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Abstract This paper describes a practical and reliable 

algorithm for implementing an Attitude and Heading 

Reference System (AHRS). This kind of system is 

essential for real time vehicle navigation, guidance and 

control applications. When low cost sensors are used, 

efficient and robust algorithms are required for 

performance to be acceptable. The proposed method is 

based on an Extended Kalman Filter (EKF) in a direct 

configuration. In this case, the filter is explicitly derived 

from both the kinematic and error models. The selection 

of this kind of EKF configuration can help in ensuring a 

tight integration of the method for its use in filter-based 

localization and mapping systems in autonomous 

vehicles. Experiments with real data show that the 

proposed method is able to maintain an accurate and 

drift-free attitude and heading estimation. An additional 

result is to show that there is no ostensible reason for 

preferring that the filter have an indirect configuration 

over a direct configuration for implementing an AHRS 

system. 

 

Keywords Attitude Estimation, Sensor Fusion, Vehicle 

Navigation, Inertial Measurement, Kalman Filtering 

 

 

1. Introduction  

 

The orientation of a vehicle in space is often referred to as 

Attitude. A combination of instruments capable of 

maintaining an accurate estimate of the vehicle attitude, 

while it manoeuvres, is called an AHRS (Attitude and 

Heading Reference System). An AHRS is a fundamental 

prerequisite for addressing several navigation and control 

problems. The first implementations of AHRS were based 

only on gyroscopes. Gyros are prone to bias, which could 

produce large errors after long periods of integration. 

This fact meant that attitude estimation was limited to 

very expensive applications because sensors with long 

term bias stability are very expensive, even now.  

 

Filtering techniques are often required if less reliable (low 

cost) gyros are used. Using filtering techniques, other 

sensors (i.e., accelerometers and magnetometers) can be 

combined with gyros in order to limit the attitude errors 

over time. The recent production of solid-state or MEMS 

gyroscopes, 3-axis accelerometers and magnetometers 

and powerful microcontrollers have made the 

development of small, low cost and reliable AHRS 

devices possible. 
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With new hardware becoming available (i.e., MEMS 

sensors and microcontrollers), several approaches for 

AHRS systems have appeared in the literature, especially 

in the last decade. Different taxonomies can be employed 

in order to classify the AHRS methods available. Some of 

these criteria are: i) sensory input, ii) attitude 

representation and iii) estimation technique. 

 

Nowadays, AHRS are typically based on gyros that are 

updated by gravity sensors (i.e., accelerometers) for pitch 

and roll, and by magnetic field sensors for yaw. 

Nevertheless, depending on the application, it is common 

to find approaches which rely on alternative sensors to 

bound attitude errors in time; for example, GPS or air 

speed sensors for UAVs and star trackers for spacecraft 

[1-6]. 

 

The 3×3 orthogonal attitude matrix (Rotation Matrix or 

Direction Cosine Matrix) is the fundamental 

representation of the attitude. The requirement of 

orthogonality imposes six constraints on its nine 

elements, reflecting the fact that the special orthogonal 

group SO(3) of the rotation matrices has three 

dimensions. Therefore, although in some approaches 

attitude is computed directly over the Direction Cosine 

Matrix (DCM) [7-8], most approaches use lower-

dimensional parametrizations of SO(3), with earlier 

approaches using a three-dimensional parameterization 

(e.g., Euler angles) [1,3,7,9]. On the other hand, higher-

dimensional parametrizations can avoid the singularities 

or discontinuities present in all three-dimensional 

representations. The four-component quaternion has the 

lowest dimensionality possible for a globally non-

singular representation of SO(3). Unit quaternions 

provide a convenient mathematical notation for 

representing orientations and rotations of objects in three 

dimensions [2,10,4-6,11,12]. Compared with Euler angles, 

quaternions are simpler to compose and avoid the 

problem of gimbal lock. Compared to rotation matrices, 

quaternions are numerically more stable and may be 

more computationally efficient. A good review for 

attitude representations is given in [13]. 

 

Several estimation techniques have been used for attitude 

determination. Schemes presented in [1,2] use the Linear 

Filtering and Iterated least-squares methods, respectively. 

The linear Kalman Filter (KF) commonly used to estimate 

the system state variables and to suppress the 

measurement noise has been recognized as one of the 

most powerful state estimation techniques. Some 

methods which rely on linear Kalman Filtering are [3,10]. 

Due to the nonlinear nature of the problem, the nonlinear 

version of the Kalman Filter (The Extended Kalman Filter 

or EKF) has been the technique typically used to compute 

the attitude solution from multiple sensor sources. There 

are two basic ways of implementing the EKF:  total state 

space formulation (also referred to as the direct 

formulation) and error state space formulation (also 

referred as the indirect formulation).  

