
A Practical IP Spoofing Defense Through Route-Based Fltering

Jelena Mirkovic, Nikola Jevtic and Peter Reiher

Abstract
We present the design and evaluation of the Clouseau system, which

together with route-based filtering (RBF) acts as an effective and

practical defense against IP spoofing. RBF’s performance critically

depends on the completeness and the accuracy of the information

used for spoofed packet detection. Clouseau autonomously harvests

this information and updates it promptly upon a route change. RBF

information is inferred by filters applying randomized drops to TCP

data traffic, which arrives from suspicious or previously unknown

sources, and observing subsequent retransmissions. No communi-

cation is required with packet sources or other RBF routers, which

makes Clouseau (and RBF) suitable for partial deployment. We

show through experiments with a Clouseau prototype that the oper-

ation cost is reasonable and the legitimate TCP connections do not

experience large delays because of randomized drops. The infer-

ence process is resilient to subversion by an attacker who is familiar

with Clouseau. We motivate our work by showing that RBF brings

instant benefit to the deploying network, and that it can drastically

reduce the amount of spoofed traffic in the Internet if deployed at

as few as 50 chosen autonomous systems.

1 Introduction
IP spoofing accompanies many security attacks, such as

flooding denial-of-service (DDoS) and vulnerability scan-

ning, and hinders the design of simple, cost-effective de-

fenses. These threats use spoofing to blend the attack with

the legitimate traffic and thus avoid identification of attack

machines. A simple defense approach collects statistics of

source IP sending behavior and uses them to spot either per-

sistent large senders (to be blacklisted as suspicious) or re-

curring moderate users (to be given high-priority as long-

term clients). IP spoofing can defeat this approach in four

ways: (1) random spoofing in the entire IPv4 space creates

numerous records than cannot be stored and processed, (2)

an attacker can spoof a limited set of addresses consistently

to fake moderate-sending patterns that do not stand out from

legitimate traffic, (3) an attacker can briefly spoof each of

many small address sets in turn — when one set is blacklisted

the attacker moves to another set, and (4) an attacker can as-

sume a good user’s identity (by spoofing his IP address) and

ruin that user’s reputation. IP spoofing is also essential to

reflector attacks, where an attacker spoofs the victim’s IP in

legitimate requests for service (e.g., DNS requests) that are

sent to numerous public servers. The servers flood the victim

with replies, creating a denial-of-service effect.

It is impossible to completely eliminate spoofing without

deploying sender address verification such as ingress filter-

ing [6] or SPM [11] at every network in the Internet, which

is unrealistic. Practical spoofing defenses focus instead on

limiting attacker’s choices of spoofed addresses and spoofed

traffic destinations. This reduces the severity of DDoS and

reflector attacks and simplifies defenses.

In [9], Park et. al show how route-based filtering (RBF)

can be an effective spoofing defense if deployed at a vertex

cover of the autonomous system (AS) map. A router de-

ploying route-based filtering keeps an incoming table, which

links each source IP address with the expected incoming

interface. Packets that arrive on unexpected interface are

dropped as spoofed. So far, no practical approach was

proposed for constructing incoming tables and maintaining

them in face of routing changes. Also, while results from

[9] indicate that vertex-cover deployment prevents spoofing

from 84% of ASes, the required number of filters is pro-

hibitively large for a realistic deployment.

The main contribution of our paper is the design of the

Clouseau system, which builds incoming tables and updates

incoming information when routing changes occur. Table

contents are inferred by routers applying randomized drops

to TCP data packets that arrive from suspicious or previ-

ously unknown sources, and observing subsequent retrans-

missions. No communication is required with packet sources

or other RBF routers, making Clouseau (and RBF) suitable

for partial deployment. We show through experiments with

a Clouseau prototype that the operation cost is reasonable

and legitimate TCP connections do not experience large de-

lays because of randomized drops. The inference process is

resilient to subversion by an attacker who is familiar with

Clouseau.

Further, our paper revisits the analysis of RBF effective-

ness and makes the following contributions:

1. We show that RBF can reduce spoofing to 2.5% when

deployed at as few as 50 carefully chosen ASes. Ideal

deployment points are ASes that are highly-connected

and appear on many source-destination paths. Fur-

ther investigation of top-50 filtering ASes in the period

2001—2005 shows that about 34—40 of them belong to

the same 18 tier-1 Internet Service Providers. We iden-

tify these ISPs as the ideal target for RBF deployment.

2. We show that the benefits of RBF are directly experi-

enced by filtering ASes and their customers, which cre-

ates excellent deployment incentive.
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2 Route-based filtering

A route-based filter detects spoofed packets by comparing

each packet’s incoming interface with the expected interface

associated with the packet’s source IP in the incoming ta-

ble. Figure 1 illustrates a case where filtering router R has

information about 3 sources in its incoming table: sources A

and B arrive over interface 2 and source C arrives over inter-

face 1. For a moment, we will ignore parts of this network

that are drawn in dashed lines. Source A is compromised

and sends two spoofed packets to destination D. In the first

packet, A spoofs C’s IP address; this packet is detected by

R as spoofed since it arrives on interface 2, while the ex-

pected interface is 1. In the second packet, A spoofs B’s IP

address. R cannot detect that this packet is spoofed since

its incoming interface is same as the expected interface for

B. This example illustrates an important property of RBF:

If the route from source S1 to destination D1 overlaps the

route from source S2 to destination D2 (possibly D2 6= D1),

S1 and S2 can spoof each other and avoid detection by RBF

routers placed downstream from the overlap. Clearly, the

placement of filtering routers will greatly influence filtering

effectiveness. For instance, if router Q (from Figure 1) were

chosen for filter deployment instead of R, all three sources

could spoof each other. If, on the other hand, P and R were

both filters no spoofing would be possible between A, B and

C.

An alternative RBF design maps source IP-destination IP

pairs in the incoming table to an expected interface. Park et

al. [9] call this a maximal filter while RBF with source-only

information is called a semi-maximal filter. Maximal filter

storage has a cost O(N2), where N is number of possible

sources and destinations, while a semi-maximal filter costs

O(N). The effectiveness of maximal filters is only slightly

higher than that of semi-maximal filters [9], which is insuf-

ficient to warrant enormous storage cost. Still, there may

be situations where a semi-maximal filter would mistakenly

filter out legitimate traffic, when a maximal filter would not.

Figure 1 illustrates this case, with dashed items included. Let

source A reach destination D via P-R-Q and destination E

via T-R-Q. This creates two expected interfaces for A at R.

If R is a semi-maximal filter and only stores one expected

interface. then some legitimate traffic will be filtered out as

spoofed. If R is a maximal filter it would properly record that

A’s packets come via interface 2 for destination D and via in-

terface 3 for destination E, so this argument speaks in favor

of maximal filters. On the other hand, semi-maximal filters

can be extended to properly handle the above case at a much

lower storage cost — by allowing multiple expected inter-

faces. The price we pay is lower filtering accuracy as mul-

tiple expected interfaces create more holes for the spoofed

traffic to pass through. It is difficult to estimate how frequent

is the above routing scenario in the Internet. We limit our

discussion to semi-maximal filters with a single expected in-

terface but this design can be extended to support multiple

interfaces if necessary.
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Figure 1: Illustration of route-based filtering

2.1 Analyses setup and objectives

This section investigates the effectiveness of RBF under very

sparse deployment. We assume that each incoming table en-

try relates to one source IP and postpone discussion of entry

aggregation for Section 5. We also assume that each RBF

node performs ingress filtering [6], which forces outgoing

packets from the deploying network to carry a source ad-

dress from this network’s address range. As ingress filtering

is much simpler and cheaper than RBF this is a reasonable

assumption. Our goal is to: (1) evaluate who experiences

direct benefit of RBF — filters, their customers or some re-

mote third party (2) define the optimal strategy for choosing

ASes that deploy RBF to minimize the number of deploy-

ment points for a given target effectiveness, and (3) deter-

mine a small, critical set of ASes whose participation in RBF

is crucial for overall spoofing reduction in the Internet.

