

A Practical introduction to the Ludii General Game
System

Citation for published version (APA):

Browne, C., Stephenson, M., Piette, E., & Soemers, D. (2019). A Practical introduction to the Ludii
General Game System. In T. Cazenave, J. van den Herik, A. Saffidine, & IC. Wu (Eds.), Advances in
Computer Games. ACG 2019 (pp. 167-179). Springer, Cham. Lecture Notes in Computer Science Vol.
12516 https://doi.org/10.1007/978-3-030-65883-0_14

Document status and date:
Published: 01/01/2019

DOI:
10.1007/978-3-030-65883-0_14

Document Version:
Early version submitted to journal OR preprint in preprint archive

Document license:
Unspecified

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 20 Aug. 2022

https://doi.org/10.1007/978-3-030-65883-0_14
https://doi.org/10.1007/978-3-030-65883-0_14
https://cris.maastrichtuniversity.nl/en/publications/e96faf5e-d458-413a-aea4-546ed799d485

A Practical Introduction to the

Ludii General Game System

Cameron Browne, Matthew Stephenson, Éric Piette and Dennis J.N.J. Soemers

Department of Data Science and Knowledge Engineering,
Maastricht University,

Bouillonstraat 8-10, 6211 LH, Maastricht, The Netherlands
cameron.browne,matthew.stephenson,eric.piette,dennis.soemers

@maastrichtuniversity.nl

Abstract. Ludii is a new general game system, currently under devel-
opment, which aims to support a wider range of games than existing
systems and approaches. It is being developed primarily for the task of
game design, but offers a number of other potential benefits for game and
AI researchers, professionals and hobbyists. This paper is based on an
interactive demonstration of Ludii at thuis year’s Advances in Computer
Games conference (ACG 2019). It describes the approach behind Ludii,
how it works, how it is used, and what it can potentially do.

Keywords: General Game System, General Game Playing, Game De-
scription Language, Ludeme, Ludii, Game Design, Artificial Intelligence

1 Introduction

Ludii is a general game system (GGS) [?] for modelling, playing, evaluating,
optimising, reconstructing and generating a range of games in a digital format.
It is distinct from existing GGSs in that its primary purpose is as a game design
tool, with the focus being on the flexibility and expressiveness of its design
language and the ease with which games can be defined.

1.1 The Digital Ludeme Project

Ludii is being developed as part of the Digital Ludeme Project (DLP)1, a five-
year research project which aims to model the world’s traditional strategy games
in a single, playable digital database. This database will be used to find rela-
tionships between games and their components, in order to develop a model for
the evolution of games throughout recorded human history and to chart their
spread across cultures worldwide. This project will establish a new field of re-
search called Digital Archæoludology [?].

The DLP will model the thousand most influential traditional strategy games
throughout history, each of which may have multiple interpretations and require

1 Digital Ludeme Project: http://ludeme.eu/

2 C. Browne, M. Stephenson, É Piette and D.J.N.J. Soemers

hundreds of variant rule sets to be tested. These will mostly be board games but
will also include card games, dice games, tile games, etc., and will involve games
with non-deterministic elements of chance or hidden information. The Ludii
system was developed for this purpose, as no existing general game approach
would support the full range of games required for the execution of the DLP.

The following sections describe the approach behind Ludii, its game grammar
and compilation mechanisms, how games are represented and played, how the
user interacts with the system, and potential services Ludii might offer.

2 Ludemic Approach

Ludii is based on a ludemic approach that decomposes games into atomic con-
stituents describing relevant equipment and rules.

2.1 Ludemes

Ludemes are “game memes” or units of game-related information that represent
the building blocks of games; they are the conceptual units that game designers
work with when developing their designs. The term was coined in the 1970s by
Alain Borvo for his analysis of a novel card game [?].

