UBf
UBbb Improved R

O(22d) d ≤ 2
O(d) d > 2

UBadf Improved R O(d(n+m)) all

Table 2: Overview of bounds and their time complexity for varying dimensions d (c.f. Section 3).

�is algorithm requires no more than O(|S|2) distance computations. �e following statements on

the algorithm’s result quality, in terms of minimum cluster number N(S, ε) of a ε-cover and minimum

cluster size R(S, k) of a k-center clustering, are well known [36]. To simplify notation, we use for

subsets A ⊆ S the abbreviation δ(P,A) = minQ∈A δ(P,Q) in the following formal definition:

R(S, k) = min
A∈(S

k
)
max
P∈S

δ(P,A)

N(S, ε) = min
A⊆S

{∣∣A
∣∣ : δ(P,A) ≤ ε ∀P ∈ S

}

Cluster Size and Cover Number Let C1, . . . , Cn denote the sequence in which the elements were

added to L and let L(ε) = {C ∈ L : dist[C] > ε}. We have

R(S, k) ≤ dist[Ck] ≤ 2R(S, k) ∀k > 1

N(S, ε) ≤ |L(ε)| ≤ N(S, ε/2) ∀ε > 0.

�e main observation to prove these statements is the following algorithm invariant: At all times

ε > 0, any two elements in L(ε) have distance of more than ε. Hence, no metric ball of radius ε/2
can cover more than one element of L(ε), which shows the Cover Number bounds. To show the

Cluster Size for some k, one observes that any two elements in {C1, . . . , Ck+1} have distance of at

least dist[Ck+1] =: r. Hence an optimal clustering with k centers has to contain at least one cluster of

radius r/2 (see e.g. [24]).

On metrics with bounded doubling constant µ, we additionally have N(S, ε/2) ≤ µ ·N(S, ε) for
every ε > 0. �is is a key ingredient for the use of ‘intrinsic dimensionality’ in the analysis of nearest

neighbor searches with Navigating-Nets [49], since refining the resolution of an optimal ε-net by a

constant does not increases the number of clusters by more than a constant.

3 Fréchet distance bounds

�is section describes several fast algorithms for computing upper and lower bounds on the continuous

Fréchet distance between two trajectories. �ese distance approximations are used to speed up the

construction of the data structure (Section 4.1) and the query algorithms (Section 5).

Table 2 contains an overview of the bounds together with their time complexities. �ere are three

groups of bounds: (i) a lower bound group LBf (maximum of its bounds), (ii) a lower bound decision

procedure LBfd, and (iii) an upper bound group UBf (minimum of its bounds). �e bound groups are

applied in the construction and query algorithms.

Given two trajectories P = 〈p1, . . . , pn〉 and Q = 〈q1, . . . , qm〉 in R
d, the aim of the algorithms

below is to quickly compute upper and lower bounds on δF (P ,Q).
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3.1 Start and End Vertices (SEV)

Lower bound. A trivial lower bound on the distance between P andQ is the maximum of the Euclidean

distances between start vertices p1 and q1, and between end vertices pn and qm [10, 29, 19]. �at is,

LBsev(P,Q) = max{‖p1 − q1‖, ‖pn − qm‖}, and it can be computed in O(d) time.

3.2 Axis-aligned Bounding Box (BB)

Let BB(P ) denote the minimum-size d-dimensional axis-aligned box that contains all the vertices of P .

It can be computed in O(dn) time, and, similarly, BB(Q) can be computed in O(dm) time.

Lower bound. For d > 3 we use a lower bound described by Dütsch and Vahrenhold [29] and

Baldus and Bringmann [10]. It computes the maximum of the following as a lower bound: the difference

between the maximum xi-coordinates of BB(P ) and BB(Q) for each 1 ≤ i ≤ d, and the difference

between the minimum xi-coordinates of BB(P ) and BB(Q) for each 1 ≤ i ≤ d. �e running time of

their algorithm is O(d).
For d ≤ 3 we use a different algorithm to that in [29, 10] which can result in a stronger lower bound

on δF (P ,Q). Let f be an edge (1-face) of BB(P ) and let f ′ be the corresponding edge of BB(Q), then
λ(f, f ′) is the minimum Euclidean distance, which may or may not be the perpendicular distance (e.g.

Figure 2a). Compute the maximum λ(f, f ′) for all corresponding edges of BB(P ) and BB(Q), which is

clearly a lower bound on the Fréchet distance. �e number of edges of a d-dimensional bounding box is

d2d−1, hence the running time is O(d · d2d−1). �e lower bound BB algorithm for d ≤ 3 is denoted
LBbb1(P,Q), and the algorithm in [29, 10] for d > 3 is denoted LBbb2(P,Q).

Upper bound. For d ≤ 2 we use the algorithm by Dütsch and Vahrenhold [29], which computes

the maximum of all pairwise distances between the vertices of BB(P ) and BB(Q). Since the running
time of the above algorithm isO(22d)we use the following modification for d > 2. Compute a bounding

box that contains all points of P and Q, denoted BB(P,Q). An upper bound is the Euclidean distance

between two vertices of BB(P,Q), with the first vertex composed of minimum coordinate values for

each dimension d, and the second vertex composed of maximum coordinate values for each dimension

d. �e running time of this algorithm is O(d), though the upper bound in [29] is slightly stronger. �e

upper bound BB algorithm in [10] for d ≤ 2 is denoted UBbb1(P,Q), and the algorithm for d ≥ 3 is
denoted UBbb2(P,Q).

Rotation. We can further improve LBbb1 and UBbb1 for trajectories that do not have a directional

spine (direction of maximum variance on the point set) that aligns closely with an axis direction. Typical

examples of such trajectories can be found in some of the real-world data sets [34, 56, 57] used in

Section 6. To obtain a stronger bound for these cases pre-process two other bounding boxes for each

input trajectory P by rotating P 22.5◦, and 45◦ counter-clockwise around the origin. At query time,

compute the 0◦, 22.5◦, and 45◦ rotation bounding boxes for a query trajectory Q only once. �en,

choose the maximum or minimum result from each of the three rotations as the lower or upper bound,

respectively. Rotated trajectories can result in a smaller BB and a stronger bound (e.g. Figure 2b). �e

rotations of 22.5◦, and 45◦ are heuristic values.