Like [9], we perform effectiveness analysis on the AS

map. RBF is deployed at all border routers of the chosen

ASes, but we consider the size of each AS when we calcu-

late filtering effectiveness; our measures are at the IP level

while analyses in [9] are at the AS level. IP-level analysis

is more accurate because (1) the spoofing capacity of an AS

is proportional to its size, size of the reachable targets and

number of IP addresses this AS can spoof, and (2) the anal-

ysis makes a realistic assumption that the whole IPv4 space

can be spoofed, not only IP addresses allocated to ASes.

The connectivity information and the size of IP space al-

located to each AS is obtained using BGP information col-

lected by the RouteViews project [1]. Only about 0.15% of

all the ASes participate in the RouteViews project, so the

inferred connectivity data is a subset of AS-to-AS links ob-

served in the real world. 1

We assume that all the routers in a given AS have the same

forwarding table which means that there is a single route for

all the sources from this AS to a given destination. In real-

ity, this may not be true for ASes that span large geographic

regions, but each such AS can be transformed into several

smaller, directly connected ASes, each with a single forward-

ing table, that satisfy the assumption. Such a transformation

1We also experimented with additional connectivity data from UCLA’s

Internet Topology project (http://irl.cs.ucla.edu/topology), which provides

information about 40% more links than the RouteViews project. We did not

notice any significant impact on RBF effectiveness when these additional

links were added to the AS map.
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would not change results of our analysis. We populate for-

warding tables using the following steps:

1. Fully populate the forwarding tables of the ASes partic-

ipating in the RouteViews project with nexthop infor-

mation specified in as path entries.

2. Partially populate forwarding tables of ASes that do

not participate in the RouteViews project, but appear

in as path entries of other participants. For example,

if AS 1 participates in RouteViews project and reaches

destination X via ASes 2, 3 and 4, path 1-2-3-4 will ex-

ist in BGP dump logs of AS 1. In step 1, we specify 2

as nexthop in AS 1 for destination X. In step 2 we will

insert 3 as nexthop for AS 2 to X, 4 as nexthop for AS

3 to X and we will mark 4 as the origin AS for X.

3. Populate the remaining forwarding entries by calculat-

ing shortest path route on the AS map for each vacant

entry.

Let IPallc be the set of IP addresses allocated to ASes and

IPv4 be the set of all possible IP addresses. During the anal-

ysis, we observe packets sent from source address s ∈ IPallc

to destination address d ∈ IPallc, d 6= s, spoofing the address

p ∈ IPv4, p 6= s. We also assume that RBF can detect and

eliminate packets that spoof non-allocated IP addresses (i.e.,

p 6∈ IPallc). We show how Clouseau can help RBF detect

such addresses in Section 3.

We note that there are three dimensions of spoofing that

filtering may reduce: (1) attacker dimension — how many

machines s are usable for spoofing, (2) spoofing dimension

— how many spoofed addresses p can be placed in pack-

ets that are not filtered by RBF, and (3) target dimension —

how many destinations d receive spoofed packets. Reducing

the attacker’s options in any of these dimensions is benefi-

cial and would simplify defenses. Limited attacker dimen-

sion would result in a few machines being usable for spoof-

ing any address to any target — in this case defenses could

concentrate on monitoring and policing traffic in portions of

the Internet containing usable machines or on marking this

traffic as suspicious and serving it with low priority. Lim-

ited spoofing dimension would mean that every machine on

the Internet can only spoof a small amount of addresses to

any destination. This forces the attack traffic to stand out in

statistics of source IP behavior and facilitates easier attack

detection. Finally, with limited target dimension only a few

targets would be exposed to arbitrary spoofing from anyone.

Those unfortunate sites can improve their protection by de-

ploying RBF themselves.

2.2 Where to filter?

Two main benefits of reduced spoofing would be: (1) a node

would be less likely to be a target of diverse spoofed traf-

fic (although packets that spoof addresses from a specific set

may still be able to reach this node) and (2) a node’s address

would be less likely to be misused in reflector attacks. We

capture these two benefits with target measure and stolen

address measure. Target measure tells us how many (s,p)
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Figure 2: Illustration of RBF effectiveness

combinations are possible for a given d. Stolen address mea-

sure tells us how many (s,d) combinations are possible for a

given p. We calculate these values relative to the number of

combinations possible without filtering, so they range from

0 to 1, with lower values denoting better protection.

Intuitively, the performance of RBF for a given deploy-

ment pattern will depend on two main factors: the connec-

tivity of chosen filters and the coverage of (s,d) paths by

filters. Connectivity degree of a filter, i.e., the number of

neighbors it has in the AS map, influences its ability to de-

tect spoofed packets. A filter with Nint interfaces sees the

Internet as Nint groups of potential sources, each group as-

sociated with a common interface. The filter cannot prevent

spoofing within each group but it can prevent spoofing be-

tween groups (and also spoofing within the non-allocated IP

space). We expect that better connected ASes can better dis-

criminate among spoofed addresses and reduce p dimension

of spoofing. Coverage of paths ensures that a filter can exam-

ine (and filter) traffic on these paths, which reduces s and d
dimensions of spoofing. We express the coverage of a given

filter (or set of filters) via the popularity measure, defined as

the proportion of (s,d) pairs whose route contains this filter

(or at least one filter out of the set).

Figure 2 illustrates how connectivity and popularity affect

target and stolen address measure. A, B and F are ASes,

and F is an RBF filter with Nint interfaces. Each interface i
connects F to a group of sources IPi that reach F over this

interface. Node A is a first-hop neighbor connected to F via

interface 2, while B is a remote node that reaches F over in-

terface 1. Let diF be a portion of all destinations that a source

from group IPi reaches via F, and let siFx be a portion of all

sources from group IPi that reach some AS x via F. In real-

ity, diF will be different for each source in the source group

but to keep the following formulas simple we will assume a

common value for all sources. If F is the only filter in the

Internet, how does its filtering affect F’s, A’s and B’s target

and stolen address measures?

If F is a target of spoofed traffic it will be able to differen-

tiate between packets that arrive from one source group but

spoof the address of another group or of F itself. Attack-

ers can only spoof addresses from within their source group.

Additionally, attackers within F can spoof any address to an-

other node in F. Let IPx be a set of IP addresses within an

AS x. For simplicity, in the following formulas we ignore

the fact that a source does not spoof its own address. A tar-
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Figure 3: Target measure

get measure for a host in F will be

|IPF| · |IPv4| +
PNint

i=1 |IPi|2
|IPallc| · |IPv4| . (1)

Assuming that IPF is a small portion of IPallc, target mea-

sure is minimized when the sum in the second term is mini-

mized. For a fixed Nint, this happens when the distribution of

sources over interfaces is balanced, i.e. |IPi| ≈ |IPallc|/Nint.

Source distribution depends on Internet routing dynamics

and is bound to change frequently. Still, highly connected

filters have an excellent chance of achieving a low target

measure, since they have both a high Nint and can balance

the source distribution by advertising their prefixes to many

neighbors.

If A is the target of spoofed traffic, only the portion of that

traffic going over F is subject to filtering. The fraction of

(s,p) combinations that cannot be filtered is:

|IPF|2 +
PNint

i=1 |IPi| · (siFA · |IPi| + (1 − siFA) · |IPv4|)
|IPallc| · |IPv4| . (2)

We see that A’s target measure can be comparable to F’s if A

is single-homed or it is multi-homed but only advertises its

prefix to F, since siFA would then be 1 for each source group

except the one containing A. The expression for B’s target

measure is identical to (2), when A is replaced with B. Still,

remote nodes are likely to be less protected than nodes closer

to a filter since a smaller portion of their incoming paths will

cross the given filter (i.e. siFB ≪ siFA). With regard to target

measure, the deploying AS gets the most benefit from RBF,

which is a good deployment incentive. Other nodes receive

protection proportional to a fraction of their incoming routes

which cross F. If RBF were deployed as an infrastructure ser-

vice intended to reduce spoofing in the Internet, the optimal

deployment strategy would favor filters with high connectiv-

ity and popularity.