 

EKF in the indirect formulation estimates a state vector 

which represents the errors between the estimated state 

and the estimated nominal trajectory. An error model for 

each component of the state is needed in order to estimate 

the measurement residual. The measurement in the error 

state space formulation is made up entirely of system 

errors and is almost independent of the kinematic model. 

Most of the approaches follow this kind of configuration 

[4,5,7,11,12]. The differences among those methods 

mainly consist of variations in the design of the error 

models. 

 

Method Sensors 

Gyro

Bias

Estimation 

Technique 

Attitude 

Represen-

tation 

[1] 3G,GPS Y Linear Filtering Euler 

[2] 3G,3A,3M,

GPS 

Y Iterated least 

squares/KF 

Euler 

[3] 3G,3A,3M,

GPS 

Y KF Quaternion 

[10] 3G,1A,3M Y KF + KF1 DCM 

[4] 3G,Star- 

Tracker 

Y i-EKF Quaternion 

[7] 3G,3A,3M Y i-EKF Euler 

[5] 3G,3A,3M 

Air-Speed 

Y i-EKF Quaternion 

[11] 3G,3A,3M Y i-EKF Quaternion 

[12] 3G,3A,3M N i-EKF Quaternion 

[6] 3G,3A, Air-

Speed 

N Complementary 

Filtering 

Quaternion 

[8] 3G,3A,3M Y Complementary 

Filtering 

DCM/ 

Quaternion 

[9] 3G,3A,3M N Neural Network Euler 

[15] 3G,3A,3M Y UKF Quaternion 

This work 3G,3A,3M Y d-EKF Quaternion 

Table 1. In the "Sensors" column, the initials stand for: G = 

gyroscope, A = accelerometer, M = Magnetometer; the number 

before the initial means the number of axes, (e.g., 3G = 3-axis 

gyroscope). The "Gyro Bias" column indicates whether the 

method estimates the bias of gyros online. In the "Estimation 

Technique" column, KF = Linear Kalman Filter, i-EKF = Extended 

Kalman Filter in the indirect configuration, d-EKF = Extended 

Kalman Filter in the direct configuration, UKF = Unscented 

Kalman Filter. KF1 indicates that an extra linear Kalman Filter is 

used for the Gyro Bias estimation. In the "Attitude 

Representation" column, DCM stands for Direction Cosine 

Matrix.  

 

In EKF in the direct configuration, the vector state is 

updated implicitly with the predicted state and the 

measurement residual (the difference between the 
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predicted and current measurement). In this kind of EKF 

configuration, the system is essentially derived from the 

system kinematics. One of the characteristics of the direct 

configuration is its conceptual clarity and simplicity. The 

differences between both kinds of configurations can 

considerably impact the development process of 

applications based on the EKF. A good review of EKF and 

its configurations can be found in [14].  

 

In addition, it is possible to find other methods which 

rely on variations of Kalman filtering, such as the 

Unscented Kalman filtering [15]. Another interesting 

family of methods for attitude estimation is nonlinear 

observers [6,8]. Nonlinear observers often exhibit global 

convergence which means they can converge from any 

initial guess. A good review of several filtering methods 

for attitude estimation is given in [16]. Another kind of 

method relies on estimation techniques coming from the 

artificial intelligence (AI) research community. For 

instance in [9], attitude estimation relies on a digital 

neural network.  

 

Although it is possible to find different methodologies in 

the literature, EKF is still the standard estimation 

technique for attitude estimation. Nevertheless, the use of 

EKF in direct configuration has been much less explored 

than its counterpart, the EKF in indirect configuration 

(see Table I). This happens especially when system errors 

(e.g., gyro bias) are to be included in the vector state. An 

example of direct linear Kalman filtering for attitude and 

position estimation (GPS + Inertial navigation system) can 

be found in [17]. Nevertheless, since this method is also 

intended for position estimation, it is highly dependent 

on GPS measurements, and thus limits its usability for 

applications which rely solely on attitude estimation. 

Moreover, the LTI (linear time invariant) approach of this 

method can affect the performance of the estimations due 

to the non-linear nature of the problem.  

 

On the other hand, the EKF in its direct configuration has 

been widely used (for about two decades) by the research 

community on autonomous robots, to implement 

methods of localization, mapping or both: SLAM 

(Simultaneous Localization and Mapping), see [18]. 