3.3 Simplified Trajectory (ST)

Lower bound. Let P ′ be the straight-line segment between p1 and pn and let Q′ be the straight-line

segment between q1 and qm. We set LBst(P,Q) = |δF (P, P
′)− δF (Q,Q′)|/2, which we next show is

a lower bound for δF (P,Q).

�eorem 1. LBst(P,Q) ≤ δF (P,Q).

Proof. From the triangle inequality,

δF (Q,Q′) ≤ δF (Q,P ) + δF (P, P
′) + δF (P

′, Q′) ⇐⇒
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(b) Trajectory rotation

BB(P )
f

f ′

BB(Q)

λ(f, f ′)

(a) Corresponding edge distance

P

Q

P

Q

LB

LB
Rotate P and Q 45◦

Figure 2: Bounding box lower bound: (a) corresponding edge distance, and (b) trajectory rotation

resulting in a stronger lower bound (c.f. Section 3.2).

δF (Q,Q′)− δF (P, P
′) ≤ δF (P

′, Q′) + δF (P,Q) ≤ 2δF (P,Q),

since δF (P
′, Q′) ≤ δF (P,Q).

A similar argument can be used for δF (P, P
′), hence |δF (P, P

′)− δF (Q,Q′)|/2 ≤ δF (P,Q).

To use this bound pre-compute δF (P, P
′) for each input trajectory P ∈ S , inO(n log n) time (since

P ′ is a single segment). At query time, once δF (Q,Q′) is computed in O(m logm) time, then every

LBst(P,Q) check for the same query Q is computed in constant time.

3.4 Traversal Race (TR)

Lower bound. Our decision procedure LBtr(P,Q, α) for α ≥ 0, is similar to the negative filter

algorithm by Baldus and Bringmann [10]. �e algorithm starts at the beginning of P and Q and

iteratively traverses P ’s vertices and Q ’s edges towards their respective ends. To simplify presentation,

we add a first edge q1q1 and a last edge qmqm to Q . If the minimum Euclidean distance between P ’s

vertex and Q ’s edge is less than the given α, then advance to P ’s next vertex, else advance to Q ’s next

edge. If the end of Q is reached first, then α < δF (P,Q) and answer true, otherwise we have not
gained any information and answer false.

�is algorithm gives a stronger bound than the algorithm in [10], especially when the edges of

the trajectories are long. Since the algorithm is not symmetric, we run it a second time with P and Q
swapped which gives a total runtime of O(d(n+m)).

3.5 Approximate Discrete Fréchet (ADF)

Upper bound. �e discrete Fréchet distance is known to be an upper bound on the continuous Fréchet

distance [30]. A greedy algorithm in [17], denoted UBadf1(P,Q), approximates the discrete Fréchet

distance between two trajectories P andQ inO(d(n+m)) time. �e approximation algorithm traverses

the vertices of P and Q iteratively from start to end, starting at i := 1 and j := 1, and at each step

picks a pair (i′, j′) ∈ {(i+ 1, j), (i, j + 1), (i+ 1, j + 1)}, minimizing the Euclidean distance between

vertices pi′ and qj′ . It holds that δF (P,Q) ≤ UBadf1(P,Q) [17].
We include two more variations of the above algorithm. �e first, UBadf2(P,Q), traverses the

vertices of P and Q in reverse from end to start, starting at i := n and j := m, and at each step looks

backwards to pairs (i′, j′) ∈ {(i− 1, j), (i, j − 1), (i− 1, j − 1)}, instead. �e second, UBadf3(P,Q),
traverses the vertices of P and Q from start to end, starting at i := 1 and j := 1, and at each step, if

n ≥ m then increment i and set j := dm/n · ie, otherwise increment j and set i := dn/m · je.
We also tried padding trajectories with a small number of new vertices along each edge of P and

Q in an a�empt to strengthen the bound. However, the experiments showed that this approach very

rarely gave any improvements.
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Order If condition is true Return

1. UBf(P , C2) ≤ LBf(P,C1) C2

2. UBf(P , C1) ≤ LBf(P,C2) C1

3. LBfd

(
P,C1,UBf(P , C2)

)
C2

4. LBfd

(
P,C2,UBf(P , C1)

)
C1

5. δF (P , C1) < rad(C1)/2 C1

6. δF (P , C1) < LBf(P,C2) C1

7. δF (P , C1) > UBf(P , C2) C2

8. LBfd

(
P,C2, δF (P , C1)

)
C1

9. δfd
(
P , C2, δF (P , C1)

)
C2

10. otherwise C1

UBF (P,C1)

LBF (P,C1) LBF (P,C2)

UBF (P,C2)

C1 C2

rad(C1) = δF (C1, C2)
rad(C1)/2

Figure 3: Bisector Localization Predicate for determining if trajectory P is closer to center C1 or C2 (c.f.

Section 4.1). Subsequent checks are only performed if current results are inconclusive. Test 5 is only
performed for the Relaxed CCT since C2 is a furthest trajectory in the cluster of C1.

4 Indexing Expensive Metrics with Cluster Center Trees

A Cluster Center Tree (CCT) for a set S of trajectories is a rooted tree whose nodes represent clusters,

that are metric balls of a certain distance radius. Each node v of a CCT stores a distance value rad(v), a
reference to some trajectory C(v) (its center), and a list of child nodes. Every trajectory P ∈ S appears

as the center of a leaf in the tree. An internal node v of a CCT, needs to uphold two properties, which

are (Nesting) one of its children refers to the same center as v, and (Bounding) every descendant u of

v has δF
(
C(u), C(v)

)
≤ rad(v). Since the number of leafs is |S| and each internal node has at least

two children, CCTs have a storage consumption within O(|S|), regardless of trajectories’ size n and

dimensionality d.
�e following describes three CCT batch construction algorithms (Exact, Relaxed, Approximate) and

two dynamic insert/update/delete algorithms (Exact, Approximate), as well as a third insert algorithm

(Standard) that similar common dynamic tree indexes use (e.g. the M-Tree [21]).

4.1 Batch CCT Construction

Our batch construction methods are inspired by González’ hierarchical, divisive clustering for metric

spaces to derive compact clusters (c.f. Section 2.3). Starting with one arbitrary element as the center,

the algorithm successively picks an element, as an additional center, that is ‘farthest’ from any of the

previous centers, and then reassigns elements to the additional center if it is closer. A k-center clustering
is produced in k− 1 phases of distance computations and center reassigning. In each phase, the current

cluster radii are within a factor of 2 of an optimal k-center clustering that covers all elements (c.f.