The following example shows how the game of Tic-Tac-Toe might be de-
scribed in ludemic form. All information required to play the game – the players,
the equipment and the rules – are presented in a simple, structured format:

(game "Tic-Tac-Toe"

(players 2)

(equipment {
(board (square 3))

(piece "Nought" P1)

(piece "Cross" P2)

})
(rules

(play (to (empty)))

(end (if (line 3) (result Mover Win)))

)

)

The ludemic approach is a high-level approach to game description that en-
capsulates the key game-related concepts while hiding the complexity of the un-
derlying implementation, making it well suited to the task of game description
and design. This is in contrast with existing approaches, such as the Stanford
Game Description Language (GDL) [?], that explicitly state the instructions
for updating the game state in the descriptions themselves, yielding verbose
and complex descriptions that do not encapsulate relevant concepts and are less
amenable to the modifications required for game design.

A Practical Introduction to the Ludii General Game System 3

2.2 Ludi

Ludii is based on similar principles to the first author’s previous Ludi game sys-
tem, which was used to evolve combinatorial board games in ludemic form [?].
However, Ludii has been completely redesigned to address shortcomings in its
previous incarnation, in order to provide the generality, extensibility and effi-
ciency required for the successful execution of the DLP. These improvements
are due mainly to the class grammar approach for automated game grammar
generation, and Monte Carlo-based move planning with a forward model only,
yielding speed-ups in the order of 100 times faster for most games.

3 Class Grammar

The Ludi class grammar is a set of production rules derived directly from the
Java code implementation of the ludeme classes, in which sequences of symbols
on the RHS are assigned to a nonterminal symbol on the LHS very much like
an Extended Backus-Naur Form (EBNF) grammar [?]. The basic syntax is as
follows:

<class> ::= { (class [{<arg>}]) | <subClass> | terminal }

where:

<class> denotes a LHS symbol that maps to a class in the code library.
(class [{<arg>}]) denotes a class constructor and its arguments.
Terminal denotes a terminal symbol (fundamental data type or enum).
{...} denotes a collection of one or more items.
| denotes a choice between options in the RHS sequence.

The grammar is intrinsically bound to the underlying code library, but is
context-free in that it is self-contained and can be used without knowledge of
the underlying code. The mechanism for generating the grammar is similar to
that of parsing C++ constructors described by Hall [?] to produce a form of
domain specific language (DSL) [?]. The Ludii class grammar is effectively a
snapshot of the class hierarchy of the program’s current ludeme code base in
Java. Ludii is implemented in Java for its cross-platform support, performance,
flexible compilation and good Reflection library support.

3.1 Annotations

Custom annotations are used to decorate arguments in ludeme class constructors
to help shape the resulting grammar. For example, the @Opt annotation is used to
denote optional arguments for a ludeme, @Named is used to denote arguments that
must be named in the grammar, and @Or denotes consecutive runs of arguments
of which exactly one must be specified in the game description. For example, a
Line class constructor with the following signature:

4 C. Browne, M. Stephenson, É Piette and D.J.N.J. Soemers

public Line(

@Name final IntFunction length,

@Opt final Dirn dirn,

@Or @Opt @Name final IntFunction what,

@Or @Opt final Role who

)

would generate the following rule with named and optional arguments:

<line> ::= (line length:<int> [<dirn>] [(what:<int> | <role>)])

3.2 Game Descriptions

Games are described as symbolic expressions or s-expressions expressed in the
Ludii class grammar. The following example shows the game of Havannah, in
which players win by connecting two corners, three board sides (not including
corners) or form a ring with their pieces:

(game "Havannah"

(players 2)

(equipment {(board (hexagon 8)) (piece "Ball" Each)})
(rules

(play (to (empty)))

(end

(if (or {
(connect 2 Corners)(connect 3 SidesNoCorners)(ring)

})
(result Mover Win)

)

)

)

3.3 Game Compilation

Game descriptions are processed using a recursive descent parser [?] in which
LHS class names are matched to the actual classes they refer to. The (terminal
or non-terminal) arguments to each (non-terminal) class are compiled, then the
appropriate class constructor is found, compiled and passed up the compilation
hierarchy. The object returned at the root of this compilation process is an
executable Game object ready to run.