 

The method presented in this work is motivated by the 

necessity of having a practical and reliable method for 

attitude and heading estimation that can be tightly 

integrated with filter-based SLAM methods in a 

straightforward manner. In this sense, it is important to 

note that most of the currently available algorithms for 

SLAM use a loosely-coupled approach for incorporating 

attitude measurements. In other words, in a loosely-

coupled approach, the SLAM algorithm takes the attitude 

and orientation estimated by an AHRS unit as a high-

level input. On the other hand, since the proposed 

method was derived using the indirect configuration of 

the EKF, it can be easily plugged into a filter-based SLAM 

algorithm using a tightly-coupled approach. Thus, low-level 

measurements (i.e., from gyros, accelerometers, 

magnetometers) can be incorporated directly into the SLAM 

scheme to aid in attitude and heading determination. 

 

This paper considerably extends the authors' previous 

work [19] where the idea of an AHRS based on an EKF in 

a direct configuration is introduced. Some of the most 

important additions included in this work are: 

• A new (discrete) kinematic nonlinear model is used in 
the prediction equations of the filter, in order to 

improve the performance of the method when 

operating at a low sample rate. 

•The actual rotational speed of the body is included in 
the system state vector, in order to improve the 

observability of the bias of gyros.  

• In order to detect instants when the body is in a 

non-accelerating mode, the Stance Hypothesis 

Optimal Detector (SHOE) [20] is used. 

• A novel method is developed for updating yaw 
(heading) measurements, in order to improve the 

modularity and scalability of the method. 

• In order to validate the performance of the proposed 

method, a comparative study with real data is 

presented, where the proposed method is compared 

(in different conditions) with a related method. In 

experiments, the high-performance miniature unit 

3DM-GX3®45 from MicroStrain® is used as ground 

truth. 

 

The paper is organized as follows: in Section 2, the 

proposed method is described. It is important to note that 

the paper is presented in a self-contained style, since all 

the required equations for implementing the proposed 

method are included. Section 3 presents the experimental 

results. In Section 4, the final remarks are presented. An 

appendix with the transformations required for 

implementing the proposed method is also included. 

 

2. Method description  

 

2.1 Vector state and system specification  

 

The goal of the proposed method is to estimate the 

following system state x:̂
 

x̂ x
nb b

g
q ω

′ =                             (1) 

 

where qnb = [q1,q2,q3,q4] is a unit quaternion representing 

the orientation (roll, pitch and yaw) of the body (device); 

ωb = [ωx ωy ωz] is the bias-compensated velocity rotation of 

the body expressed in the body frame; xg = [xg_xxg_y xg_z] is 

the bias of gyros. 
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Figure 1 shows the relationship between the body frame b 

and the local reference frame n. In this work, the axes of 

the coordinate systems follow the NED (North, East, 

Down) convention. For simplicity’s sake, in Fig. 1, the 

orientation of the body is illustrated by Euler angles α, β 

and γ, denoting roll, pitch and yaw, respectively. Euler 

angles can be computed from quaternion qnb using Eq. 

(34). 

 

In order to estimate the system state x̂, measurements 

obtained with an inertial measurement unit (IMU) of 9-

DOF are considered. The IMU is formed by a 3-axis 

gyroscope, a 3-axis accelerometer, and a 3-axis 

magnetometer. 

 

 

Figure 1. The rotation between the body (device) frame (in red) 

and the local reference frame (in blue) is illustrated by Euler 

angles α, β and γ (roll, pitch and yaw respectively). Attitude and 

heading reference systems are often used for stabilization 

applications, for instance, to control a quadrotor.  

 

2.1.1 Gyroscope measurements  

 

The angular rate ωb of the vehicle, measured by the gyros (in 

the body frame) and indicated as yg, can be modelled by:  

 

gxb
g gy vω= + +                             (2) 

 

where xg is an additive error (bias) and vg is a Gaussian 

white noise with a power spectral density (PSD) σg2. 
 

2.1.2 Accelerometer measurements 

 

The acceleration of the device ab, measured by the 

accelerometers (in the body frame) as ya, can be modelled by: 

 

axb

a a

by a g v= − + +                       (3) 

 

where gb is the gravity vector expressed in the body 

frame, xa is an additive error (bias), and va is a Gaussian 

white noise with PSD σa2. Bias in the accelerometers triads 

is often relatively small, thus in this work it is neglected. 

 

2.1.3 Magnetometer measurements 

 

The Earth field mb measured (in the body frame) as ym can 

be modelled by: 

 

mx m

b
my m v= + +                              (4) 

 

where vm is a Gaussian white noise with PSD σm2. 
Magnetometer bias xm could be fairly large but extremely 

slow in time-varying; therefore, in this work it is not 

considered for online estimations; instead a calibration 

technique, as presented in [21], could be used to set its 

initial value. 