If F’s addresses are spoofed in the reflector attack, F will

only be able to filter out those packets that it can see, so the

stolen address measure for each address from F is:

|IPF| · |IPallc| +
PNint

i=1 |IPi| · |IPallc| · (1 − diF)

|IPallc|2
. (3)

Figure 4: Stolen address measure

The A’s stolen address measure is:

|IPF|2 + (
PNint

i=1 |IPi| · (1 − diF) + |IP2| · d2F) · |IPallc|
|IPallc|2

. (4)

where IP2 relates to the set of addresses in A’s source group

in Figure 2. The stolen address measure for B is similar to

that of A when 2 is replaced with 1. The dominant second

term in the stolen address measure depends strongly on the

coverage of paths in the whole Internet, so popular nodes

are the best filter choices to reduce this term. We conclude

that while any reasonably well-connected node can lower its

target measure by deploying RBF, the only approach to sig-

nificantly lower the stolen address measure (and prevent re-

flector attacks) requires deployment of RBF on popular ASes

that comprise the Internet core. Fortunately, this deployment

also lowers target measure for all Internet participants and

thus handles all aspects of spoofing.

Figures 3 and 4 show how the target and stolen address

measure change with the number of filters. We show the av-

erages of target and stolen address measures for filters (dot-

ted lines) and for all Internet participants (solid lines). We

performed this measurement using RouteViews logs from

May 31, 2005. Filters are chosen (1) by connectivity or (2)

by popularity. Both target and stolen-address measures de-

crease dramatically with first 6 filters. 50 filters bring both

measures to less than 3% for all participants. While adding

more filters further improves the protection, we clearly reach

a point of diminishing returns. Filtering performance is com-

parable for both approaches of choosing filters, but popular-

ity filters have a slightly higher impact on effectiveness than

connectivity filters. Lists containing top-50 ASes selected

by connectivity and popularity show around 50% overlap,

which indicates that well-connected ASes are also popular.

There is a noticeable difference between target measures ex-

periences by filters and by all participants. Filters reap high

benefits by instantly lowering their target measure, while

non-filters only receive benefit when there is enough path

coverage. Stolen address measure, on the other hand, is com-

parable for filters and non-filters as it depends only on path

coverage.
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Figure 5: Spoofability in period 2001-2005

2.3 Filter membership
We now examine the ASes that are members of top-50 cat-

egory and the organizations that own these ASes. We link

organizations to ASes by using ARIN Whois service [4].

Our goal is to identify organizations that are both long-term

members of top-50 list and that contribute significantly to

spoofing reduction. These organizations would be prime

candidates for RBF deployment.

To select long-term members for RBF deployment, we ex-

amine the dynamics of the top-50 list membership over 5

years, in the period of 2001—2005. For each year we se-

lect a day and an hour at random, and build the AS map

from RouteViews logs. We then apply popularity selection to

build the top-50 AS list. We introduce a new measure called

spoofability, which represents a fraction of (s, d, p) combi-

nations that are possible in spite of filtering, allowing us to

express filtering effectiveness as a single number. Figure 5

shows spoofability measure for 2001—2005 as 1—50 filters

are deployed. We see that spoofability curves have a similar

shape in all 5 years — the first filter decreases spoofability to

values around 70%, the impact of filters on spoofing reduc-

tion diminishes with their position on the top-50 list and 50

filters bring the spoofability down to below 3%. In the top-

50 lists from 2001 to 2005, there are total of 82 unique ASes

that belong to 41 organizations. 25 ASes and 18 organiza-

tions appear in all five lists, and they are consistently highly

ranked in all lists. We place these ASes and organizations in

the TopMembers list and show them in Figure 6.

We now examine a hypothesis that the TopMembers list

contains the nodes crucial for RBF deployment. We mea-

sure spoofability for May 31, 2005 when (1) we have filter

deployment only at ASes from the list, and (2) we choose

filters from the vertex cover but we leave out ASes from

the TopMembers list. When only the ASes from the Top-

Members list deploy RBF, the spoofability is reduced to 8%.

19.5% ASes cannot send spoofed packets to any destination

(except subnet-spoofed packets that RBF does not handle),

and 34.7% source-destination paths cannot contain spoofed

traffic. Without TopMembers deployment, more than 700

filters are needed to reach comparable filtering performance.

Both these arguments speak in favor of deploying RBF on
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Figure 6: TopMembers list

ASes that belong to those large Internet participants, as an

infrastructure service that brings benefit to everyone in the

Internet.

3 Clouseau design
We have demonstrated that RBF can dramatically reduce

spoofing even in sparse deployment. To make RBF practi-

cal we need an efficient and accurate approach for an RBF

filter to autonomously build and maintain incoming tables.

We separate the functionality of a filtering router into two

parts: (1) populating incoming table entries and updating

them when routing changes occur and (2) filtering spoofed

packets using incoming table information and ingress filter-

ing. The Clouseau system will handle the first functionality

and RBF will handle the second. Packets are first checked

by RBF and classified as ”matching” if they arrive on ex-

pected interface, or ”offending” if they arrive on unexpected

interface or if their source address cannot be found in the

incoming table.

Assume that an incoming table is initially complete and

correct — we will shortly show how this can be achieved

by Clouseau. Under perfectly stable routing and in the ab-

sence of spoofing, all packets will be classified as matching

and will be forwarded to their destination. When a routing

change occurs, some packets may start arriving on an unex-

pected interface because they now follow a different route

from the one that existed when the incoming table was built.

These packets will be classified as offending. Instead of

dropping these packets, we would like to learn that the route

has changed and update the corresponding incoming table

entry to reflect this change. On the other hand, when spoofed

packets arrive at an RBF router, they may also arrive on an

unexpected interface and be classified as offending. We want

RBF to quickly be told that these packets should be dropped.

Clouseau helps RBF learn whether the cause for offend-

ing packets was a route change or a spoofing attack by run-

ning an inference process on the corresponding incoming ta-
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ble entry (if there is no entry, Clouseau will create one). If

Clouseau concludes that the cause is a routing change, it up-

dates the incoming interface information — this is called a

validating decision. If Clouseau concludes that the cause is

a spoofing attack, it marks the entry as fresh and places an

inference ban on this entry for Tban seconds — this is called

a filtering decision. During the inference ban, RBF will drop

offending packets on this entry and Clouseau will not be ac-

tivated. When the ban expires, the fresh mark is removed

and offending packets can again start the inference process.

Since some offending traffic is forwarded to the destination

as a part of the inference process, the inference ban is nec-

essary to limit this amount and ensure that an RBF router

works mostly in the filtering mode. Clouseau handles packet

that spoof non-allocated IP addresses, by running the infer-

ence process to fill a non-existing table entry. The outcome

of the process inserts the non-allocated address with “no in-

terface” into incoming table.