Section 2.3).

Our construction heuristics foremost aim to avoid or reuse δF calls by applying upper and lower

bound computations.

4.1.1 Exact CCT Construction

To obtain a binary CCT from the González clustering algorithm in Section 2.3, we consider it an

continuous process within the monotonously decreasing radius parameter ε. In addition to the leafs

L(ε), we also track a set of tree nodes T (ε). Initially, T contains only the root node which is associated

to the sole trajectory C1 in L as its center. Note that the array parent[·] always points to a leaf for

remaining elements in S .

11



Now, whenever a new center Ci is picked and added to the leaf nodes, we perform a split of its node

in T . �at is, we replace the leaf’s node v that is currently associated to parent[Ci] in T with a node

that points to two children v1 and v2, which we associate with the leafs parent[Ci] and Ci. To reduce

the number of distance computations when determining if a given P is closer to Ci or its current center,

we use the sequence of bound computations in Figure 3.

A�er the tree is built, we compute the cluster radii of the CCT in a bo�om-up fashion from each

leaf. To save δF distance calls, we use upper and lower bounds arrays instead of the dist[·] array and

sharpen approximations with δF calls only if selecting a furthest element is indecisive. We use the

following Fix-Ancestor-Radius logic to save on δF calls. First check the current radius against UBf, then

check against it with LBfd and then δfd. Only if these checks are indecisive, compute δF to update the

radius of the node’s parent.

�e worst-case number of distance calls is O(|S|2), since (i) on every iteration all bounds may fail

to be conclusive and distances are computed for all trajectories P ∈ S , (ii) the CCT may degrade to a

linear chain on metrics with large spread and asymmetric clusters (e.g. all trajectories are single, 1D
points with coordinates of the form 2i ∈ R), and (iii) Fix-Ancestor-Radius logic may perform up to

quadratic δF calls. However, our experimental data (Figure 14) shows that this method performs far

fewer δF calls on real data sets.

4.1.2 Relaxed CCT Construction

�is recursive construction algorithm successively performs only one phase of the González algorithm

that results in a partition of the trajectories via the metric bisector of the two clusters’ centers. �is

essentially omits the trajectory reassigning in González’ clustering.

Pick an arbitrary trajectory P ∈ S as center of the root node v, that is C(v) := P , and let S(v) = S
denote the trajectories contained in the cluster of v. �e recursive split then determines a trajectory

F (v) which is furthest from C(v), which also determines rad(v). To do this, we first compute the

highest lower bound α to the distances of C(v) and elements of S(v). �en we compute δF only for

those trajectories whose upper bound distance (to C(v)) exceed α.
�e cluster is then partitioned into (potentially) smaller clusters v1 and v2, which are the children

of v. For their centers, we set C(v1) := C(v), C(v2) := F (v) and assign each trajectory P ∈ S(v) to
the sub-cluster of the closer center. To reduce the number of distance computations when determining

if P is closer to C(v1) or C(v2), we use the test sequence in Figure 3.

�e worst-case number of distance calls is again O(|S|2), since the algorithm may need to compute

O(|S|) distances at each level of the tree. However, experimental results in Figure 14 shows that this

method typically allows one to build CCTs with O(|S|) distance calls.

4.1.3 Approximate CCT Construction

Since distance calls are very expensive, we also describe a construction algorithm that performs no

calls at all to δF and δFD , that originates from adapting the Relaxed construction. For this, we only

use upper bound computations UBf to determine the furthest trajectory F (v) and we assign P to the

center, i.e. C(v1) or C(v2), that realizes a smaller upper bound value. Compared to the Relaxed method,

the approximate method does not perform expensive distance calls but the cluster radii are potentially

larger.

4.2 Dynamic CCT Constructions

Given the few properties CCTs need to uphold, there are several heuristic strategies to handle dynamic

situations.
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4.2.1 Exact Dynamic Inserts

Exact inserts may perform distance computations, since cluster radii values are computed exactly.

A new trajectory P is inserted by first locating the leaf v1 that is an exact nearest neighbor of P (c.f.

Section 5.1.1). �en we create two new leaf nodes u1 (contains trajectory of v1) and u2 (contains P ),

and point v1 to the new nodes. �en fix the radius of v1 and its ancestors using the already discussed

‘Fix-Ancestor-Radius’ bo�om-up process.

�e worst-case number of distance calls isO(|S|), since ‘Fix-Ancestor-Radius’ may need to compute

the distance for every tree node. Hence, constructing a CCT entirely with dynamic inserts requires

O(|S|2) distance computations. However, our experiments show that the number of distance calls is

much smaller for our data sets (c.f. Figure 14).

4.2.2 Approximate Dynamic Inserts

Approximate inserts perform no distance computations, and cluster radii are computed based on the

largest upper bound value.

A new trajectory P is inserted by first locating the leaf v1 that is an implicit approximate nearest

neighbor of P (c.f. Section 5.3). �en we create two new leaf nodes u1 (contains trajectory of v1) and
u2 (contains P ), and point v1 to the new nodes. �en fix the radius of v1 and its ancestors by only

checking the current radius against UBf.

4.2.3 Standard Dynamic Insert

A classic insertion method for metric tree indexes [58, 59, 43, 40] is to start at the root and descend

to the child node whose center is closest to new trajectory P , until a leaf v is reached. We adapt this

algorithm for our se�ing by descending to the child node with the closest LBf to locate leaf v, and then

proceed with the same logic as the approximate insert above.

4.3 CCT �ality Analysis

To gain insight of the CCT quality achieved by the various batch and insert algorithms, refer to Figure 4

(see Section 6 for the complete experimental setup).

�e average leaf depth is more balanced for the insertion algorithms compared to the batch construc-

tion algorithms. However, it is noteworthy that tree depth is inversely proportional to the performance

of the construction and query algorithms (see Figure 14 in Section 6.2.1). E.g. unbalanced CCTs do not

necessarily incur poor query performance. �is may seem counter-intuitive at first, but surveys have

mentioned that this can occur [40], and the next two CCT quality measures help to explain why.