 

2.2 Architecture of the system   

 

Figure 2 shows the architecture of the system, which is 

defined by the typical loop of the prediction-update steps 

in the EKF in the direct configuration: 

• System Prediction: Prediction equations propagate 

during the estimation of the system state, by means 

of the measurements obtained from gyroscopes. 

Prediction equations offer correct estimates at a high 

frequency, but only for a short period of time. 

• System Update: The unavoidable small errors in 

gyro readings produce large errors in attitude 

estimation after long periods of integration. The use 

of aiding sensors capable of measuring external 

references becomes essential in order to limit the 

estimation error. In this work, the gravity vector g 

and the magnetic Earth field m are used as external 

references for correcting roll, pitch and yaw 

estimations: 

i) During the periods when the device is in a non-

accelerating mode (variable rate), information about 

the attitude of the device-vehicle (roll and pitch) is 

incorporated into the system by observing the 

gravity vector.  

ii) Information about the heading (yaw) of the device-

vehicle is incorporated into the system (at a 

predefined constant rate) by observing the Earth’s 

magnetic field. 

 

2.3 System Prediction 

 

At every step k, when gyroscope measurements are 

available, the system state x ̂ is updated by the following 

(discrete) nonlinear model. 

 

( )
( )

( )

4 4( 1) ( )

( 1) ( ) ( )

g(k 1) g(k)

sin w
cos w I W

w

x

x (1- )x

nb nb

k k

b

k g k g k

xg

q q

y

t

ω

λ

×+

+

+

+
 

=  
 

= − −

= ∆

        (5) 
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Figure 2. System architecture: the typical loop of prediction-update steps can be clearly observed, defined by an EKF in direct 

configuration (the vector state is implicitly updated from the predicted state and the measurement residual). We can observe that pitch 

and roll updates are only carried out when the device is in a non-accelerating mode (variable rate), whereas yaw updates are carried out 

at a fixed rate. Note that due to the modular design, for instance, replacing magnetometers with other sensors in order to correct yaw 

should be straightforward. 

 

In the model represented by Eq. (5), a closed form 

solution of q̇ = 1/2(W)q is used to integrate the current 

bias-compensated velocity rotation ωb over the 

quaternion qnb. In this case w = [ωb
(k+1)∆t/2]´ and: 

1 2 3

1 3 2

2 3 1

3 2 1

0 -w -w -w

w 0 -w w
W

w w 0 -w

w -w w 0

=

 
 
 
 
 
 

                  (6)

Furthermore, an alternative kinematic model for 

modelling the orientation of a camera using a quaternion 

can be found in a previous work by the authors [22]. 

Parameter λxg is a correlation time factor which models 

how fast the bias of the gyro varies. ∆t is the sampling 

time of the system. 

 

The state covariance matrix P takes a step forward by: 
 

( 1) ( )k x k x u u
P F P F F U F

+
′ ′= ∇ ∇ + ∇ ∇              (7) 

 

The measurement noise of the gyroscope vg is 

incorporated into the system by means of the process’ 

noise covariance matrix U, through parameter σg
2: 

 

2 2

3 3 3 3g xg
U diag I Iσ σ

× ×
=                     (8) 

 

The full model used to propagate the sensor bias error is: 

biask+1=(1-λ∆t)biask + vb, where vb models the 

uncertainty in the bias drift. The uncertainty in the bias 

for the gyro vxg is incorporated into the system through 

the noise covariance matrix U via PSD parameter σxg
2. 

0

0 0
x

x
0 0

x

x

nb nb

nb b

b

g

g

g

F

fq fq

q

f

f

ω

ω

 
 
 
 
 ∇
 
 
 
 
 

∂ ∂

∂ ∂

∂
=

∂

∂

∂ xg

0 0

0
y

x
0

b

u

g

g

F
f

f

v

ω

 
 
 
 
 ∇
 
 
 
 
 

∂
=

∂

∂

∂
   

(9)

 

The Jacobian ∇Fx is formed by the partial derivatives of 

the nonlinear prediction model (Eq. 5) with respect to the 

system state x.̂ In Jacobian notation, "∂fx/∂y" is used for 

partial derivatives and it must be read as the partial 

derivative of the function f (which estimates the state 

variable x) with respect to the variable y. Jacobian ∇Fu is 

formed by the partial derivatives of the nonlinear 

prediction model (Eq.5) with respect to the system inputs. 