During the inference process, Clouseau exploits the reli-

able delivery feature of TCP to test whether offending TCP

data packets are generated by a TCP sender or by an attacker

spoofing a given source IP. This test is performed by drop-

ping some offending packets and forwarding the rest. All

the inference structures and variables we mention in the fol-

lowing text are created and maintained per an incoming ta-

ble entry that is undergoing the inference process. Clouseau

records all the dropped packets in the DroppedQueue and

it records some of the forwarded packets in the Forward-

edQueue. We only record some unique identifier of a packet,

e.g., a sequence number. If the sources of the offending traf-

fic are TCP senders, they will learn about data packet drops

either through duplicate acknowledgments from the receiver

or when the retransmission timers expire. These senders will

retransmit all the packets from the DroppedQueue. Some

small number of packets in the ForwardedQueue may also

be retransmitted if some senders or receivers do not use se-

lective acknowledgments or if there is a congestion between

the filter and the packet’s destinations. If the offending traf-

fic contains some spoofed packets, the attacker has no way of

learning which packets were dropped and which have arrived

at the target. A simple attacker that spoofs random addresses

will fail to repeat all the packets from the DroppedQueue,

which will be a signal to Clouseau to detect the spoofing. An

attacker who is aware of Clouseau and wants to repeat some

packets to invoke a validating decision will likely repeat too

many from the ForwardedQueue, if we set our system cor-

rectly. We deal with this type of attacker in section 6.1.

To differentiate between the legitimate source and the at-

tacker, Clouseau assigns one valid point to the incoming

table entry each time a packet from the DroppedQueue is

repeated, and one spoofed point when a packet from the

ForwardedQueue is repeated. Repeated packets are marked

as “verified” and are always forwarded to their destina-

tion.2 Repeating a verified packet from the DroppedQueue

2While it may seem justified to drop repeated packets that are found in

does not increase the valid score, while repeating a veri-

fied packet from the ForwardedQueue increases the spoofed

score. Inference process ends with a validating decision

when Clouseau gathers V valid points. It ends with a filtering

decision when Clouseau gathers S spoofed points or upon a

timeout which is Tinf seconds. We note here that Clouseau

was specifically designed with asymmetric traffic in mind

and does not require both directions of a given source’s com-

munication to be visible.

We now provide more detail about Clouseau operation and

explain some design decisions.

• How does Clouseau determine which packets to place

into which queue? Let LDQ be the length of the

DroppedQueue, LFQ be the length of the forwarded

queue and N = LDQ + LFQ. Clouseau generates a ran-

dom permutation of numbers 1, ..., N and marks the first

LDQ slots as dropped and the rest as forwarded. The first

N unique data packets are placed into queues according

to the permutation, and the other packets are forwarded

without being recorded.

• How long are the queues? LDQ = V + M , where V is

the threshold for validation and M is some small margin

of error, to handle the case when some TCP connections

that have experienced drops die, maybe because they

were aborted by the application. In our tests and in later

discussion we set M = 0 but we note that in practice it

may be wise to set it at a small positive value. LFQ =
α ·S, where S is the threshold for filtering decision and

α ≥ 1. Intuitively, the larger the value of α the easier

it is to catch an attacker who repeats packets. Tests and

analysis in later sections give further guidance on how

to set queue sizes and threshold values.

• Why do we need the ForwardedQueue and should S be

greater than 0? The ForwardedQueue is necessary to

catch the attacker who is familiar with Clouseau and

repeats some spoofed packets. Without it, even the sim-

ple attack strategy of sending each spoofed packet twice

would lead to a validating decision. S should be greater

than 0 for two reasons: (1) if a TCP sender does not

use selective acknowledgments, some packets from the

ForwardedQueue will be repeated; Clouseau must rec-

ognize this behavior as legitimate, and (2) some packets

forwarded by Clouseau may be dropped further down-

stream; Clouseau cannot tolerate arbitrary downstream

loss (this would result in inability to catch attackers) but

should tolerate small, sporadic losses.

• Can Clouseau process a sample of packets and forward

the rest to lower its operating cost? While the initial N

packets could be sampled, once the first packet is placed

into any queue, Clouseau must examine all following

packets to detect repetitions. One argument in favor

of sampling packets that are placed into queues could

the ForwardedQueue, we have no guarantee that the original packets (that

were forwarded) have reached their destination. If they were dropped down-

stream of the filtering router, maybe due to congestion, dropping them again

would severely delay TCP traffic.
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be to ensure low packet loss and thus minimize TCP

connection delay due to dropping. In our performance

evaluation we do not implement sampling.

• Why do we end inference process on a timeout? It is

important to resolve the inference process quickly so

that an RBF router could spend most of the time filter-

ing spoofed traffic. The timeout ensures that the length

of the inference process is bounded. Timer value Tinf

must be large enough to guarantee the validating deci-

sion for the slowest legitimate traffic. We discuss how

to set this value in Section 4.1.3.

• What happens with non-TCP packets and TCP control

packets? If they are classified as offending, these pack-

ets trigger the inference process and are filtered by RBF

during the inference ban. We cannot use them for the in-

ference decision because TCP’s reliable delivery mech-

anism will not repeat all control packets, and we have

no expectation of reliable delivery for non-TCP pack-

ets. During the inference these packets are forwarded

without being recorded. If there are few or no TCP

data packets to sample during the inference process,

Clouseau will end this process on timeout with a filter-

ing decision. Since the majority of traffic in the Internet

is TCP, this situation is unlikely to occur, but in future

work we will examine alternative methods of dealing

with non-TCP and TCP control traffic.

4 Performance evaluation
This section presents both the theoretical evaluation of

Clouseau performance and experimental results. The theo-

retical evaluation addresses how to set Clouseau parameters,

and the experiments illustrate how performance depends on

parameter setting. We have implemented Clouseau as a load-

able kernel module in RedHat 7.3 Linux. The module uses

netfilter hooks to capture packets as they travel through the

IP stack. We tested Clouseau in real deployment in the Em-

ulab testbed [2]. Our tests are small scale and are not meant

to demonstrate scalability, but rather to illustrate how perfor-

mance is affected by parameter settings. Scalability is ad-

dressed in Section 5. In our tests we set values of α to 2 and

Tinf to 2 seconds, and vary queue sizes and threshold values.

4.1 Connection delay
Introducing Clouseau into the packet processing path has

two effects on legitimate TCP traffic: (1) increased round-

trip time (RTT) and (2) connection delay because of conges-

tion response to packet drops. If queues are implemented

as hash tables, Clouseau operation is a simple table lookup

and counter update, and should not add significant delay to

round-trip time. Connection delay due to packet drops is in-

evitable, as Clouseau has to drop some packets during the

inference process, but should be minimized.

We measure RTT increase and congestion delay due to

drops using a topology shown in Figure 7. RBF and

Clouseau are deployed at router RC. In tests we generate

Figure 7: Topology used in the experiments

10 parallel TCP connections from S to D. Connections are

telnet-like and send around 100 packets per second each.

The route between S and D is originally S-R1-RC-D and

changes to S-R2-RC-D after 20 seconds. This invokes the

inference process. The route is changed by executing an ip

route change command, so there is no route stabilization

delay, such as might be seen in real operation when a link

fails. The tests are performed with full incoming tables so

the only source of connection delay is the inference process

invoked by the routing change.

4.1.1 RTT increase

The additional processing delay introduced by an

RBF/Clouseau router consists of (1) RBF delay for in-

coming table lookup, experienced by all packets and (2)

Clouseau delay for searching the DroppedQueue and For-

wardedQueue and for counter update on match, experienced

by TCP data offending packets when route change occurs.

We note here that both delays will depend heavily on the

implementation, so the measurements in this section should

be viewed more as ballpark estimates of expected processing

delay than as accurate prognosis of RBF/Clouseau perfor-

mance in real routers. In our implementation, RBF delay

includes kernel module delay and can simply be measured

by running a ping utility with and without a kernel module.

Since Clouseau runs the inference process only on TCP

data packets, ICMP packets generated by ping will not

experience any Clouseau delay. These tests showed 4.39µs

round-trip increase, which translates to 2.195µs RBF delay.