�e compactness measure tends to be largest for the standard insert and smallest for the exact

batch construction, which correlates with the experiment performance mentioned above. So, a smaller

compactness results in be�er performance. Moreover, when isolating just the insert algorithms, the exact

method tends to have smaller compactness compared to approximate methods, which also correlates

with the experimental results where exact inserts outperform approximate insert methods. But the

exact and relaxed batch construction compactness measures do not correlate with the experiment

performance results. So we used “overlap” to explain the CCT quality in this case.

To measure overlap, we count all nodes that overlap (cover) a given leaf trajectory. We refine this

measure by comparing the depth of each leaf with the total number of cover-nodes and averaging

over all leafs, but the key point is that it is simply measuring how much of the tree covers each leaf.

Smaller overlap measures result in be�er query performance, and vice versa. Intuitively this method of

measuring overlap makes sense, since data sets with higher intrinsic dimensionality contain trajectories

that are harder to ’separate’ from each other, which can result in higher overlap in a tree. If a leaf is

covered by many nodes, then constructing and searching is harder since there are more potential nodes
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Figure 4: CCT�ality for batch construction and insertion algorithms on the six largest real data sets (c.f.

Section 4.3). �e average leaf depth (top) is normalized to an optimal depth (dlog2 |S|e). Compactness

(middle) is the average ratio of child-parent radii, and overlap (bo�om) is the average ratio of each

trajectory’s leaf depth and number of other node clusters that cover it. For the Taxi [67, 68] data set the

Exact CCT batch construction did not finish within 3 days and is omi�ed.

to traverse. �e batch construction algorithms tend to have smaller overlap than inserts, and exact

algorithms have smaller overlap than their approximate counterparts (since approximate algorithms

can result in larger radii).

One interesting and initially unexpected result in the experiments was that the Relaxed CCT

outperformed the Exact CCT. �e Relaxed CCT is constructed with fewer distance calls and essentially

omits the trajectory reassigning component, compared to the Exact method, so we anticipated a trade-off

at query time for the Relaxed method. However, the opposite occurred. �e reason for this behavior is

due to the overlap difference. �e trajectory reassigning component of the Exact batch construction

can lead to a larger overlap since trajectories can be reassigned multiple times during the iterations

which can lead to more parent nodes that cover them.

Various data sets can also exhibit different quality measures depending on their intrinsic dimen-

sionality. Figure 5 compares two real data set Relaxed CCT dendrograms. �e Cats [45] data set has

smaller intrinsic dimensionality compared to the Gulls [63] data set, and the dendrograms show this

relationship with Cats having smaller compactness and overlap measures. Experiments (e.g. Figure 10)

verify that the Cats Relaxed CCT outperforms the Gulls Relaxed CCT.

An a�empt was made to measure the quality of the underlying data sets using the intrinsic dimen-

sionality measure of [20]. Calculations showed that this measure was useful for data sets with normal

distributions of pairwise distances, however, most real data sets in our study do not have this property

and the measure did not accurately convey the underlying intrinsic dimensionality. In our se�ing, the

overlap measure was a be�er indicator for the ease or difficulty of searching the data set.

4.4 Differences to Related Approaches

Multi-way metric indexes such as Cover-Trees [14] also provide the Nesting property, besides additional

compactness and separation properties (Cover Trees use 1/1.3 ≈ 0.78 for compactness and separation

in practice to balance arity and depth). Internal nodes of Cover-Trees have an assigned integer level

and the distance between the center of a node with level i and the center of any of its descendants

is no more than 2i (c.f. �eorem 2 in [14]). Using these coarse values as radii, we have that every
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Figure 5: Relaxed CCT Dendrograms for Cats (top) and Gulls (bo�om) real data sets (c.f. Section 4.3).

�e x-axis shows the number of input trajectories, y-axis the normalized cluster radii (compactness),

and horizontal lines the parent nodes (tree depth). �e vertical lines represent the leaf trajectories with

lighter and darker shades corresponding to smaller and larger overlap measures, respectively. Tree

balance is observed by the relative position of the vertical cut line beneath a parent that separates its

two children.
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Cover-Tree is a CCT. �eir dynamic insertion and deletion of a single element performs no more than

O(γ6 log |S|) operations, which are mainly distance computations, where 2 ≤ γ ≤ |S| denotes the
expansion constant of the data set (c.f. Sections 1.1 and 2.2). For large trajectory data sets however,

O(|S|γ6 log |S|) Fréchet distance computations might well be impractical, even for moderate γ values.

�ough one may modify CCTs such that leafs store ‘chunks’ (fixed size subsets of trajectories)

like practical implementations do (e.g. M-Trees [21]), this seems detrimental for the computationally

expensive Fréchet distance in our se�ing.

It is important to note that the bound algorithms in Section 3 are independent of the CCT structure.

�is allows the flexibility to extend the query algorithms (c.f. Section 5) with further, e.g. data domain

specific, heuristic bounds without the need to rebuild the data structure. �is is in strong contrast

to pruning approaches that use dD-Trees [11], Range-Trees [12], and grid-based hash structures, as

in [19, 29, 26], for e.g. trajectories’ start and end points in R
d.

5 Proximity�eries

Our query algorithms for CCTs consists of three stages:

1. Prune: Collect candidate trajectories into a set S1 by performing a guided depth-first-traversal

of the CCT, in which sub-tree’s clusters may be excluded in a pre-order fashion using the triangle

inequality, the cluster radius, and bound computations.

2. Reduce: Filter trajectories in S1 using heuristic proximity predicates and orderings of the

approximate distance intervals to obtain a smaller set S2.

3. Decide: Finalize the result set by removing ambiguity in S2 that exceeds the specified query

error, by potentially performing δF and/or δFD calls.

To gain some intuition regarding the effectiveness of this 3 stage approach, refer to Figure 6, which

shows the Prune and Reduce stages for two kNN queries. �e Prune stage generally searches a small

subset of the CCT (by eliminating sub-trees) and returns a small candidate set. �e Reduce stage can

further exclude candidates, and also include candidates in the final result set. Distance calls are only

employed in the Decide stage, by which time the number of remaining candidates are typically small

(or o�en zero).

�e following describes each query algorithm in the additive error model and the changes for the

multiplicative error model are briefly noted in each section.