 

2.4 System Updates 

 

The filter can be updated as follows: 

 

1
ˆ ˆx x ( )k k i iW z h

+
= + −                   (10)

 

1k k iP P WS W
+

′= −
                       (11) 

 

where zi is the current measurement and hi = h(x)̂ is the 

predicted measurement; W is the Kalman gain computed 

from: 

 

1

1k i iW P H S −

+
′= ∇                        (12) 
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Si is the innovation covariance matrix: 

 

1 ii i ikS H P H R+
′∇= ∇ +                          (13) ∇Hi is the Jacobian formed by the partial derivatives of 

the measurement prediction model h(x)̂ with respect to 

the system state x.̂ Ri is the measurement noise covariance 

matrix. Equations (10) to (13) will be used for system 

updates together with the proper definitions of zi, hi, ∇Hi 
and Ri. 

 

2.4.1 Roll and pitch updates 

 

If the device is not accelerating, (i.e. ab ≈ 0), then Eq. (3) 

can be approximated as ya ≈ −gb + va (xa is neglected). In 

this situation, accelerometer measurements ya provide 

noisy observations in the gravity vector (in the body 

frame). The gravity vector g is used as an external 

reference for correcting roll and pitch estimations.  

 

In order to detect the time (corresponding to k instants) 

that the body is in a non-accelerating mode, the Stance 

Hypothesis Optimal Detector (SHOE) is used [20]. 

 

The gravity vector g is predicted as measured by the 

accelerometers as hg: 
 

0

R 0nb

g

c

h

g

 
 

=  
  

                            (14) 

 

where gc is the gravity constant and Rnb is the navigation 

to body rotation matrix, computed from the current 

quaternion qnb (using Eq. (33)). 

 

If the device is not accelerating and a minimum period 

(corresponding to t1 seconds) has elapsed since the last 

roll and pitch update, then the filter is updated (using 

Eqs. (10) to (13)) with: 

 

i az y=
      i gh h=

    
2

3 3 aIiR σ×=
    

x̂i gH h∇ = ∂ ∂  (15) 

 

2.4.2 Yaw updates 

 

The model hγ used for predicting the heading (yaw) of the 

device is defined as: 

 

( )2 2

2 3 1 4 3 4atan2 2( ),1 2( )h q q q q q qγ = − − +        (16) 

 

where qnb=[q1,q2,q3,q4]  is the current quaternion; atan2 is 

a two-argument function that computes the arctangent of 

y/x given y and x, within the range [-π, π].  

 

As can be observed in Eq. (16), the model does not predict 

how the Earth’s magnetic field will be measured. Instead, 

the model directly predicts the yaw angle to be measured. 

The selection of this measurement prediction model is 

based on the scalability of the system. In this sense, an 

alternative measurement device could be directly 

attached to the AHRS in order to correct the heading 

estimations. 

 

An example of the above case could be a vehicle 

equipped with GPS. Certainly, in order to update the yaw 

of the vehicle using GPS measurements, the heading 

(yaw) should coincide all the time with the vehicle's 

course, which is measured by the GPS. In the case of 

aerial vehicles (e.g., helicopters, quadrotors, etc.), where 

the above assumption is not valid, then another reference, 

such as the Earth´s magnetic field, could be used instead 

to update the yaw. 

 

In order to use the proposed measurement prediction 

model hγ in the 3-axis magnetometer which is included in 

the 9-DOF IMU, a yaw measurement zγ
n is obtained from 

the measured magnetic field ym. 

 

Due to the angle of the inclination of the magnetic field 

vector, the measured magnetic vector is first projected to 

the north-east plane, by removing its z component: 

 
n bn

mm R y=                                  (17)

 

1 [ 0]n n n

x ym m m=                         (18) 

 

where mn=[mx
n, my

n, mz
n] and Rbn is the body to 

navigation rotation matrix, computed from the current 

quaternion qnb. The magnetic field vector mn1 

(expressed in the navigation frame), from which the z 

component has been removed, is projected back to the 

body frame by: 

 

1

b nb nm R m=                                   (19) 

 

where mb=[mx
b, my

b, mz
b] and Rnb is the navigation to body 

rotation matrix, computed from the current quaternion 

qnb. Finally, the measured yaw zγ
n is obtained by: 

 

( )atan2 ,n b b

y xz m mγ = −                        (20) 

 

In this work, it is assumed that the angle of the 

declination of the magnetic field is ignored or is 

previously known. Measurements zγ
n are assumed to be 

corrupted by Gaussian white noise vγ with PSD σγ2. 
 

At constants intervals of t2 seconds, the filter is updated 

(using Equations (10) to (13)) by: 

 
n

iz zγ=
        ih hγ=

       
2

iR γσ=
     

x̂iH hγ∇ = ∂
   

(21) 
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2.5 System Initialization  

 

An initial period of time t∈[0,T] is used for system 

initialization tasks. During this period, the device is 

assumed to be non-accelerating. 
 