3.4 Advantages and Disadvantages

Advantages of the class grammar approach include its easy extensibility, as any
required functionality can be simply implemented, added to the code base, and

A Practical Introduction to the Ludii General Game System 5

automatically subsumed into the grammar. The system will theoretically support
any functionality that can be implemented in Java, taking a step towards the
ideal of the programming language becoming the game description language [?].

A drawback is that users adding ludemes to the code base must follow strict
formatting guidelines for the ludeme constructors if they are to produce a well-
behaved grammar. However, these are well documented for those who need them.

4 Game Representation

A game in Ludii is given by a 4-tuple = 〈Players,Mode,Equipment ,Rules〉.
Players is a finite set of k players described by the numbers of players. Mode is
the type of the game between: Alternating (by default if not specified), Simulta-
neous and Real Time. Equipment describes the containers and the components

of the game. The containers are mainly a description of the main board by its
shape and its tiling and if necessary the hands of the players. Each component
is described by the ludeme piece specifying its name, its owner and if neces-
sary how this component can be moved in the board. Finally, Rules defines the
operations of the game which is split in three distinct parts: start, play and end.

For each container, the system builds a graph representation of the board
according to its tiling and precomputes any useful data structure (neighbours of
each vertex, corners of the board, etc.) in order to efficiently compute the legal
moves from each game state.

4.1 Game States

When a game is compiled different flags corresponding to game types are auto-
matically generated in function of the ludemic description. According to them,
a game state in Ludii is built. A set of ContainerState objects associated with
each container defines a game state. A Container state is defined using a cus-
tom BitSet class (called ChunkSet) that compresses the required state infor-
mation into a minimal memory footprint. The ChunkSet encodes multiple data:
What(locn) the index of the component located at locn, Who(locn) the owner
of this piece, count(locn) the number of this component, an internal state of a
component (direction, side, etc.) by state(locn) and if the information hidden
to a player are given by hidden(player, locn).

4.2 Moves and Actions

Legal moves are described by a Moves object which contains a list of component
Move objects generated by the “play” rules of the game for the given state. Each
move equates to a complex instruction set (CISC) command that decomposes
into a set of atomic reduced instruction set (RISC) Action objects, each of which
typically modifies a ChunkSet in the state.

For example, the move To(1, 4) sets the piece with index 1 at cell location
4 of the default container (i.e. the board), by applying the sequence of atomic
actions: { SetWhat(4,1), SetWho(4,1)} .

6 C. Browne, M. Stephenson, É Piette and D.J.N.J. Soemers

5 AI Agents

One of the primary aims of Ludii is to facilitate the implementation of general
game playing agents, and their evaluation in a wide variety of game. To this
end, Ludii contains a number of default agent implementations, and provides an
interface for the development of third-party agents.

5.1 Default AI Agents

The default agents implemented in Ludii are:

– Random: an agent that samples actions uniformly at random.
– Monte-Carlo (flat): an agent that estimates the values of actions available

in the root node using a flat Monte-Carlo search (i.e. uniformly random
playouts), and selects the action with the maximum estimated value.

– UCT: a standard UCT implementation [?,?,?]. An open-loop Monte-Carlo
tree search (MCTS) approach [?] is used in stochastic games.

– MC-GRAVE: an implementation of Generalized Rapid Action Value Esti-
mation [?].

– Biased MCTS: a variant of MCTS that uses simple patterns as features
for state-action pairs to bias [?] the selection and playout phases of MCTS.

5.2 Third-Party AI Support

Ludii provides an interface for the implementation of new agents, which can
subsequently be imported into Ludii’s GUI and used to play any Ludii game.
Programmatic access to Ludii’s game is also available, which allows for conve-
nient evaluation of custom algorithms using Ludii’s wide array of implemented
games. Example implementations are available on github.2

6 Ludii Player

In this section we describe the Ludii player, that provides the front-end interface
for accessing the complete functionality of the Ludii system. Some of the main
highlights of the Ludii Player include:

– A graphical interface for playing hundreds of traditional and modern strat-
egy games, both locally and online internationally, with other players from
around the world.

