

A Practical Irradiance Model for Bifacial PV Modules

Bill Marion

Sara MacAlpine, Chris Deline (NREL) Amir Asgharzadeh, Fatima Toor (University of Iowa) Daniel Riley, Joshua Stein, Clifford Hansen (Sandia)

June 28, 2017

44th IEEE Photovoltaic Specialist Conference, Washington, D.C.

NREL/PR-5J00-68678

- Bifacial PV modules use radiation received by both the front and back surfaces, but only irradiance models for the front surface are fully developed and validated.
- This work developed a backside irradiance model and compared model estimates with backside irradiance measurements using reference cells installed on the backside of PV systems at NREL and Sandia.

- Similar to models for the front side, configuration factors (*CF*s) are used. (The fraction of irradiance received from a source).
- Irradiance received by ground corrected for shadows and restricted view of the sky using array geometry.
- Irradiance corrected for AOI (beam & diffuse).
- Irradiances calculated for each row of cells in panel.
- Edge effects not considered.

Front Side Sky and Ground-Reflected Irradiance

Backside Sky and Ground-Reflected Irradiance

- CFs may also be used for the backside
- But only if the irradiance is the same intensity over the field-of-view

CFs Using Field-of-View Angles

 Permits determining the contribution of each source of irradiance (shaded or unshaded ground, module reflections, etc.)

- Ground irradiance (GRI) is reduced by shadows and by the array reducing the view of sky
- Calculated at 100 locations in the row-to-row dimension

$$GRI = a \cdot (DNI + I_{cir}) + CF_{sky} \cdot I_{sky}$$

where:

a is the cosine of the sun zenith angle if the ground segment is unshaded. If shaded, *a* is the cosine of the sun zenith angle multiplied by the fractional opening of the PV array due to gaps between PV cells and modules.

CF_{sky} Depends on Location in Row-to-Row Dimension

$$CF_{sky} = (\cos \Theta_{S1} - \cos \Theta_{S2})/2$$

Calculating the Backside Irradiance (BSI)

 Summed over 180° field-of-view using one degree increments

$$BSI = b \cdot F_b \cdot (DNI + I_{cir}) + \sum_{i=1^\circ}^{180^\circ} CF_i \cdot F_i \cdot I_i$$

where b = maximum (0, cosine of the AOI of the DNI); F_b and F_i are AOI corrections for the beam and diffuse¹; and I_i is the irradiance viewed by the *i*th one-degree segment (either I_{sky} , I_{hor} , $\rho \cdot GRI_n$, or I_{refl}).

¹B. Marion, "Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules", *Solar Energy* 147: 344–348, 2017.

- Model Input Direct Normal Irradiance (DNI) and Diffuse Horizontal Irradiance (DHI), used with Perez model to derive circumsolar, sky, and horizon diffuse.
- Measured backside irradiances for NREL and Sandia systems.

Validation Results – NREL Site

- Better results for upper roof than for lower roof.
- Off south azimuth shifts BSI peak values.

Reflections from wall not addressed

Upper Roof

NATIONAL RENEWABLE ENERGY LABORATORY

Validation Results – Sandia Site

- Data for 10/1/2016 thru 3/31/2017 15 minute averages.
- Mean for bottom reference cell was 10% of front side.
- Mean for top reference cell was 7% of front side.
- Model MBD ranged from -4 to 9 W/m², -9 to 16%.
- Model RMSD ranged from 5 to 16 W/m², 14 to 31%.

Modeled Versus Measured BSI for Top Reference Cell in 35° Tilt Row

BSI plus front side irradiance – total irradiance to PV cell.

- Model MBD ranged from -11 to 14 W/m², -1.8 to 2.4%.
- Model RMSD ranged from 25 to 36 W/m², 4 to 6%.

Modeled Versus Measured BSI Plus Front Side Irradiance for Top Location in 35° Tilt Row

Summary

 The backside irradiance model for bifacial PV systems uses configuration factors, and accounts of the effects of shading, restricted view of the sky, and angle-of-incidence for both beam and diffuse radiation.

- The model was validated using data from NREL and Sandia.
- The model MBD for the total irradiance available to the PV cell (BSI plus front side irradiance) was within ±2.5%.

Questions?

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.