2.5.1 Initial Attitude 
 

The method for estimating the initial orientation qnb
ini is 

based on the method proposed in [23]. The body frame 

gravity vector g b= [g1, g2, g3]
' is estimated by: 

 

0

1
( )

T

b

a
g y t dt

T
= −                             (22) 

 

The initial roll and pitch values can be computed 

respectively by: 

 

2 3
atan2( , )

ini
g gα =                           (23) 

 
2 2

1 2 3
) )atan2( , ( ( )

ini
g g gβ = − +                 (24) 

 

The initial yaw value is estimated as follows: 

 

w

cos( ) sin( ) sin( ) sin( ) cos( )

m 0 cos( ) sin( )

sin( ) cos( ) sin( ) cos( ) cos( )

b
m

β β α θ α

α α

β β α θ α

= −

−

 
 
 
 

     (25) 

 

where mw=[mxw, myw, mzw]  and: 

 

b

0

1
m ( )

T

m
y t dt

T
=                              (26) 

 

and 
 

( )atan2 ,w w

y xini -m mγ =                           (27) 

 

The initial quaternion qnbini is computed from the initial 

Euler angles αini, βini and γini: 
 

( , , )nb

ini ini ini iniq f α β γ=                     (28) 

 

To compute the above transformation, an initial body to 

rotation matrix Rnbini is computed from the initial Euler 

angles using Eq. (35). Then the initial quaternion qnbini is 

computed from Rnbini using Eq. (36). 

 

2.5.2 Initial Gyro Bias 

 

Initial gyro bias xg(ini) is estimated from: 

 

g(i )

0

1
x ( )

T

ni g
y t dt

T
=                              (29) 

 

2.5.3 Initial vector state and covariance matrix 

 

The system vector state is initialized as follows: 

 

1 3 g( )
x̂ 0 xnb

ini ini ini
q ×

′ =                (30) 

 

The covariance matrix of the system is initialized as 

follows: 

4 4

3 3

2

3 3

( ) 0 0

0 0

0 0

ε

σ

×

×

×

=

 
 
 
 
 
 
  

nb

ini

ini

g

P q

I

I
T

P             (31) 

 

where ε is a very small arbitrary positive value. The 

covariance matrix for the initial attitude P(qnbini) is 

computed from: 

 
2

2 2

2
P( )

0

0

a

nb

ini

m

q q q

I
T

T

σ

σ

×
′

= ∇ ∇

 
 
 
 
  

             (32) 

 ∇q is the Jacobian formed by the partial derivatives of the 

transformation defined in Eq. (28) with respect to the 

Euler angles. 

 

3. Experimental Results   

 

In order to validate the performance of the proposed 

method, a comparative study with real data is presented. 

In this case, the output estimated by the proposed 

algorithm (Direct method) is compared with the output 

obtained from the method described in [11] and [23], 

which is based on an EKF in indirect formulation 

(Indirect method). For a comparative study, the output 

obtained from a commercial 3DM-GX3®45 AHRS unit is 

considered as the ground truth. This high-performance 

miniature unit from MicroStrain® has a retail cost of 

about 5,000 USD. 

 

For each test, the 3DM-GX3®45 was randomly gyrated 

while held in a hand. At the same time, raw data obtained 

from the accelerometers, gyroscopes and magnetometers 

included in the unit, along with the attitude computed by 

the same unit, were recorded in a plain text file at a 

frequency of 100 Hz. Several data captures were carried 

out trying to cover different dynamic circumstances such 

as periodic and soft turns, as well as random and strong 

shakes. Each capture lasts about three minutes. 

 

A MATLAB implementation of both the proposed 

approach (Direct method), as well as the Indirect method, 
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were executed in off-line mode on a desktop Intel i5 PC, 

using raw sensor data stored in plain text files as input 

signals. The execution time was: i) Direct method = 736 

microseconds/step; ii) Indirect method = 586 

microseconds/step. It is important to note that for the 

Indirect method the size of the system state is six (actual 

rotational velocity is not included), instead of nine. So (as is 

typical in EKF applications) difference in execution time 

should be mostly related to the size of the system state. 

 

The outputs obtained with: i) the Direct method, ii) the 

Indirect method and iii) the 3DM-GX3®45 unit have been 

compared. Table 3 shows the values for the parameters 

used in the experiments for both the Direct and the 

Indirect methods.  