5.1 Approximate and Exact kNN�eries

Consider a query knn(Q, ε+ ≥ 0, k ≥ 1) on S , as defined in Section 2.1. We describe the three stages

of our query algorithm.

1. Prune: Our query method heuristically guides the tree traversal towards a potentially close leaf.

Recursively traverse the tree from the root, and for an internal node v, first descend to the child u that

has the smallest lower bound LBf(Q , C(u)) among the children of v. When a leaf is reached, append

its trajectory to the initially empty set S1.

Once |S1| ≥ k, prune sub-trees as follows. Track the k th smallest upper bound βk in S1 using

a heap, and only descend below node v if LBf(C(v),Q) ≤ βk + rad(v) − ε+. When a leaf node

is reached, append its trajectory P to S1 only if LBf(P,Q) < βk and either UBf(P,Q) < βk or

LBfd(P,Q, βk) = false.
2. Reduce: From S1, we filter with the final βk value to obtain at least k elements in S2. �at is,

for those P ∈ S1 having UBf(P,Q) > βk, keep only those trajectories with LBf(P,Q) < βk − ε+ and

LBfd(P,Q, βk − ε+) = false.
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Figure 6: Two exact kNN queries for k=12 (first column) and k=64 (second column) on the Football [57]

data set using the Relaxed CCT (c.f. Section 5). �e first row shows 2D trajectory plots and the second

row contains dendrograms that show the CCT prune stage search, both with the same legend as in

Figure 1 (pruned trajectories are omi�ed). �e third row shows trajectory bound intervals in S2, i.e. the

upper/lower bound distances of a trajectory to the query. �e trajectories in light grey show those that

can be deleted in the reduce stage, since LBf(P,Q) + ε+ > βk. �e last row shows trajectory bound

intervals in S2, including those that can be included (black) in result set Sknn in the reduce stage, since

UBf(P,Q)− ε+ < αk.
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If |S2| = k, we are done and return the set Sknn := S2. Otherwise, locate the (k + 1)-th smallest

lower bound αk+1 in S2. For each P ∈ S2 with UBf(P,Q)− ε+ < αk+1 immediately move P from S2

to the initially empty set Sknn.

For the relative error model, first compute the k th smallest lower bound αk in S1, set ε
+ := ε∗ · αk ,

and run stage two exactly as described above.

3. Decide: Perform the following until |Sknn| = k. Randomly choose a pivot trajectory P ∈ S2,

compute π := δF (P,Q), and partition S2 by computing if the trajectory is closer or further from Q
than π (use upper/lower bounds, and if it’s undetermined compute the Fréchet decision procedure).

If the number of trajectories closer to Q than π is at most k − |Sknn|, append the closer trajectories

to Sknn and delete them from S2. Otherwise, delete the trajectories further from Q than π from S2.

Algorithm Analysis. Using a similar analysis as in the �ickSelect algorithm [31], the number of

δF calls and δfd calls in the Decide stage is O(log |S2|) expected and O(|S2|) expected, respectively. In
the worst-case, no trajectories are discarded in the first two stages and |S2| = |S|. However, experiments

(c.f. Section 6.2.1) show much fewer distance computations than this worst-case analysis.

5.1.1 Optimization for NN �eries

We describe modifications for a NN algorithm that empirically performs slightly fewer distance com-

putations than the kNN algorithm when k = 1 (c.f. Section 6.2.2).

1. Prune: We perform the following additional check when at a leaf node v: If UBf(C(v),Q) ≤ ε+

is true proceed to the next stage with S1 := {C(v)}.
2. Reduce: Same as kNN .

3. Decide: If |S2| = 1, we are done and return S2. Otherwise, compute the second-smallest lower

bound α2 in S2, with associated trajectory P . If LBfd(P,Q, α2) = false but δfd(P , Q, α2) = true then
return {P}.

Otherwise, sort S2 ascending by the upper bound, and loop on each P ∈ S2 to track the current

best trajectory P ′ and its distance π := δF (P
′, Q). For subsequent P ∈ S2, if LBfd(P,Q, π) = false

but δfd(P , Q, π) = true, then set P ′ := P and π := δF (P,Q). Finally return {P ′}.

5.2 Approximate and Exact RNN �eries

Consider a range query rnn(Q, τ ≥ 0, ε+ ≥ 0) on S , as defined in Section 2.1. For the queries under

the relative error model, we set ε+ := ε∗ · τ .
1. Prune: Recursively traverse the tree from the root. For an internal node v, only descend to its

children if LBf(C(v),Q) ≤ τ + rad(v). �at is, the associated cluster of v may contain trajectories

within distance τ of Q . When a leaf is reached, append its stored trajectory P to the initially empty set

S1 if LBf(P,Q) ≤ τ .
All trajectories within the cluster of a node v may immediately belong in the result set Srnn, so

we can potentially finish the sub-tree of v with a UBf call. Since our UBf call is more expensive

than LBf calls, we speed up the search using a heuristic parameter2 κ ≥ 1 in the following: Only if

κ · LBf(C(v),Q) + rad(v) < τ check UBf(C(c),Q) + rad(c) ≤ τ and, on success, simply append all

leafs beneath v to the initially empty set Srnn.

2. Reduce: For each trajectory P ∈ S1, if UBf(P,Q) < τ + ε+, then append P to Srnn, else if

LBfd(P,Q, τ) = false then append P to initially empty set S2, otherwise P is discarded.

3. Decide: For each trajectory P ∈ S2, if δfd(P,Q , τ) = true, then append P to Srnn.

Algorithm Analysis. In the worst case no trajectories are discarded in the first two stages, hence,

the query algorithm might perform O(|S|) bound computations in the Prune and Reduce stages, and

O(|S|) Fréchet decision procedure computations in the Decide stage.

2Our experiments use κ = 1.25, since this matches the average upper/lower bound ratio we observe on elements of the

data sets.
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However, our experiments in Section 6.2.1 (see Figure 12) show much fewer bound computations

and δfd calls.

5.3 Implicit Approximate �eries

We also describe a variant of kNN and RNN query algorithms that perform no distance and no Fréchet

decision procedure computations. Instead, implicit approximation query algorithms return trajectory

results with the smallest additive ε+ or relative ε∗ approximation error, which is part of the output.

Since results are determined by the set of heuristic bounds, this method can result in a significant

computational speed-up over aforementioned query algorithms.