We measure Clouseau delay by first ensuring that no pack-

ets are dropped by Clouseau (through the use of a special

flag) and then artificially delaying the inference decision in-

definitely, which forces each TCP data packet to experience

queue search delay. In the experiment, large data traffic is

used to fill the queues completely. After that, a series of

short packets are sent from S to D and the RTT is measured

for these packets with and without Clouseau. We subtract

RBF delay from the difference. We vary the sum of queue

sizes, N , from 1 to 2000, which is the maximum our kernel

memory can support. Our tests show the average Clouseau

delay of around 20 µs per packet when N ≥ 1000. Lower

values of N did not produce any measurable delay.
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Figure 8: Connection delay vs queue size

Figure 9: Connection delay vs pd with short queues (N=100)

4.1.2 Connection delay due to drops

We measure connection delay due to drops by recording con-

nection duration for each of 10 TCP connections, with and

without Clouseau. In the first set of tests we measure how

the connection delay changes as queue sizes change, but we

keep the pd = LDQ

N
at 0.1. Each test is run 20 times. We

show the results in Figure 8 — the y-axis shows the mean

connection duration and error bars indicate one standard de-

viation difference from the mean. We also draw the baseline

mean ± stdev of connection duration. The results show no

noticeable delay due to 0.1 drop rate and are not sensitive to

queue size increase.

In the next tests we measure how the connection delay

changes as we increase the size of the DroppedQueue, but

keep N = 100, thus effectively increasing the percentage of

packets dropped. We show the mean ± stdev of connection

duration in Figure 9. The results indicate that connection

delay is not sensitive to packet drop rate and that connec-

tion duration stays within bounds of the baseline case. Note

that this trend should hold only as long as there is a suffi-

cient number of connections in the offending traffic mix to

share the drops, and if the queues are not too long to lead to

sustained connection losses over time. Figure 10 shows sim-

Figure 10: Connection delay vs pd with longer queues

(N=1000)

ilar tests with N=1000.3 We see that the connection duration

starts increasing linearly as pd goes over 0.4 and we expect

that for longer queues this knee in the trend would move to

the left, and with higher number of connections in the mix it

would move to the right. Still, for reasons we will explain in

the next section, it is good to keep pd below 0.25.

4.1.3 Inference delay

We call the time needed to reach a validating or filtering de-

cision the inference delay. We first look at factors that in-

fluence this delay in case of route change or spoofing, and

we then show experimental evaluation. Tfilter, the time to

reach a filtering decision is bounded from above by Tinf.

In the case of packet-repeating attacker this time would be

lower than Tinf and would depend on the attack dynamics

and the time needed to repeat S packets from the Forward-

edQueue. Tvalid, the time to reach a validating decision is

the time required to collect V valid points. Assume that

the k-th packet from the DroppedQueue is the last one to

be verified (this will be a packet from the slowest connec-

tion). Tvalid is then the sum of time needed to fill the k-th

slot in the DroppedQueue — TDQfill(k) and and the time to

verify the k-th packet — Tverify(k). If we assume the worst

case k = N , TDQfill(k) ≈ N
R

, where R is the rate of of-

fending packets. Tverify(k) is the sum of the time needed for

the sender to receive the notification of the loss, Tnotify(k),
measured from the moment the original packet is dropped,

and the time it takes the retransmitted packet to arrive to the

RBF router Tsender(k)/Clouseau. Combining these two, Tverify(k)
is the time needed for the sender to receive the loss notifica-

tion, measured from the moment the original packet is sent

by the sender. A TCP sender receives loss notification either

through Retransmission Timer timeout or after the arrival of

3These tests were run on the same topology and with same legitimate

traffic but with different hardware than experiments shown in Figures 8-9.

This is because we run experiments on a shared testbed and cannot guaran-

tee which hardware will be assigned to the experiment. Different hardware

unfortunately produces different baseline values.
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Figure 11: Inference delay vs queue size

three duplicate acknowledgments, so:

Tverify(k) ≈
(

RTO ≈ 2 · RTT on RTO timeout.
3

RC(k)
+ RTT on 3-dup ACKs.

, (5)

where RTO is the Retransmission Timer value, RTT is the es-

timate of the roundtrip time on the TCP connection that gen-

erated the k-th packet, and RC(k) is the packet rate of k-th

connection. Obviously, the case of three duplicate ACKs is

preferable to the timeout case since it ensures faster decision.

To avoid timeouts, Clouseau must ensure that no connection

has more than 1 out of 4 packets dropped. We can control the

level of drops by controlling the queue sizes: LDQ/N < C
4 ,

where C is the total number of connections at a given in-

coming table entry, undergoing the inference process. As

Clouseau should be installed at major routers in the Internet

backbone, we expect that values of C will be so large that

this condition holds for any queue sizes. Otherwise, it would

be wise to assume C=1 and ensure that
LDQ

N
< 0.25. The

expected value of Tvalid is then Tvalid = N
R

+ 3
RC(k) + RTT .

In [3], Shakkottai et al. measure the distribution of RTT

in four sets of backbone traces and conclude that this dis-

tribution is heavy-tailed, with values ranging from 10ms to

well beyond 10s, and with peaks around 100ms. In a mix

with a large number of simultaneous connections and a high

cumulative packet rate, such as is expected to be seen at a

large backbone router, the value of Tvalid should be domi-

nated by the RTT value of the slowest connection. In our

experiments RTT ≪ N
R

so we expect Tvalid to be domi-

nated by the speed of filling the queues. The inference time-

out Tinf must be larger than the maximum validation time

Max[Tvalid]. The worst case for route change validation oc-

curs when the N -th packet is the last one to be verified and

the sender is notified of the loss upon Retransmission Timer

timeout: Max[Tvalid] ≈ N
R

+ Max[2 · RTT ] Since RTT

distribution is heavy-tailed, the worst-case RTT can be ar-

bitrarily large, so Tinf would have to be set to a very large

value. Instead, we will make an optimistic estimate of RTT

value based on RTT distribution graphs in [3]. From these

graphs, an overwhelming majority of flows have RTT less

Figure 12: Inference delay vs pd

than 500ms. Taking this value as the worst-case RTT esti-

mate, and assuming that the packet rate R is large, which

agrees with our target deployment at large backbone routers:

Max[Tvalid] ≈ 2 · Max[RTT ] = 1s. Thus Tinf should be at

least 1s. Since in our tests R = 1000 and N varies from 50

to 1000, we set Tinf to a larger value of 2 s.

We now show how the inference delay measured in tests

in Section 4.1.2 depends on queue size (Figure 11) and how

it depends on pd (Figure 12). Inference delay increases lin-

early both with queue size and with increase in percentage

of packets dropped. This is expected, as both factors lead to

linear increase in packets that need to be validated. Since all

our connections had the same RTT, we did not see much vari-

ation in inference delay, but a real-world deployment would

result in larger variance of this measure.

4.2 Congestion
Clouseau’s inference process can handle low levels of down-

stream offending packet loss, about 1
α

. If loss is greater than

that, Clouseau will collect more than S spoof points dur-

ing the inference and will wrongly reach a filtering decision.

High packet loss may occur when routes change due to con-

gestion or when there is a large delay in route convergence.

The filtering decision will be followed by an inference ban

of Tban seconds and legitimate traffic will be dropped during

this time. When the ban expires, Clouseau will start the in-

ference process anew, which will again result in a filtering

decision if the congestion has not cleared. When the con-

gestion clears, Clouseau will successfully reach a validating

decision. For a reasonably small α (e.g. 2 — 4), packet

loss higher than 1
α

will itself create severe delays in legiti-

mate traffic, so Clouseau will not make the situation much

worse. The adverse effect occurs when the congestion clears

and Clouseau is still filtering packets due to inference ban.

In the worst case scenario, Clouseau will place an inference

ban just before the congestion ends. The maximum amount

of time that the congestion effect will be prolonged for the

legitimate traffic is Tban. On the other hand, in case of a per-

sistent random spoofing attack, Tban

Tinf+Tban
is the percentage of

time spent in successfully filtering the attack (the rest is spent
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in the inference process). The tradeoff in setting Tban is then

in choosing a sufficiently low value to minimize unwanted

drops when congestion is high, and choosing a high enough

value to maximize the time spent doing filtering.