 

No extra bias 100Hz 50 Hz 25 Hz 

Roll (Direct) 0.65 0.84 2.62 

Roll (Indirect) 0.66 0.83 2.50 

Pitch (Direct) 0.36 0.58 1.80 

Pitch (Indirect) 0.35 0.56 1.74 

Yaw (Direct) 0.68 0.96 2.42 

Yaw (Indirect) 0.81 1.02 2.10 

Extra Bias 100Hz 50 Hz 25 Hz 

Roll (Direct ) 1.12 1.28 3.01 

Roll (Indirect) 1.39 1.54 2.92 

Pitch (Direct) 0.87 1.07 2.30 

Pitch (Indirect) 0.98 1.19 2.33 

Yaw (Direct) 2.52 3.52 5.76 

Yaw (Indirect) 3.10 3.33 5.21 

Table 2. Mean absolute error (degrees) 

 

In experiments, the mean absolute error (MAE) was used 

to compare the performance of both methods: 

 

            1

1
MAE

n

k k

k

f y
n

=

= −
                          

 

 

where n is the number of samples, fk is the angle 

measured by the 3DM-GX3®45 unit at instant k, and yk is 

the angle estimated by any method at instant k. In 

experiments, for purposes of clarity, Euler angles are 

obtained every time that they are needed from the current 

estimated quaternion qnb using Eq. (34). 

 

For a comparative study, two aspects were evaluated: 

a) The methods’ performance at estimating the gyro 

bias xg. That is, the ability of the filters to converge 

when the initial conditions differ considerably from 

the actual value, in order to minimize the error in 

estimations. 

b) The performance of the methods when the frequency of 

operations is reduced (or the sample time is increased). 

For the case (a), the methods were executed over the 

input signals stored in the plain text files. After that, 

the methods were run again over the same input 

signals, a huge extra bias xg(a) was artificially 

introduced into each gyro measurement yg, so that: 

yg = ωb+ xg + vg+ xg(a) (see Eq. 2). In experiments xg(a) = 

[.05  -.05  .025] radians.  

For the case (b), the methods were first executed over 

all the samples captured. After this operation, the 

methods were executed again but in this case, 

samples were periodically skipped in order to 

emulate different frequencies of operation. In this 

case, 100Hz, 50Hz and 25Hz were considered.  

 

Table 2 shows the average MAE obtained with the Direct 

method and the Indirect method for several captures of 

data (considering all the conditions previously 

described). As can be appreciated, the computed MAE is 

in general very similar for both methods. In a more 

detailed observation, the Direct method performs slightly 

better for converging (and thus minimizing the error in 

estimation) when an initial huge gyro bias is present. On 

the other hand, the Indirect method shows a slightly 

better response at a very low frequency of operation. 

 

Figure 3 shows the progression over time for the 

estimations obtained for a test with random turns and 

strong shakes. The plots correspond to the response of 

both methods when an extra gyro bias and a frequency of 

operation of 100Hz are considered. In Fig. 3, at the 

beginning of the test (before second 30), the adverse effect 

in the estimated roll, pitch and yaw due to the integration 

of the contaminated gyro measurements can be clearly 

appreciated (observe the absolute error corresponding to 

this period). However, the estimated gyro bias rapidly 

converges to its actual value due to the system updates 

carried out in the filters. When the gyro bias is estimated 

then the absolute error is minimized. For this test, it can 

also be appreciated that the convergence of the Direct 

method is faster than the Indirect Method, thus 

accelerating the minimization of errors in estimation. 

 

Parameter Description Value Unit 

σg2 PSD for gyroscopes 2.2 ×10-3 (rad/s)2 

σa2 
PSD for 

accelerometers 
1.2 ×10-2 (m/s2)2 

σγ2 
PSD for heading 

readings. 
6.0 ×10-3 (rad)2 

σxg2 
PSD for drift rate of  

gyro bias 
4.0 ×10-11 (rad/s2)2 

λxg 
Correlation time for  

gyro bias  
1.0 ×10-3 s-1 

∆t
Sampling time 1.0 to 4.0 

×10-2 
s 

t1 

Minimum time 

between roll and 

pitch updates 

5.0 ×10-2 s 

t2 

Minimum time 

between yaw 

updates 

1.0 ×10-1 s 

Table 3. Values of parameters used in experiments 
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Figure 3. Estimation results for a test with random turns and strong shakes with a duration about 170 seconds. In the experiments the 

attitude obtained from the 3DM-GX3®45 is considered as a ground truth (shown in black). The experimental results obtained with the 

proposed scheme (Direct method) are shown in green. The results obtained with the scheme of [11] and [23], (Indirect method) are 

shown in red. Besides the computed Euler angles (roll α, pitch β, yaw γ), the estimated gyroscopes bias xg and the absolute error are also 

shown. The robustness of the methods for converging in the presence of a huge initial bias of gyro is tested. In this case measurements 

yg have been artificially contaminated with an extra bias xg(a) = [.05  -.05  .025]. Nevertheless, for both methods it can be observed how the 

MAE decreases as the estimated gyro bias converges to its actual value. Although both methods are able to minimize the error in 

estimates over the time, for this case it can be observed a slightly better transient response for the Direct method. Lower plots illustrate 

periods for roll and pitch (left) and yaw (right) updates. 