�e Prune and Reduce stages of the implicit approximate RNN and kNN query algorithms are the

same as their counterparts above with ε+ := 0. �e modified Decide stages are as follows.

kNN Decide: If |S2| = k, then set Sknn := S2. Otherwise, sort S2 by upper bound ascending, and

set Sknn to the first k elements in S2.

To compute ε+ and ε∗, set βk to the k-th smallest upper bound in S2. Delete the first k elements

in S2, sort S2 by lower bound ascending, and set αk to the lower bound of the first element in S2. Set

ε+ := βk − αk. Set ε
∗ := (βk − αk)/αk.

RNN Decide: Set Sknn := S2.

To compute ε+ and ε∗, set βk to the largest upper bound inS2. Set ε
+ := βk−τ and ε∗ := (βk−τ)/τ .

6 Experiments

We experimentally evaluate the scalability, effectiveness and efficiency of bounds in Section 3, data

structure constructions in Section 4, and query algorithms in Section 5. As introduced in Section 1, our

measurements focus on the primary empirical goal of measuring the number of distance computations,

with a subordinate goal of measuring the query I/O (tree node accesses).

We compare our contribution to several competitors, including a recent state-of-the-art contri-

bution [16] for RNN queries among 2D trajectories (which improves upon previous RNN search

approaches on 2D data [10, 19, 29]), a standard M-Tree [21], a standard Cover-Tree [14], and an im-

proved linear scan algorithm (Section 6.1.3). Although the approach [26] is most similar in regard of the

supported operations, it does not allow practical comparison on our test data sets due to its exponential

construction time and data structure size.

6.1 Experiment Setup

We now describe how the experiments are setup whereas Section 6.2 discusses the results3.

6.1.1 Real Data Sets

We obtained sixteen real-world data sets [23, 32, 34, 35, 45, 50, 52, 54, 55, 56, 57, 63, 64, 67, 68] of

diverse origin and characteristics to evaluate our data structure construction and query algorithms (see

Table 3). To broaden our experiments, but also to challenge our bound algorithms, we use the trajectory

simplification algorithm of [3] to obtain trajectories whose sampling are irregular (c.f. Section 6.1.1).

Given an error bound ε̂ ≥ 0, this simplification algorithm returns a trajectory over a subset of the

original vertices whose Fréchet distance is within the specified bound. For every P ∈ S , we set ε̂ to be

a small percentage (typically 1% or 2%) of reach(P), where reach denotes as the maximum distance

from a trajectory’s start vertex to any of its other vertices (see e.g. [26]). We found that this substantially

reduces the time required to run the experiments, without materially changing the results.

3See https://github.com/japfeifer/frechet-queries for more detailed experimental results, the

code, and the data sets.
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Vertices

Data Set |S| d orig. simpl. Trajectory Description

Vessel-M [50] 106 2 23.0 7.3 Mississippi river shipping vessels Shipboard AIS.

Pigeon [34] 131 2 970.0 26.0 Homing Pigeons (release sites to home site).

Seabird [55] 134 2 3175.8 43.5 GPS of Masked Boobies in Gulf of Mexico.

Bus [32] 148 2 446.6 40.3 GPS of School buses.

Cats [45] 154 2 526.1 34.2 Pet house cats GPS in Raleigh-Durham, NC, USA.

Buffalo [23] 165 2 161.3 54.5 Radio-collared Kruger Buffalo, South Africa.

Vessel-Y [50] 187 2 155.2 4.0 Yangtze river shipping Vessels Shipboard AIS.

Gulls [63] 253 2 602.1 33.7 Black-backed gulls GPS (Finland to Africa).

Truck [32] 276 2 406.5 41.4 GPS of 50 concrete trucks in Athens, Greece.

Bats [35] 545 2 44.1 7.3 Video-grammetry of Daubenton trawling bats.

Hurdat2 [54] 1788 2 27.7 7.9 Atlantic tropical cyclone and sub-cyclone paths.

Pen [64] 2858 2 119.8 24.4 Pen tip characters on a WACOM tablet.

Football [57] 18034 2 203.4 15.4 European football player ball-possession.

Geolife [52] 18670 2 1332.5 14.2 People movement, mostly in Beijing, China.

Basketball [56] 20780 3 44.1 7.3 NBA basketball three-point shots-on-net.

Taxi [67, 68] 180736 2 343.0 41.3 10,357 Partitioned Beijing taxi trajectories.

Table 3: Real data sets, showing number of input trajectories —S—, dimensions d, average number of

original vertices per trajectory, average number of simplified vertices per trajectory, and a description.

�ough some of these real data sets have a small number of trajectories (e.g. Vessel-Y vs. Taxi), they

are included in our experiments since they show that proximity queries in small sets can cause more

distance calls than searches in larger sets (e.g. Figures 8, 15, 16, and 18).

We use two methods to generate query trajectories for the real data sets. Method one randomly

selects an input trajectory P , perturbs its vertices up to 3% and translates it up to 5% of reach(P)
uniformly at random. For direct comparison, method two uses the query generator of [16], that returns

exactly 10, 100 or 1000 results for a RNN query. We generated 1000 query trajectories per data set

with either method. Results based on the second query generation method indicate that in the respective

figure.

6.1.2 Synthetic Data Sets

Testing on synthetic data sets helps to analyze which characteristics most impact the number of δF
calls and overall query efficiency. By varying a single characteristic while holding others constant, the

impact of the particular characteristic on the measurements can be assessed. �e routine to create these

data sets is parameterized by the following characteristics:

• cluster size αCS (number of trajectories per cluster),

• trajectory straightness factor αSF and maximum edge distance αED ,

• average trajectory size n,

• number of trajectories |S|, and

• spatial dimensions d.

Our baseline synthetic data set is generated with the values αCS = 10, αSF = 0.95 with αED =
0.6, n = 15, |S| = 5000, and d = 2. For the experiments, we vary αCS ∈ {1, 10, 25, 50, 100},
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αSF ∈ {0.5, 0.8, 0.9, 0.95, 0.99}, n ∈ {15, 25, 35, 45, 55}, d ∈ {2, 4, 8, 16, 32}, and the number of tra-

jectories |S| in {5K, 10K, 20K, 30K, 40K, 1M, 10M} .

Synthetic data sets and their associated query trajectories are created in the following four steps.