– A variety of included general game playing algorithms (UCT, Flat-MC GRAVE,
etc.) with comprehensive evaluation metrics and visualisation options, as well
as the ability to integrate third-party agents.

– Tools for creating, playtesting, and sharing your own game designs, defined
using the Ludii general game language.

2 https://github.com/Ludeme/LudiiExampleAI.

A Practical Introduction to the Ludii General Game System 7

6.1 Game Playing

One of the key advantages of Ludii over other previous general game playing
systems such as GGP, is the ability to view and interact with all implemented
games via a sophisticated graphical environment. This allows human users to
play and enjoy any game created within Ludii, whilst also making tasks such
as correcting bugs and identifying incorrect rule descriptions much easier to
perform. The main graphical interface provided by the Ludii player is shown
in Figure 1. The left side of the view shows the main playing area of the cur-
rent game, the top right section provides information about the games’s players
(name, colour, score, components in hand, etc.), and the bottom right area pro-
vides additional supplementary information about the game (moves made, game
description, AI analysis, etc.).

Fig. 1: The Ludii Player interface, showing a completed game of Gomoku.

The Ludii player currently allows up to 8 players (both human and AI) to
play games against each other, either on a single Ludii application or else using
multiple applications within a single local network. By registering for a free Ludii
user account, Ludii games can also be played internationally with other human
players online. A large and active community of players from many different
demographics and geographic regions, may also provide valuable insight into the
game playing preferences and abilities of different cultures.

The Ludii Player also includes many customisable options for improving the
overall game experience. Examples include changing the colours of the board
and pieces, visualising the game’s mathematical graph, showing the axes or co-
ordinates of the game board, displaying the possible moves that can be made

8 C. Browne, M. Stephenson, É Piette and D.J.N.J. Soemers

by each player, providing a complete list of all moves made, the ability to undo
moves, and analysis on the current winning likelihood of each player.

6.2 Agent Evaluation

As well as allowing humans to play games, the Ludii Player also contains several
features that make it easier to evaluate and analyse the performance of different
agents. Any player within a game can be controlled by one of the provided game
playing algorithms that are included with Ludii. Analysis provided by these
agents, such as their iteration count, child mode visits, and value estimates, is
provided directly within the Ludii Player. It is also possible to visualise the dis-
tribution of possible moves for each agent at any given game state, see Figure
2, providing a graphical representation of the AI ”thought process”. Moves that
involve adding a new piece into the game are represented by a dot, see Fig-
ure 2a, whilst those that involve changing the position of an existing piece are
represented by arrows, see Figure 2b.

The size of either the dot or arrow for each possible move represents how much
the AI is thinking about that move (playout number), whilst the colour indicates
the average score obtained from playouts after making this move (red = low win
likelihood, blue = high win likelihood, purple = neutral win likelihood). These
features makes it easier to identify the different playing abilities of general game
playing agents, and and can also provide a useful teaching tool for explaining
how certain algorithms search the available action space.

(a) Reversi - black to move. (b) Chess - white to move.

Fig. 2: AI visualisations for two example games (Reversi and Chess) showing the
outcome likelihood (colour) and number of playouts (size) for each move.

A Practical Introduction to the Ludii General Game System 9

6.3 Manual Game Creation

The Ludii player also provides many useful tools for aiding with the creation and
testing of games using the Ludii language. A complete game editor for the Ludii
Player is currently under development and will allow designers to adjust certain
properties or ludemes of the current game’s description directly within the the
Ludii app, with the resulting changes being compiled and applied automatically.

A large number of board and piece designs will be included within the Ludii
player for game designers to use – see Figure 3 for examples – but it will also
be possible to specify your own piece and board images within Ludii game de-
scriptions. This will provide a wide range of possibilities for both the rules and
visuals of a created game. These game descriptions can the be loaded into any
Ludii application, allowing designers to easily share their created games with
other Ludii users.