4.3 Cascaded filters
If there is a large filter deployment in the Internet, it is pos-

sible that some routing changes will trigger inference pro-

cess in more than one filter simultaneously. In this case,

some packets forwarded by upstream filters will be dropped

by downstream ones. This may lead to erroneous filtering

decisions in upstream filters and unwanted legitimate traf-

fic drops. The core reason for this problem is filter syn-

chronization. We implement a token-passing approach to

break this synchronization in Clouseau by having the filter-

ing router place a well-known value4 in the TOS field of of-

fending packets that it forwards. A downstream filter that

sees marked packets delays its inference process for Tdelay

seconds. This way, several routers may initially capture the

token but only the router closest to the source of the offend-

ing packets will be the one to keep the token. To prevent an

attacker from delaying the inference process indefinitely by

stamping his packets with the well-known value, we impose

the limit on the total delay a filter is willing to experience

before it starts the inference process regardless of marked

packets. When a filter completes its inference process, it

stops marking TOS field in forwarded packets (releases the

token) and the downstream routers will attempt to capture it.

We have implemented and tested this approach with up to 10

synchronized filters. It successfully prevents concurrent in-

ferencing without introducing any noticeable slow-down into

the inference process or legitimate TCP connections.

4.4 Packet processing
We measured the processing cost of RBF and Clouseau by

measuring CPU load at deploying machines. Each machine

is a Pentium III with 850 MHZ CPU and 256 MB of RAM.

When there are no offending packets RBF adds about 5% to

the CPU load. With offending packets Clouseau adds about

50% to the CPU load within the first second following the

route change, when the inference process is run. The load

goes down when the inference process ends. We also per-

form tests with attack traffic spoofing the legitimate address

and we vary the attack rate and Clouseau queue sizes to mea-

sure how CPU load changes when these factors change. The

additional CPU load remained at 50—55% in all the tests

and did not show any trend when attack rate or queue sizes

were changed.

5 Scalability
The biggest issue for RBF and Clouseau scalability is stor-

age. In case of RBF, storage is needed for the incoming ta-

ble. Each entry stores the corresponding source address (32

bits), the expected incoming interface (12 bits based on the

current connectivity information) and a fresh mark (1 bit).

4An alternative would be to choose a secret value but this would have to

be communicated to other filters which requires shared trust.

A straightforward approach that stores one source IP per en-

try would require 232 entries, which is infeasible. Clouseau

could aggregate addresses that share /24 address range into

one entry, as this is usually the smallest address range that

can be assigned to a subnet and all machines from the subnet

are expected to share routes to any given destination. Still,

224 entries may represent too large a demand for router mem-

ory, so more aggregation is needed. Today’s routers apply so-

phisticated aggregation techniques to minimize space needed

by the routing and forwarding table entries, while still allow-

ing for fast prefix lookup. Many of those aggregation ap-

proaches can be reused by RBF to aggregate the incoming

table aggressively. The expected size of the incoming table

should be comparable to the size of today’s forwarding ta-

bles. Another way to minimize storage requirements for the

incoming table is to integrate incoming and forwarding in-

formation in the forwarding table for those entries that have

the same outgoing and incoming interfaces. An auxiliary in-

coming table would then keep only the information about

addresses that have asymmetric routes to the filtering node.

While entry aggregation lowers storage cost for RBF, it

complicates Clouseau. When a route change occurs, it may

affect only a part of the addresses in the aggregated entry.

Clouseau then needs to infer which part is affected and how

to split the entry. A simple approach is to assume that all

addresses for a /24 address range must arrive on the same

interface. When offending packets start arriving, Clouseau

builds a new entry for each /24 address range and removes

the fresh mark from the original incoming entry. New entries

can be aggregated if their prefixes allow this and if they share

the same new candidate interface. When the inference ends,

the address space for the old entry is adjusted to account for

the split and the new entries are marked as fresh. We plan to

carefully investigate splitting and reaggregation of incoming

entries in the future work.

Clouseau also needs storage for DroppedQueue, Forward-

edQueue and various counters. The smallest size of a queue

entry is 32 bits, if we take TCP sequence numbers as unique

packet identifiers and we assume that the probability of two

sources sharing the same sequence number range is low.

Still, if the total size of queues is N = 1000, this would

map into 4KB of memory for each entry that undergoes the

inference process. In the worst case, all entries in the in-

coming table could simultaneously go into inference, which

would blow up memory and CPU requirements. This could

be amended by randomly selecting a limited number of en-

tries to undergo the inference process, and forwarding of-

fending packets for other entries until their turn comes to

start inference. Another way to address this, which we plan

to investigate in future work, is to use Bloom filters to imple-

ment queues, to minimize storage requirements.

6 Attacks on Clouseau
In this section, we assume that the attacker is familiar with

Clouseau and the values of all the Clouseau parameters. The

attacker’s goal may be (1) to trick Clouseau to falsely recog-
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nize a spoofing attack as a route change or (2) to perform

a successful spoofing attack on a given victim in spite of

Clouseau. The attacker who aims to trigger a false validat-

ing decision will attempt to guess and resend some spoofed

packets. If he succeeds, Clouseau will change the incoming

interface for the spoofed source. This may both lower filter-

ing effectiveness and lead to some legitimate packet drops

if the legitimate traffic starts arriving on the old, now unex-

pected, interface. We analyze this case in three attack sce-

narios below: packet-repeating, permutation and collusion

attack.

The attacker who aims to avoid Clouseau filtering will

attempt to outrun Clouseau by frequently changing the ad-

dresses spoofed in packets. The attacker may choose to reuse

an address after some cycling period. If the change period is

lower than Tinf and the cycling period is higher than Tban, the

offending packets will always hit incoming table entries that

are not marked fresh. This will guarantee that more than α·S
N

fraction of packets is forwarded to the destination, possibly

creating a successful attack. We analyze this case in the cy-

cling attack scenario, below. Note that random-spoofing is a

subset of a cycling attack.

6.1 Permutation and packet-repeating attacks
A simple attempt to bypass the Clouseau inference process

and invoke incoming interface change with spoofed packets

is to repeat each spoofed packet.

Lemma 1 Repeating packets more than once is subopti-

mal for the attacker.

Proof: Observe the sequence of K identical packets — one

original and K−1 repetitions. If the original packet is placed

in the DroppedQueue, only the first repetition brings one

valid point. If the packet is placed in the ForwardedQueue,

each repetition brings one spoof point. Finally, if the packet

was not placed in any queue, the attacker does not gain any-

thing by repeating this packet. Thus, the attacker’s chances

to deceive the system can only decrease for K > 2. �

We now introduce the definition of a permutation attack

and prove that a packet-repeating attack is a special case of

the permutation attack. Observe a sequence of N unique

spoofed packets that completely fills Clouseau queues, ac-

cording to the pre-computed random permutation. The at-

tacker selects R out of these packets and repeats them in

some chosen order before the inference timeout.

Lemma 2 The outcome of the inference process is deter-

mined only by the order of R repeated packets and not the

repetition time.

Proof: The algorithm reaches a decision when the first of

the valid or spoof points reaches the corresponding thresh-

old. As long as the repeated packets arrive in the same order,

the points are gained in the same manner, and the algorithm

reaches identical decisions. �

This allows us to focus the analysis only on the order of du-

plicate packets, ignoring their original occurrences. Further,

only the repeated packets whose originals were recorded in

the queues influence the decision process. From lemma 2

follows that a packet-repeating attack is a special case of a

permutation attack. We assume that the attacker knows the

queue sizes, and hence he may choose to send less then N
unique packets. Let the number of unique packets be n < N .