Step 1: Unique (non-clustered) trajectories. First, increase the designated number of trajectories |S|
by 500. Generate each of the |S|/αCS trajectories with the following random-walk routine. Choose

a number of vertices z ∈
[
n
2 ,

3n
2

]
uniformly at random and then choose the initial vertex p1 ∈ [0, 1]d

uniformly at random. Subsequent vertices pi are created with

pi := αED · σ + pi−1 + αSF · (pi−1 − pi−2) ,

where each random step σ ∈ [0, 1]d is chosen uniformly.

Step 2: Clustered trajectories. For each unique trajectory generate a copy of it, perturb uniformly

at random the copy’s vertices up to the maximum edge distance αED , and then translate uniformly

at random the copy up to the maximum edge distance. �is process is performed αCS − 1 times per

unique trajectory.

Step 3: Sample query trajectories. Out of the above set S , we choose 1000 trajectories uniformly at

random without replacement.

Step 4: Add ‘noisy’ trajectories. Finally, 500 additional ‘noise’ trajectories are generated as in Step 1.

6.1.3 Improved NN Linear Scan

Given the lack of available algorithms for exact nearest-neighbor search under the Fréchet distance and

our discussion on the ‘curse of dimensionality’ (c.f. Section 1), we implemented a competitor, called

improved NN linear scan, suitable for high dimensional trajectory data.

�e improved NN linear scan algorithm leverages our bounds of Section 3 by checking each P ∈ S ,
and appending P to the initially empty set S1 if LBf(P ,Q) < β and LBfd(P,Q, β) = false. �e

smallest upper bound β is tracked, upper bound UBf(P,Q) is only computed when P is appended to

S1, and LBfd(P,Q, β) is only computed when LBf(P ,Q) < β.

6.1.4 �ality of the Data Structure

6.2 Experimental Results

Note that the results on the quality of the CCT data structure are in Section 4.3. Experimental results are

separated into primary results, which evaluate the proposed Relaxed CCT method on real and synthetic

data sets and compare it with related work, and supplementary results, which compare the different

exact and approximate variations of our approaches against each other.

6.2.1 Primary Results

Figures 7 and 8 show the effectiveness of exact NN queries on Relaxed CCTs for synthetic and real data

sets, respectively. On most data sets, the average number of expensive δF distance calls per query is one

or fewer, and only increases slightly for highly clustered data sets. Surprisingly, the majority of queries

require no distance computations at all for many of the data sets. �e 10M trajectory data set performs

on average only 1.04 expensive δF calls per query. Interestingly, the Vessel-Y [50] data set requires a

similar average of 0.97 δF calls, even though it is a much smaller data set. �e Vessel-Y data set has

higher intrinsic dimensionality, so this shows that clustering of data has a much larger influence on

distance calls than the number of trajectories does. �e number of node visits (normalized to a factor of

|S|) decreases as the number of trajectories increases, showing effective pruning of the search space.

Figures 9 and 10 show the effectiveness of exact kNN queries on Relaxed CCTs for synthetic and

real data sets, respectively. �e results correspond to the NN query results above.
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Figure 7: Effectiveness of exact NN queries on synthetic data set Relaxed CCTs, averaged over 1000

queries (c.f. Section 6.2.1). �e top row shows average number of tree node visits (normalized to a factor

of |S|). �e middle row shows the percentage of queries that performed 0, 1, or more than 1 distance
computation. �e bo�om row shows the absolute number (not normalized) of δF and δFD calls.
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Figure 8: Effectiveness of exact NN queries on real data set Relaxed CCTs, averaged over 1000 queries

(c.f. Section 6.2.1). �e top row shows average number of tree node visits (normalized to a factor of

|S|). �e middle row shows the percentage of queries that performed 0, 1, or more than 1 distance

computation. �e bo�om row shows the absolute number (not normalized) of δF and δFD calls.
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Figure 10: Effectiveness of exact kNN queries (k = 5) on real data set Relaxed CCTs, averaged over

1000 queries (c.f. Section 6.2.1). �e top row shows average number of tree node visits (normalized to a

factor of |S|). �e bo�om row shows the absolute number (not normalized) of δFD and δF calls.

�e experimental results for comparison of the Relaxed CCT vs. standard, ‘off-the-shelf’ metric

indexing methods M-Tree [21] and Cover-Tree [14] are in Figure 11. �e Fréchet distance function is

’plugged’ into the generic Cover-Tree, whose implementation uses a ’scaling’ constant of 1.3 which
results in 1/1.3 ≈ 0.78 for compactness and separation to balance arity and depth. For the M-Tree, we

used the random promote method, as it performs the fewest distance calls during construction, and set

the maximum arity to 100. We also a�empted to improve M-Tree performance by first testing δfd, and
if it fails then calling δF , for both construction and queries. �e results show that both for construction

and query the number of δF calls for the CCT are usually at least an order of magnitude smaller than

required for the standard M-Tree and Cover-Tree. For example, the kNN queries on the Taxi [67, 68]

data set performed 6.0 δF calls on average using the CCT, and 16.4× 103 calls using the Cover-Tree.
Figure 12 compares the performance of our approach with those of the recent contribution by

Bringmann et al. [16] that performs exact RNN queries under the Fréchet distance in 2 dimensional

space, using an 8 dimensional KD-tree (c.f. Section 1). For the KD-Tree based approach, the number of

visits is defined as the total number of nodes visited during the tree traversal. In the bound invocation

metric, four bounds (LBfd,UBadf1,UBadf2,UBadf3) may be counted for the CCT and only three (adaptive

equal-time, negative filter, and greedy) for [16]. In comparison, the RNN queries using CCTs have

fewer node visits, compute fewer bound computations, and perform fewer Fréchet decision calls by
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Figure 11: Performance of Relaxed CCTs vs. standard M-Tree [21] and Cover-Tree [14] implementations

for the five largest real d = 2 data sets (c.f. Section 6.2.1). �e le� chart shows construction δF calls

normalized over the data set size |S|. �e right chart shows exact kNN query (k = 10) absolute number

(not normalized) δF calls, averaged over 1000 queries (query method two).

an average factor of 3 for synthetic data sets. �ough our queries may perform up to four bound

computations per trajectory, and not just three, it is surprising that CCTs perform fewer total bound

computations for all but one of the inputs. �is improvement is due to stronger bounds and clustering

of trajectories, which allows the algorithm to test if all trajectories within a cluster belong in the result.