 

4. Conclusions   

 

This work presents a practical method for implementing 

an attitude and heading reference system. The estimated 

vector state is formed by 10 state variables representing: i) 

the orientation of the body (device), ii) the bias-

compensated velocity rotation of the body, and iii) the 

bias of the gyroscopes. The system input is obtained from 

a 9-DOF IMU formed by a 3-axis gyroscope, a 3-axis 

accelerometer and a 3-axis magnetometer. 

 

The architecture of the system is based on an Extended 

Kalman filtering approach in a direct configuration. 

Experiments with real data show that the proposed 
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method is able to maintain an accurate and drift-free 

attitude and heading estimation. Moreover, it is capable 

of estimating the parameters of the error of sensors (i.e., 

gyro bias) in a robust manner, thereby improving the 

system estimations even when the quality of the 

measurements obtained from the gyros is very poor. 

Therefore, the accuracy of the estimates is almost only 

limited by the pre-calibration of accelerometers and 

magnetometers. Based on the experimental results, it is 

considered that the method is robust enough for use 

along with low cost sensors. 

 

In its normal operation mode at 100 Hz and using the 

same input signals, the average difference between the 

orientation estimated by the proposed method and 

orientation obtained from a retail unit (3DM-GX3®45), 

is lower than one degree. Furthermore, a comparative 

study shows that the performance of the proposed 

scheme is at least similar to an EKF method in an 

indirect configuration but, at the same time, has the 

advantages of clarity and simplicity commonly 

associated with the implementation of the EKF in a 

direct configuration. The modularity of the proposed 

architecture allows for scalability in the system. In such 

a case, an alternative measurement device could be 

easily attached to the system (replacing the 

magnetometers), in order to correct the heading 

estimations. Moreover, since the proposed method was 

derived using the indirect configuration of the EKF, it 

can be easily plugged into a filter-based SLAM 

algorithm using a tightly-coupled approach. 

 

The EKF in general is not an optimal estimator (owing 

to its linearization nature). In addition, if the process is 

modelled incorrectly, the filter may quickly diverge. 

Furthermore, it has been seen that the EKF tends to 

underestimate the true covariance matrix and therefore 

the filter could become inconsistent. With the above fact 

in mind, and considering that other estimation 

techniques could be even more robust, for instance, to 

the presence of non-linearity (e.g., UKF or particle 

filters), EKF can provide a reasonable performance and 

is arguably still the de facto standard in navigation 

systems. However, to our knowledge, at least all of the 

recent approaches found in the literature are based on 

the filter having an indirect configuration (also called 

error configuration). In this sense, based on the 

experimental results presented in this work, an 

ostensible reason to prefer the indirect configuration of 

the filter over the direct configuration is not observed, at 

least for implementing an AHRS system. 
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7. Appendix   

 

In this appendix some useful transformations are 

included:  

 

The rotation matrix Rnb can be computed from the 

quaternion q by: 

 
nbR =
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Euler angles α, β and γ (roll, pitch and yaw, respectively) 

can be computed from a quaternion q by: 

 

( ) ( )( )
( )( )

( ) ( )( )

2 2

3 4 1 2 2 3

1 3 2 4

2 2

2 3 1 4 3 4

atan2 2 , 1 2

asin 2

atan2 2 , 1 2

q q q q q q

- q q q q

q q q q q q

α

β

γ

= − − +

= +

= − − +

    (34) 

 

The navigation to body rotation matrix Rnb can be 

computed from Euler angles α, β and γ by: 
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(35) 

 

where cx = cos(x) and sx=sin(x).  
 

A quaternion qnb can be computed from rotation matrix 

Rnb by: 
 

1
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1

1

1

1

(3,2) (2,3)

4

(1,3) (3,1)

4

(2,1) (1,2)

4

nb nb

nb nb nb

nb nb

q

R R

q

q R R

q

R R

q

 
 

− 
 
 

= − 
 
 
 −
 
                      

(36) 

 

Since a rotation matrix is orthogonal, then 
 

( )nb bnR R ′=     and    ( )bn nbR R ′=                  (37) 
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