Fig. 3: Thumbnails for some of the games provided with the Ludii Player.

7 Ludii Portal

The Ludii Portal website, hosted at the URL www.ludii.games, provides addi-
tional information and services beyond those offered by the main Ludii system.
Some of these services are not yet available at the time of writing, but will be
added to the Ludii Portal over the coming months.

Library The Ludii Game Library provides a wide range of computational and
historical information on the complete collection of official Ludii games, see Fig-
ure 4. This includes diagrams, rule descriptions, strategies, tutorials, mathemat-
ical and social profiles, geographical regions, time periods, cultural importance,
game reconstructions, and much more.

10 C. Browne, M. Stephenson, É Piette and D.J.N.J. Soemers

Fig. 4: The Game Library page of the Ludii Portal.

Forum The Ludii Forum offers a dedicated space to discuss any subject related
to Ludii and the DLP. This may include discussions about the latest research on
general game AI, archaeological finds from recent excavations, promotion and
sharing of new game descriptions, the results of Ludii competitions, recommen-
dations for new games to include within the official Ludii game repository, and
whatever else the Ludii community feels is important to discuss.

Competitions We plan to run several general game AI competitions using Ludii
over the following years [?]. This includes many AI competitions that focus on
the development of autonomous general game playing agents, procedural content
generators, and data mining algorithms. In addition to this, we aim to organise
a handful of non-AI related competitions focusing on human playing abilities
and game design. Such competitions will hopefully stimulate conversation on
the Ludii forum, and would likely rely on the cooperation of a large number of
Ludii users to compete, playtest and evaluate submitted entries.

Game Recommendations Another service that will be offered by the Ludii
Portal will be personalised game recommendations. These recommendations will
be based on user personal information, prior game results within the Ludii
Player, regional and cultural data, and other factors that may influence an indi-
vidual’s game preference. The more users that participate in this game recom-
mendation system, the more accurate our suggestions will be.

A Practical Introduction to the Ludii General Game System 11

8 Planned Services

Ludii provides a platform for many potential game design services, including the
following, which we plan to provide over the course of the DLP.

8.1 Automated Game Design

Games might be generated automatically in a number of modes:

– Unconstrained: New games might be generated through standard search
techniques (e.g. evolutionary methods or hill-climbing techniques) using the
provided database of known games as a starting point.

– Directed: New games might be generated by directed search according to
metrics, conditions or desired behaviours specified by the user.

– Bespoke: Games might be generated for individual users based on implicit
preferences inferred from player behaviour.

8.2 Game Optimisation

Ludii has already proven to be a useful tool for automated play-testing to detect
imbalances and other flaws in candidate rule sets. This may in future be cou-
pled with intelligent rule modification to optimse rule sets in order to reduce or
(ideally) remove flaws.

8.3 Historical Game Reconstruction

One of the most important services offered by Ludii will be the facility to perform
reconstructions of historical games based on partial or unreliable information.
This includes taking material evidence in the form of (possibly partial) game
boards and pieces, and inferring likely rule sets based on the geographical, his-
torical and cultural context of the evidence, using historical data accumulated
during the course of the DLP through archival and on-site research [?]. The aim
is to produce likely reconstructions that maximise historical authenticity as well
as quality of play, and to provide a tool to help traditional games researchers in
the difficult reconstruction process.

9 Conclusion

The Ludii general game system, while being developed to address the needs of the
larger Digital Ludeme Project, has the potential to be a significant and useful
software tool in its own right. It has been designed to allow the description
of as wide a range of (mostly traditional) games as easily as possible, and to
provide a platform for a range of game analysis and design services that games
researchers will hopefully benefit from. Ludii will continue to mature and expand
in functionality as the DLP progresses.

12 C. Browne, M. Stephenson, É Piette and D.J.N.J. Soemers

Acknowledgements. This research is part of the European Research Council-
funded Digital Ludeme Project (ERC Consolidator Grant #771292) run by
Cameron Browne at Maastricht University’s Department of Data Science and
Knowledge Engineering.