Figure 13 compares the Prune stage of our NN query to the improved NN linear scan. Linear scan

visits are defined as total trajectories scanned. With exception of the Pen [64] data set, the number of

CCT visits are factors between ten to over one hundred times smaller than the linear scan’s, and the

number of CCT bound computations are ten times smaller than the linear scan’s, especially for datasets

with a large number of trajectories. Even in higher dimensions (e.g. d = 32), the CCT performs a factor

of thirty fewer visits.

Figure 14 results show that the number of δF calls for the six types of CCT constructions, and

corresponding node visits for NN queries. For CCT construction methods that perform δF calls, the

Relaxed CCT performs the fewest, even sub-linear on Hurdat2, hence significantly fewer than O(|S|2).
Note that the Exact CCT batch construction for the Taxi data set did not complete in a reasonable time

due to the quadratic nature of the algorithm. We a�empted to speed-up the ExactCCT batch construction

algorithm by quickly eliminating trajectories outside of a ’neighborhood’, but this improvement became

less effective as |S| grew. �e Relaxed CCT does not have this issue, and also shows the best query

performance.

�e node visits for all CCT constructions correlate with the overlap quality measure (see Section 4.3,

Figure 4). �e Relaxed CCT performs the fewest NN node visits at query time. Interestingly, the

Approximate CCT has relatively good query performance, and can be useful in practice since its

construction is faster than the Relaxed CCT since no δF calls are performed. �e insert algorithms

typically result in more query node accesses compared with batch constructions. �e standard insert

algorithm usually performs the worst at query time, especially if the data set has higher intrinsic

dimensionality.

6.2.2 Supplementary Results

Figure 15 shows the gain in effectiveness from approximate over exact kNN queries, with k = 5 and
ε∗ = 0.5, on our real-world data sets. For the majority of the approximate queries, the number of δF
and δFD calls are a factor of two or more smaller than those of exact queries. For the Pen [64] data set,

the number of distance calls in an approximate query decreases by a factor of forty, suggesting that

small approximation factors can result in significant performance gains.

Our new and improved bounds in Section 3 result in be�er query performance, as shown in Figure 16.

For example, without the bound enhancements (using only previously existing bounds), the RNN
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queries perform a factor of 4.7 more δFD calls on average for the five largest d = 2 real data sets.
Figure 17 shows that implicit approximate queries return, on average, results with small ε∗ errors.

All real data sets show ε∗ < 0.5 for NN queries, and ε∗ < 1.8 for kNN queries. Lower intrinsic

dimensionality correlates with smaller ε∗, and vice versa.

In Section 5.1.1 we state that our optimized NN algorithm can outperform the kNN when k = 1,
and results in Figure 18 provide evidence for the claim. For example, theNN query on the Basketball [56]

data set performs a factor of two fewer δF calls and a factor of ten fewer δFD calls.

7 Directions for Future Work

Our experiments show that even slightly larger cluster radii can negatively impact metric pruning

efficiency. We are therefore interested in other practical batch construction variants using Gonzalez’

algorithm [36], or more recent techniques such as CLIQUE [5], SUBCLU [42], genetic algorithm

clustering [9], mutual information hierarchical clustering [48], or belief propagation clustering [33].

�e proposed ‘Fix-Ancestor-Radius’ primitive, which enables dynamic insertions, also allows to

rectify radii that are affected from trajectory deletions inCCTs. We are interested in experiments onCCT

quality and query performance in the fully-dynamic se�ing including identifying index sub-trees that

benefit from a rebuild. It is also worthwhile exploring changes required to implement CCT algorithms

on multi-way trees such as the M-tree [21], due to it’s practical disk-based properties. It may also be

interesting to extend this work to other trajectory distance metrics such as the Hausdorff [6], discrete

Fréchet [17], and Wasserstein [60] distances, depending on application-specific requirements.

�e kNN query algorithm analysis and experiment results show that the decide stage can perform

O(|S2|) Fréchet decision procedure computations. Techniques, such as heuristic-guided pivot selection,

may further reduce the number of δfd calls.
Finally, our future work seeks to investigate changes required to support proximity searches on

sub-trajectories [25]. Algorithm modifications would need to balance cluster tree construction time,

space consumption, and query time.
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A Construction and �ery Runtime

�e main focus of this work was to measure the number of distance computations and query I/O,

per [40] which underscores that reducing these two measures (especially the first) should dominate

algorithm design and experimentation analysis. However, it can also be useful to measure algorithm

construction and query runtimes so that one can get a ’ballpark’ estimate of how much time is spent. It

can also be interesting to see which characteristics impact runtimes and what the trends are.

To this end, Figure 19 shows Relaxed CCT construction and exact query runtimes using synthetic

data sets. An increase in cluster size, n, |S|, and d result in increased runtimes. �is is expected since

increases in these characteristics can result in more δF calls and node visits, and increases in n can lead

to longer runtimes when computing δF and linear bounds.

It is noteworthy that for a given algorithm time complexity, experiment runtimes can vary depending

on the underlying hardware and use of so�ware engineering techniques. Indeed, factor speedups can be

achieved using approaches such as reducing memory consumption and access, parallelization, caching,

using inline functions, multi-threading, or avoiding square root operations. Furthermore, in our se�ing

runtimes are dependent on the choice of distance measure and its implementation details. For example,

in this study we used a cubic complexity algorithm that computes δF exactly (other approaches such as

a divide and conquer search can improve the δF time complexity at the expense of precision). For this

work, runtimes were not part of core results and so we did not spend effort to improve this measure.

Our experiments were performed on a desktop computer with a 3.60GHz Intel Core i7-7700 CPU,
32GB RAM, running on a Matlab R2018b implementation over a Windows 10 64-bit OS. If be�er
runtimes are a paramount consideration, then a C++ implementation employing similar engineering

techniques may significantly improve runtimes.
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Figure 19: Construction and query runtimes (milliseconds) on synthetic data set Relaxed CCTs. �e top

shows average construction runtime per trajectory. �e bo�om shows query latency (end-to-end query

runtime) of exact NN (light shade) and kNN k = 5 (dark shade) queries, averaged over 1000 queries.
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