This does not increase or decrease the attacker’s chances to

fool Clouseau compared to the case where he sends at least

N unique packets, but chooses not to repeat N − n of them.

We now focus on analyzing the strategy where the attacker

repeats a subset of R out of N original packets, and intro-

duces a permutation into the repeated packets. The attacker’s

goal is to guess a favorable permutation that helps him gain

V valid points before collecting S spoofed points. Since the

selection of packets inserted in the DroppedQueue and For-

wardedQueue was chosen randomly over a set of all permu-

tations, no permutation chosen by the attacker is more likely

to succeed than any other.

Lemma 3 Probability that the attacker wins after exactly

k repeated packets, V + S − 1 ≥ k ≥ V , is

pk(N,V, S) =
V

k

(

N−V

k−V

)

(

N

k

) .

Proof: The number of subsequences of length k chosen

from N unique elements is N · (N − 1) . . . (N − k + 1) =
(

N

k

)

· k!. The attacker’s winning sequences need to end with

one of the V packets, and the number of different such se-

quences is V · (k − 1)!
(

N−V

k−V

)

. The lemma follows. �

Note that for k > V + S − 1, the attacker cannot win af-

ter element k, because by that time he will have gained at

least S spoof points and the filtering decision will have been

reached.

Theorem 1 The optimal attacker’s strategy for defeating

Clouseau is to repeat at least V + S − 1 unique packets, and

the probability of success is

psuccess =

(

N−V

S−1

)

(

N

V +S−1

)

Proof: From lemma 3, the attacker can win at any V +S−
1 ≥ k ≥ V . Since each of those probabilities is positive, the

optimal attacker strategy calls for repeating at least V +S−1
packets, after which Clouseau is guaranteed to reach some

decision. The probability of success for an attacker is thus,

psuccess =

V +S−1
X

k=V

V

k

`

N−V

k−V

´

`

N

k

´ =

`

N−V

S−1

´

`

N

V +S−1

´ =

`

V +S−1
V

´

`

N

V

´ . (6)

The value of the sum represents a total fraction of sequences

of size V + S − 1 containing exactly V packets in the

DroppedQueue, and value
(N−V

S−1 )
( N

V +S−1)
is a fraction of permuta-

tions in which V is chosen from the first V +S−1 elements

relative to the total number of permutations in which V can

be chosen from all N elements. �

Clouseau parameters α, S and V determine the system’s

robustness against the permutation attack. In the following
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Figure 13: Required queue size N for psuccess < 10−3,

psuccess < 10−5 and psuccess < 10−10 for varying pd

analysis, we assume that α = 2. The probability of the at-

tacker’s success, psuccess from equation (6), can be made arbi-

trarily small by selecting proper parameter values. Assume a

constant ratio of dropped packets relative to the total queue

sizes: pd = LDQ

N
= V

N
. Then, S = 1

2 (1 − pd)N .
Lemma 4 The probability for the attacker’s success

psuccess can be made arbitrarily small by increasing the queue

sizes, and in particular,

psuccess < b·cN =
2 · (1 − pd)√

1 + pd

(

(1 − pd)
1−pd( 1+pd

2 )
1+pd

2

( 1−pd

2 )
1−pd

2

)N

.

Proof:

psuccess =

(

V +S−1
V

)

(

N

V

) =
(N − V )!(V + S − 1)!

N !(S − 1)!

=
(N − V )

N

Γ(N − V )Γ(V + S)

Γ(N)Γ(S)
.

Above we used that n! = Γ(n + 1). To upper bound psuccess,

we use Feller’s bounds [13] on Stirling’s approximation,

Γ(x) =
√

2πx
x− 1

2 e
−x

e
sx , where 0 ≤ sx ≤ 1

12x
. (7)

The claim follows. �

We note that c < 1, so psuccess decreases exponentially with

increase in N. In Figure 13, we show how the minimum

queue size N necessary for psuccess < 10−3, psuccess < 10−5

and psuccess < 10−10, depends on pd. The optimal pd which

minimizes memory cost for target psuccess is 0.6. With sam-

pling we can easily ensure that the actual packet drop rate is

low while keeping
LDQ

N
= 0.6.

Since the probability of the attacker winning is always

greater than zero, it is still possible that in some rare cases (or

after sufficient number of attempts) Clouseau can be tricked.

One way to detect this would be to change the relationship

of RBF and Clouseau to periodically trigger inference on en-

tries that do not receive any offending packets, to revalidate

them. This inference could be triggered with a higher V to

make the test strong, and a very small pd so the damage to

legitimate traffic due to drops would be minimized.

6.2 Collusion attack

Clouseau differentiates between a spoofing attack and a rout-

ing change by relying on the attacker’s inability to learn

which packets were forwarded and which were dropped. An

attacker who has a helper at the other side of a Clouseau

router could trick Clouseau by sending a sequence of spoofed

packets to his helper and asking him to report which pack-

ets have arrived. The attacker would then resend the missing

packets, gain V valid points and lead Clouseau to reach a

validating decision. In this attack, the attacker and helper ac-

tually reimplement the TCP mechanism. They behave, from

Clouseau’s observation point, as a legitimate TCP sender and

receiver, which makes this attack particularly hard to detect.

One approach to detect the collusion attack is to create

an impression of reality at a sender’s side that is different

from the one at the receiver’s side, so that the attacker can-

not benefit from his helper’s communication. Clouseau cre-

ates separate realities by introducing a fake event observable

by the source (whose address is in the offending packets),

but not by the receiver. Some number of offending packets

are subject to a fake event and some information about these

packets is remembered in a FakeEvent table. Note that this

table has similar functionality as the DroppedQueue and For-

wardedQueue and that an offending packet can now be either

forwarded, dropped or subjected to a fake event. This event

must meet two requirements (1) a legitimate TCP sender can

generate a response that cannot be faked by the source of

spoofed packets with the helper’s messages, and (2) a legit-

imate TCP sender can recover from the fake event and re-

sume its communication without further interference from

Clouseau. One type of TCP event satisfies these require-

ments — generation of a fake packet loss. Clouseau forwards

an offending TCP data packet but informs a source that the

packet has been dropped by generating a fake triple-duplicate

acknowledgment for a packet immediately preceding this

one. Clouseau can generate fake acknowledgments without a

TCP connection record, inferring proper header values from

the captured packet, and remember only a sequence num-

ber in FakeEvent table. A legitimate TCP sender will imme-

diately resend the “missing” packet after acknowledgments

have been received, provided that the fake acknowledgments

from Clouseau arrive before the receiver’s acknowledgment

for this packet; this is likely since Clouseau is on path from

sender to the receiver. An attacker will not receive fake ac-

knowledgments and will fail to repeat some packets from Fa-

keEvent table. Clouseau differentiates between the attacker

and the legitimate TCP sender by counting a number of pack-

ets from FakeEvent table that were not repeated some time

after the fake event. It reaches a filtering decision when this

number goes over some set threshold. When a packet from a

FakeEvent table is repeated its identifier can be deleted from

the table. TCP receiver will discard this packet as duplicate

and the connection will proceed as normal. This approach is

resilient to packet drops. If a forwarded packet is dropped en

route to the receiver, it will still be properly repeated after the
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sender receives fake acknowledgments. Clouseau can mini-

mize the danger of fake acknowledgment drops by sending

more than 4 of them for each packet.

6.3 Cycling attack
An attacker who frequently changes spoofed addresses

avoids Clouseau filtering, since offending packets hit incom-

ing table entries that are not marked fresh. This triggers the

inference process during which a large portion of offending

packets is forwarded to the destination. This attack cannot

be handled by adjusting Clouseau parameters. Instead we

first detect the attack and identify affected entries, then ap-

ply custom-handling to packets that are recognized as a part

of the attack. We observe two kinds of a cycling attack: (1)

many-to-few, where spoofed packets flow to a few targets,

and (2) many-to-many, where spoofed packets flow to di-

verse targets. Many-to-few spoofing occurs in many flood-

ing DoS attacks. It easy to create, frequent and very dam-

aging to the target, so it is important that Clouseau handles

this kind of cycling attack. Many-to-many spoofing creates

a lot of spoofed traffic flowing everywhere, but poses no ad-

ditional threat to Internet security. If the traffic is excessive,

many-to-many spoofing could create congestion in the core.

It would be impossible to handle this attack by trying to sepa-

rate offending-spoofed traffic from offending-legitimate traf-

fic, since the attack traffic has no specific signature. Instead,

a Clouseau router that experiences a sustained high offend-

ing packet rate, and does not detect a many-to-few attack,

could mark all its incoming entries fresh and perform ag-

gressive filtering. This would create some collateral damage

to traffic whose route changes during the attack, but would

successfully reduce congestion in the core.

Clouseau detects a many-to-few attack by monitoring of-

fending traffic destinations. Attack detection occurs when a

large portion of the offending traffic has common destina-

tions. The destinations are monitored at some chosen pre-

fix granularity, and those that receive the highest offending

packet rates are stored in the target set. Clouseau also keeps

with each incoming entry a total count of offending pack-

ets received at this entry and how many of these were going

to destinations from a target set. For detection, we will use

counts only for those entries that have recently experienced

a filtering decision, where “recently” denotes a period since

the last counter reset.

Let TS denote the target set, FIT the set of incoming ta-

ble entries that recently experienced a filtering decision, and

IT (s) denote an entry associated with the source s. Let pd
s

denote an offending packet with source IP s and destination

IP d and nc[x] is exponentially weighted average of the count

of the elements x that satisfy the criteria c. The detection cri-

teria for a many-to-few attack is:

P

nd∈TS,IT (s)∈FIT[pd
s ]

P

nIT (s)∈FIT[pd
s ]

> fTS, (8)

where sum is calculated over all incoming entries and fTS

is a threshold for attack detection. This criteria tests if the

majority of the offending packets that invoked a recent fil-

tering decision had a common set of destinations. When

the attack is detected, Clouseau places special marks at all

entries that signify that entries are fresh only when an of-

fending packet has a destination from TS. This means that

all offending packets going to the target set will be filtered

by RBF, bypassing Clouseau. Other offending packets are

treated as usual. The end of many-to-few attack can be de-

tected when the condition from the equation (8) is no longer

met or when the offending packet rate to the target set sub-

sides. We use an exponentially weighted average of counters

to avoid rash attack end detection in the case of pulsing at-

acks. The reset period — Treset should be sufficiently large

so that the memory of filtering decisions is kept for at least

several minutes. When the attack end is detected, the special

fresh mark is removed and Clouseau reverts to its normal

operation. Route changes occurring during the attack can be

validated using offending packets that travel to destinations

other than the target set. Given the proposed deployment at

popular routers, we expect that many sources will use these

routers to reach a large number of destinations, and will have

no problems validating route changes during cycling attacks.

The attacker could attempt to misuse the above proposed

modification to Clouseau to create a denial-of-service on

legitimate traffic by triggering attack detection and lead-

ing Clouseau to mark all entries as fresh for a given target

set. This attack only affects sources that experience a route

change during the attack and that cross the Clouseau router

only to send traffic to destinations in the target set. We ex-

pect that portion of such sources would be too small to create

an interesting target for the attacker.

7 Related work
There is extensive work on IP traceback which aims to detect

a packet’s origin by using packet header marks placed by

routers on the packet’s path. As these approaches do not

filter spoofed traffic, we do not cover them in this section.

There are several spoofing defense approaches that use

concepts similar to route-based filtering. They keep the in-

coming table where each source address is associated with

some chosen parameter’s value, learned in a reliable man-

ner. This parameter is inspected in incoming packets and ob-

served values should match the expected value from the in-

coming table. Mismatching packets are considered spoofed.

Hop-count filtering (HCF) [10] infers the expected hop

count value between each source and an HCF-server using

TTL values in TCP packets, and filters out packets whose

hop count is not close enough to the expected value. HCF

can be deployed at the end-host that is a victim of a DDoS

attack and is thus easier to deploy than RBF. It offers good

protection against random spoofing, but a smart attacker can

learn the expected hop count value by trial and error and

completely defeat HCF.

Stack-Pi [8] associates a source address of the packet with

a mark in the packet’s IP header. This mark is jointly cre-

ated by Stack-Pi routers that forward the packet, by shifting

13



the value in the IP identification field and appending to it a

small secret mark. During a flooding DDoS attack, marks

can be used by the target host to identify paths that carry

a large volume of traffic, allowing filtering based on mark

values. This filtering inflicts collateral damage to legitimate

users that share a path with an attacker. Although marked

packets can be filtered close to the attack’s victim, marking

routers must be deployed widely to ensure mark diversity.

The spoofed traffic consumes Internet resources before be-

ing filtered at the destination.

Spoofing prevention method (SPM) associates a source-

AS or a destination-AS of a packet with a cryptographic se-

cret exchanged between the source and the destination AS,

and carried in the packet. Packets are checked for the proper

mark as they exit the source AS and on entry to the desti-

nation AS. The main advantage of SPM over RBF is that it

is an end-to-end protocol and as such has lower deployment

cost than RBF, which has to be deployed at well-connected

routers. The main disadvantage is that SPM can only help

filter traffic that spoofs an SPM address to an SPM destina-

tion, so the protection that SPM offers to a deploying net-

work depends on the degree of SPM deployment in the In-

ternet. Packets that spoof non-SPM addresses or spoof SPM

addresses to non-SPM destinations cannot be filtered. Also,

filtering occurs at the destination, which means that Internet

resources between the attackers and the destination are still

consumed by spoofed traffic.

In [7], Li et al. proposed the SAVE protocol, where partic-

ipating sources generate periodic advertisements about their

prefixes, and send them to all destinations. Filters use the

advertisements to populate incoming tables by recording the

arrival interface as the valid interface for the prefixes in

the advertisement. SAVE advertisements are also generated

when a source experiences a routing table change, which cor-

rectly updates incoming tables for some, but not all, rout-

ing changes. Incomplete tables significantly lower filtering

effectiveness, limiting the practicality of SAVE for real de-

ployments.

Recently proposed Inter-Domain Packet Filters (IDPF)

[12] are built using local BGP advertisement information.

IDPFs filter less spoofed traffic than route-based filters be-

cause they mark multiple incoming interfaces as expected,

and cannot detect which interface is really used by a source.

IDPF approach further faces problems in some specific rout-

ing scenarios, e.g., in presence of selective announcements.

Conversely, Clouseau will properly detect expected single or

multiple interfaces in any routing scenario.

8 Conclusions
IP spoofing is a commonly used attack tool that complicates

and often defeats defenses against many security threats.

Two major problems have prevented design of practical

spoofing defenses. First, the most optimistic results sug-

gested that effective combating of spoofing required deploy-

ment at several thousand ASes, at least. Second, no workable

method of producing the data structures required to perform

effective filtering had been proposed.

This paper has addressed both of these core problems. We

have shown that deployment of RBF at as few as 50 ASes

can lead to effective filtering, and we have demonstrated a

feasible method of creating the information needed to per-

form that filtering. The Clouseau system has a number of

advantages for this purpose, including being self-contained

on sites that deploy it, requiring no changes in protocols or

cooperation with any other sites, offering strong deployment

advantages to the groups that need to deploy it, having little

or no impact on normal Internet traffic, and being resilient

to attacks intended to subvert its operation. These claims are

validated by analysis and extensive experimentation with a

working Clouseau prototype. Thus, this paper demonstrates

a reasonable system whose deployment at 50 ASes could

largely reduce spoofing in the Internet.
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